High-Contrast Imaging of Binary Stars with Starshades

Dan Sirbu1, Ruslan Belikov1, Eduardo Bendek2,

1NASA Ames Research Center
2Jet Propulsion Laboratory

Starshade SIP Meeting
Nov 19th, 2020
Overview

1. Motivation for Binary Star Direct Imaging
2. Direct Imaging of Binaries with Starshades

Hubble Image of Alpha Centauri A & B
Why Binaries? Nearby FGK Targets for Roman

<table>
<thead>
<tr>
<th>common_name</th>
<th>sptype</th>
<th>Vmag</th>
<th>d (pc)</th>
<th>M</th>
<th>Sol. Lum.</th>
<th>BB Temp</th>
<th>IHZ (AU)</th>
<th>IHZ (as)</th>
<th>IHZ (Id)</th>
<th>OHZ (AU)</th>
<th>OHZ (as)</th>
<th>OHZ (Id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* alf Cen A</td>
<td>G2V</td>
<td>0.01</td>
<td>1.32</td>
<td>4.40</td>
<td>1.45</td>
<td>5568</td>
<td>1.13</td>
<td>0.86</td>
<td>15.31</td>
<td>2.08</td>
<td>1.57</td>
<td>28.13</td>
</tr>
<tr>
<td>* alf Cen B</td>
<td>K1V</td>
<td>1.33</td>
<td>1.25</td>
<td>5.84</td>
<td>0.39</td>
<td>5051</td>
<td>0.60</td>
<td>0.48</td>
<td>8.58</td>
<td>1.12</td>
<td>0.90</td>
<td>16.04</td>
</tr>
<tr>
<td>* eps Eri</td>
<td>K2V:</td>
<td>3.73</td>
<td>3.22</td>
<td>6.19</td>
<td>0.28</td>
<td>5051</td>
<td>0.51</td>
<td>0.16</td>
<td>2.84</td>
<td>0.95</td>
<td>0.30</td>
<td>5.31</td>
</tr>
<tr>
<td>* 61 Cyg A</td>
<td>K5Ve</td>
<td>5.21</td>
<td>3.49</td>
<td>7.50</td>
<td>0.08</td>
<td>4348</td>
<td>0.29</td>
<td>0.08</td>
<td>1.48</td>
<td>0.56</td>
<td>0.16</td>
<td>2.85</td>
</tr>
<tr>
<td>* 61 Cyg B</td>
<td>K7Ve</td>
<td>6.05</td>
<td>3.49</td>
<td>8.34</td>
<td>0.04</td>
<td>4348</td>
<td>0.29</td>
<td>0.08</td>
<td>1.48</td>
<td>0.56</td>
<td>0.16</td>
<td>2.85</td>
</tr>
<tr>
<td>* alf Cmi A</td>
<td>F5IV-V+</td>
<td>0.37</td>
<td>3.51</td>
<td>2.64</td>
<td>7.29</td>
<td>6776</td>
<td>2.37</td>
<td>0.67</td>
<td>12.06</td>
<td>4.25</td>
<td>1.21</td>
<td>21.64</td>
</tr>
<tr>
<td>* eps Ind</td>
<td>K5V</td>
<td>4.69</td>
<td>3.62</td>
<td>6.90</td>
<td>0.15</td>
<td>4603</td>
<td>0.38</td>
<td>0.10</td>
<td>1.86</td>
<td>0.72</td>
<td>0.20</td>
<td>3.55</td>
</tr>
<tr>
<td>* tau Cet</td>
<td>G8.5V</td>
<td>3.5</td>
<td>3.65</td>
<td>5.69</td>
<td>0.44</td>
<td>5534</td>
<td>0.63</td>
<td>0.17</td>
<td>3.08</td>
<td>1.15</td>
<td>0.32</td>
<td>5.66</td>
</tr>
<tr>
<td>HD 88230</td>
<td>K8V</td>
<td>6.61</td>
<td>4.87</td>
<td>8.17</td>
<td>0.04</td>
<td>4069</td>
<td>0.21</td>
<td>0.04</td>
<td>0.78</td>
<td>0.42</td>
<td>0.09</td>
<td>1.53</td>
</tr>
<tr>
<td>* omi02 Eri</td>
<td>K0.5V</td>
<td>4.43</td>
<td>4.98</td>
<td>5.94</td>
<td>0.35</td>
<td>5221</td>
<td>0.57</td>
<td>0.11</td>
<td>2.04</td>
<td>1.06</td>
<td>0.21</td>
<td>3.79</td>
</tr>
<tr>
<td>* 70 Oph A</td>
<td>K0-V</td>
<td>4.123</td>
<td>5.09</td>
<td>5.59</td>
<td>0.48</td>
<td>5143</td>
<td>0.67</td>
<td>0.13</td>
<td>2.36</td>
<td>1.25</td>
<td>0.25</td>
<td>4.40</td>
</tr>
<tr>
<td>* 70 Oph B</td>
<td>K4V</td>
<td>6.17</td>
<td>5.09</td>
<td>7.64</td>
<td>0.07</td>
<td>4350</td>
<td>0.23</td>
<td>0.05</td>
<td>0.82</td>
<td>0.44</td>
<td>0.09</td>
<td>1.55</td>
</tr>
<tr>
<td>* 36 Oph A</td>
<td>K2V</td>
<td>5.12</td>
<td>5.46</td>
<td>6.43</td>
<td>0.22</td>
<td>5134</td>
<td>0.46</td>
<td>0.08</td>
<td>1.52</td>
<td>0.86</td>
<td>0.16</td>
<td>2.83</td>
</tr>
<tr>
<td>* 36 Oph B</td>
<td>K1V</td>
<td>5.08</td>
<td>5.98</td>
<td>6.19</td>
<td>0.28</td>
<td>5134</td>
<td>0.51</td>
<td>0.08</td>
<td>1.52</td>
<td>0.95</td>
<td>0.16</td>
<td>2.83</td>
</tr>
<tr>
<td>* sig Dra</td>
<td>G9V</td>
<td>4.68</td>
<td>5.75</td>
<td>5.88</td>
<td>0.37</td>
<td>5342</td>
<td>0.58</td>
<td>0.10</td>
<td>1.81</td>
<td>1.07</td>
<td>0.19</td>
<td>3.34</td>
</tr>
<tr>
<td>HD 131977</td>
<td>K4V</td>
<td>5.72</td>
<td>5.84</td>
<td>6.89</td>
<td>0.15</td>
<td>4493</td>
<td>0.38</td>
<td>0.06</td>
<td>1.16</td>
<td>0.73</td>
<td>0.12</td>
<td>2.23</td>
</tr>
<tr>
<td>* eta Cas A</td>
<td>G0V</td>
<td>3.52</td>
<td>5.95</td>
<td>4.65</td>
<td>1.15</td>
<td>6047</td>
<td>0.98</td>
<td>0.28</td>
<td>5.03</td>
<td>1.78</td>
<td>0.51</td>
<td>9.12</td>
</tr>
<tr>
<td>* eta Cas B</td>
<td>K7Ve</td>
<td>7.51</td>
<td>5.95</td>
<td>8.64</td>
<td>0.03</td>
<td>3967</td>
<td>0.17</td>
<td>0.03</td>
<td>0.52</td>
<td>0.34</td>
<td>0.06</td>
<td>1.02</td>
</tr>
<tr>
<td>V V2215 Oph</td>
<td>K5V</td>
<td>6.34</td>
<td>5.97</td>
<td>7.46</td>
<td>0.09</td>
<td>4389</td>
<td>0.29</td>
<td>0.05</td>
<td>0.88</td>
<td>0.56</td>
<td>0.09</td>
<td>1.69</td>
</tr>
</tbody>
</table>
| HD 191408 A | K2.5V | 5.32 | 6.02 | 6.42| 0.22 | 5076 | 0.41 | 0.07 | 1.23 | 0.74 | 0.12 | 2.20

Nearest 20 Stars:
13 Multi-Stars
4/7 Multi-Star Hab.
Zones w/in Roman FOV

Legend:
BOLD – Binaries
Color – Hab.Zone w/in Roman FOV
Green – Companion can be ignored
Red – Companion must be suppressed
Multi-Star Systems increase **quantity**
Of direct imaging targets

Plotting hypothetical exo-Earth contrast for all stars within 20 pc (based on Guyon 2019)

~1/2 of all FGK stars are in binary systems
- 41/67 in 10 pc
- 259/519 in 20 pc

Alpha Centauri A & B is a special science case:
- 3x closer than any other star system
- 3x better spatial/spectral resolution
Multi-Star systems increases **quality** of direct imaging targets

Roman CGI *may* be able to image Earth twins

- Due to unusual proximity, breaks common-wisdom assumptions about what Roman can do:
 1. At gibbous phase, an Earth-like planet around Alpha Cen B may be within CGI’s sensitivity limits (depending on final performance)
 2. For a Roman Starshade Rendezvous, completeness is significantly improved and an Earth-like planet around Alpha Cen A or B would be within sensitivity limits
 3. Optical imaging could detect structure in exozodi due to spatial resolution for aCen

Alpha Cen enables ~3x better IWA and resolution

- Based on Bailey 2019

Roman Starshade Rendezvous Limit

Instrument curves are 5σ post-processed detection limits.
Direct Imaging Challenges with Binary Stars

Challenges due to binary:
- Off-axis leakage from the binary companion creates a contrast floor
- Depth of the contrast floor is a function of the binary separation and brightness fraction
- A coronagraph for the off-axis companion is insufficient as contrast would be limited by its speckles!
Light Leakage from Binary Companions (10 pc)

Roman PSD characteristics
(provided by J. Krist)
- $D = 2.4m$
- $\lambda = 650nm$
- 20 nm RMS with $f^{-2.5}$ power spectrum
- 48x48 DM

Note: Contrast floor for an on-axis starshade due to unsuppressed off-axis companion star

Required companion suppression:
- 31/41 have leakage $> 1e-10$
Habex PSD characteristics
(provided by J. Krist)
- $D = 4.0\text{m}$
- $\lambda = 650\text{nm}$
- 20 nm RMS with $f^{-2.5}$ power spectrum
- 64x64 DM

Note: Contrast floor for an on-axis coronagraph/starshade due to
unsuppressed off-axis companion star

Required companion suppression:
- 193/259 have leakage $> 1\text{e-10}$
Overview

1. Motivation for Binary Star Direct Imaging
2. Direct Imaging of Binaries with Starshades

Hubble Image of Alpha Centauri A & B
<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>WC SOLUTIONS</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-axis blocker</td>
<td>Off-axis blocker</td>
<td>Star Separation at < N/2 λ/D</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>None (WC only)</td>
<td>MSWC-0</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>2nd Coronagraph</td>
<td>MSWC-0</td>
</tr>
<tr>
<td>Starshade</td>
<td>2nd Starshade</td>
<td>No WC required</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>Starshade (i.e. standard WC)</td>
<td>SSWC (i.e. standard WC)</td>
</tr>
<tr>
<td>Starshade</td>
<td>None (WC only)</td>
<td>SSWC (i.e. standard WC)</td>
</tr>
<tr>
<td>Starshade</td>
<td>Coronagraph (i.e. standard WC)</td>
<td>SSWC (i.e. standard WC)</td>
</tr>
</tbody>
</table>

SSWC=Single Star Wavefront Control (WC), **SNWC**=Super-Nyquist WC, **MSWC-0** = Multi-Star WC (0th order, or sub-Nyquist) **MSWC-s** = Multi-Star WC (super-Nyquist)
An on-axis and off-axis starshade can effectively suppress both stars operating in wide bandwidths. Requires operation of two starshades simultaneously.
An off-axis starshade removes leakage from Alpha Cen B turning the binary star problem into a single-star problem that can be controlled using the CGI. Performance set by CGI PSF + WC.
An on-axis starshade blocks Alpha Cen A achieving deep contrast and wide bandwidths, while off-axis speckles from Alpha Cen B are blocked using SNWC.
(3) SNWC with Roman Starshade

Super-Nyquist Wavefront Control
Mean Contrast: 2.76e-11

Observation Strategy:
(a) Create a larger $10 \, \lambda/D \times 10 \, \lambda/D$ discovery region with 10% bandwidth
(b) Create a smaller $2 \, \lambda/D \times 2 \, \lambda/D$ characterization region with 20% bandwidth

Characterization Dark Hole

Diffraction Pupil (Bendek 2016, Riggs 2020)
Roman Starshade Multi-Star Imaging Scenarios

(1) Dual Starshade Option

Pros:
- Wide characterization bandwidth
- Relaxed tolerance for off-axis starshade

Cons:
- Two starshades required
- Cannot slew while observing binaries

(2) CGI + Starshade Option

Pros:
- Uses existing CGI and WFC system
- Relaxed tolerance for off-axis starshade

Cons:
- On-axis CGI contrast floor at 10^{-9}

(3) Starshade + SNWC Option

Pros:
- Achieves 10^{-10} contrast
- Uses existing WFC system

Cons:
- May require open slot in SPC wheel for diffraction grating to enable wide binaries
SNWC with Habex Starshade

Simulation parameter summary:
- 10% bandwidth about 650 nm
- 2-DMs [64x64]
- Boston MEMS Quilting
- On-axis star behind focal plane mask
- Off-axis star located 200 λ/D
- Initial contrast: 3e-8
- Final contrast: 1.2e-10

Data Source:
Boston Micromachines
Conclusions

Methods:
- Starshades can be used as the on-axis or off-axis blocker for multi-star imaging:
 1. Dual starshade option for both on-axis and off-axis stars
 2. Off-axis starshade with CGI on-axis
 3. On-axis starshade with SNWC for off-axis leakage control is possibly the most promising option (can reach 10^{-10} contrast and uses existing WFC)
- Demonstrated $1e-10$ in simulation for both Roman and Habex starshade scenarios
- **Discussion question:** can we maintain compatibility of hybrid operation between starshade imaging mode with coronagraph’s WFC to enable binary star imaging?

Science:
- Starshade + SNWC would enable imaging & characterization of Earth-like planets with Roman
- Multi-star imaging improves quality & quantity of target stars:
 - Alpha Centauri A & B have ~3x better SNR or spatial/spectral resolution
 - Other notable nearby target stars: 61 Cyg A&B, Eta Cass A&B, Mu Her A, Mu Cass A