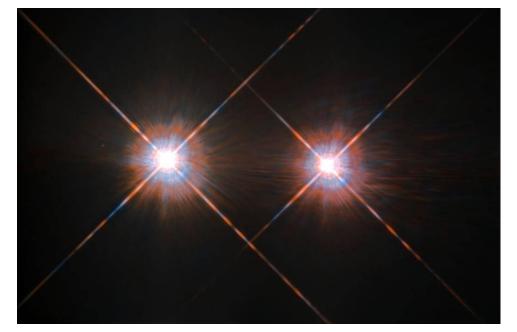


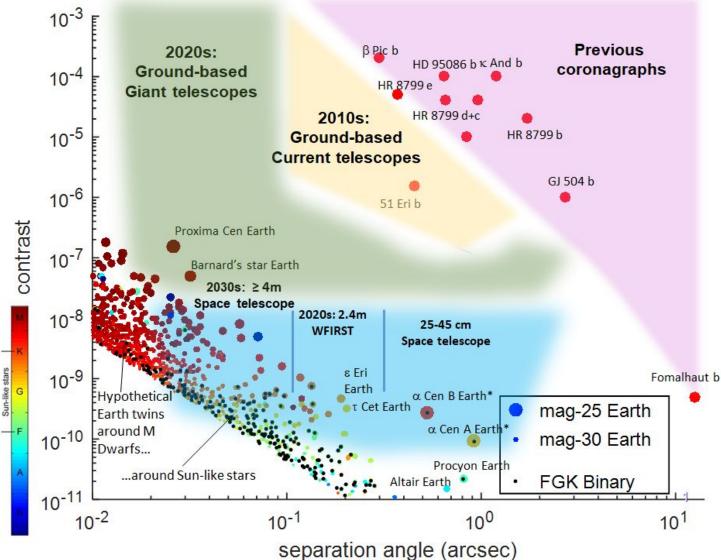
High-Contrast Imaging of Binary Stars with Starshades


Dan Sirbu¹, Ruslan Belikov¹, Eduardo Bendek², ¹NASA Ames Research Center ²Jet Propulsion Laboratory

> Starshade SIP Meeting Nov 19th, 2020

Overview

- 1. Motivation for Binary Star Direct Imaging
- 2. Direct Imaging of Binaries with Starshades



Hubble Image of Alpha Centauri A & B

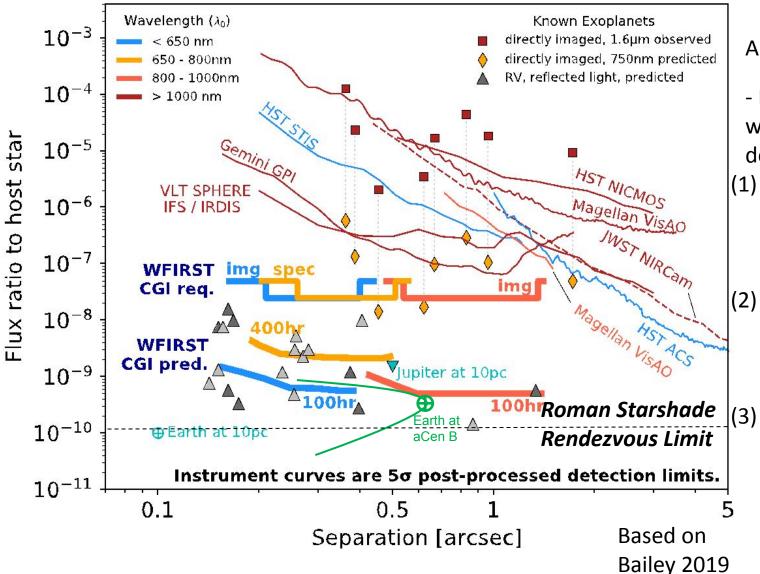
Why Binaries? Nearby FGK Targets for Roman

1	common_name	sptype	Vmag	d (pc)	М	Sol. Lum.	BB Temp	IHZ (AU)	IHZ (as)	IHZ (Id)	OHZ (AU)	OHZ (as)	OHZ (Id)	Nearest 20 Stars:
2	* alf Cen A	G2V	0.01	1.32	4.40	1.45	5568	1.13	0.86	15.31	2.08	1.57	28.13	_
3	* alf Cen B	K1V	1.33	1.25	5.84	0.39	5051	0.60	0.48	8.58	1.12	0.90	16.04	13 Multi-Stars
4	* eps Eri	K2Vk:	3.73	3.22	6.19	0.28	5051	0.51	0.16	2.84	0.95	0.30	5.31	4/7 Multi-Star Hab.
5	* 61 Cyg A	K5Ve	5.21	3.49	7.50	0.08	4348	0.29	0.08	1.48	0.56	0.16		·
6	* 61 Cyg B	K7Ve	6.05	3.49	8.34	0.04	4348	0.29	0.08	1.48	0.56	0.16	2.85	Zones w/in Roman
7	* alf Cmi A	F5IV-V+	0.37	3.51	2.64	7.29	6776	2.37	0.67	12.06	4.25	1.21	21.64	FOV
8	* eps Ind	K5V	4.69	3.62	6.90	0.15	4603	0.38	0.10	1.86	0.72	0.20		
9	* tau Cet	G8.5V	3.5	3.65	5.69	0.44	5534	0.63	0.17	3.08	1.15	0.32	5.66	
10	HD 88230	K8V	6.61	4.87	8.17	0.04	4069	0.21	0.04	0.78	0.42	0.09	1.53	Legend:
11	* omi02 Eri	K0.5V	4.43	4.98	5.94	0.35	5221	0.57	0.11	2.04	1.06	0.21	3.79	J
12	* 70 Oph A	K0-V	4.123	5.09	5.59	0.48	5143	0.67	0.13	2.36	1.25	0.25	4.40	BOLD – Binaries
13	* 70 Oph B	K4V	6.17	5.09	7.64	0.07	4350	0.23	0.05	0.82	0.44	0.09	1.55	Color – Hab.Zone
14	* 36 Oph A	K2V	5.12	5.46	6.43	0.22	5134	0.46	0.08	1.52	0.86	0.16	2.83	
15	* 36 Oph B	K1V	5.08	5.98	6.19	0.28	5134	0.51	0.08	1.52	0.95	0.16	2.83	w/in Roman FOV
16	* sig Dra	G9V	4.68	5.75	5.88	0.37	5342	0.58	0.10	1.81	1.07	0.19	3.34	Green – Companion
17	HD 131977	K4V	5.72	5.84	6.89	0.15	4493	0.38	0.06	1.16	0.73	0.12	2.23	
18	* eta Cas A	GOV	3.52	5.95	4.65	1.15	6047	0.98	0.28	5.03	1.78	0.51	9.12	can be ignored
19	* eta Cas B	K7Ve	7.51	5.95	8.64	0.03	3967	0.17	0.03	0.52	0.34	0.06	1.02	Red – Companion
20	V* V2215 Oph	K5V	6.34	5.97	7.46	0.09	4389	0.29	0.05	0.88	0.56	0.09		•
21	HD 191408 A	K2.5V	5.32	6.02	6.42	0.22	5076	0.41	0.07	1.23	0.74	0.12	2.20	must be suppressed

Multi-Star Systems increase **quantity** Of direct imaging targets

Plotting hypothetical exo-Earth contrast for all stars within 20 pc (based on Guyon 2019)

~1/2 of all FGK stars are in binary systems

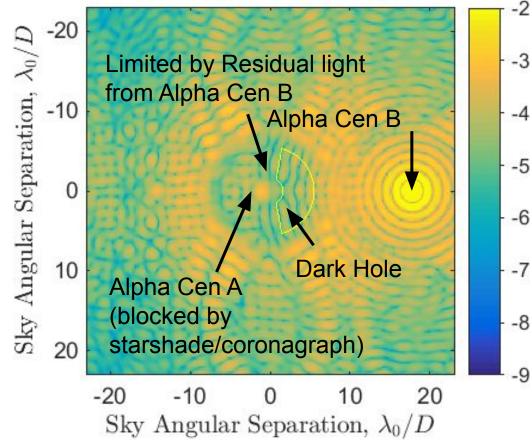

- 41/67 in 10 pc
- 259/519 in 20 pc

Alpha Centauri A & B is a special

- science case:
 - 3x closer than any other star system
 - 3x better spatial/spectral resolution

Multi-Star systems increases quality of direct imaging targets

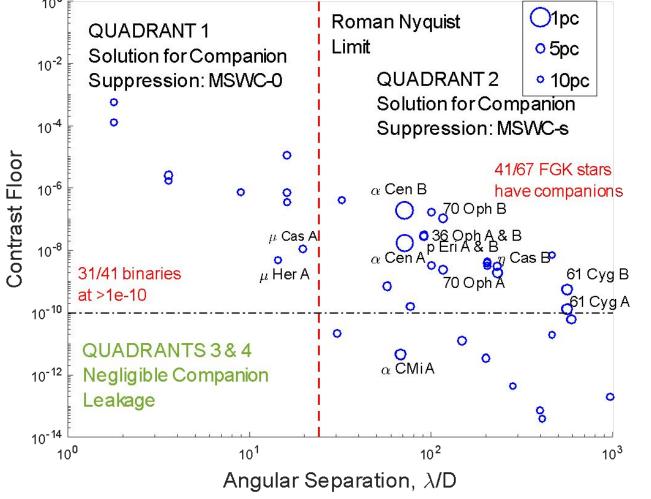
Roman CGI *may* be able to image Earth twins


Alpha Cen enables ~3x better IWA and resolution

- Due to unusual proximity, breaks commonwisdom assumptions about what Roman can do:

- At gibbous phase, an Earth-like planet around Alpha Cen B may be within CGI's sensitivity limits (depending on final performance)
- For a Roman Starshade Rendezvous, completeness is significantly improved and an Earth-like planet around Alpha Cen A or B would be within sensitivity limits
 Optical imaging could detect structure in
 - exozodi due to spatial resolution for aCen

Direct Imaging Challenges with Binary Stars

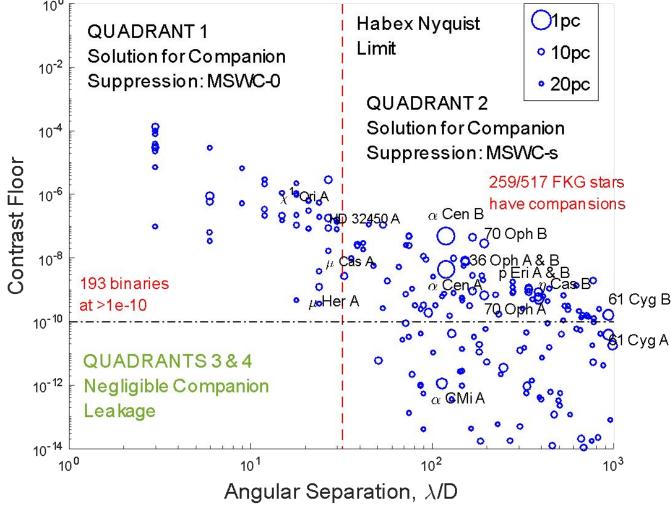

Single-Star Wavefront Control Mean Contrast: 5.4e-5

- Challenges due to binary:
 - Off-axis leakage from the binary companion creates a *contrast floor*
 - Depth of the contrast floor is a function of the *binary separation* and *brightness fraction*
 - A coronagraph for the off-axis companion is insufficient as contrast would be limited by its *speckles!*

Light Leakage from Binary Companions (10 pc)

Roman Contrast Floor of FGK Stars in 10pc due to Off-Axis Star Leakage

Roman PSD characteristics (provided by J. Krist)


- D = 2.4m
- $\lambda = 650$ nm
- 20 nm RMS with f^{-2.5} power spectrum
- 48x48 DM

Note: Contrast floor for an on-axis starshade due to <mark>unsuppressed</mark> off-axis companion star

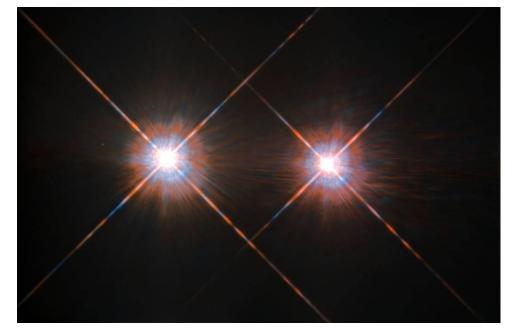
Required companion suppression: - 31/41 have leakage > 1e-10

Light Leakage from Binary Companions (20 pc)

Habex Contrast Floor of FGK Stars in 10pc due to Off-Axis Star Leakage

Habex PSD characteristics (provided by J. Krist)

- D = 4.0m
- $\lambda = 650$ nm
- 20 nm RMS with f^{-2.5} power spectrum
 64x64 DM

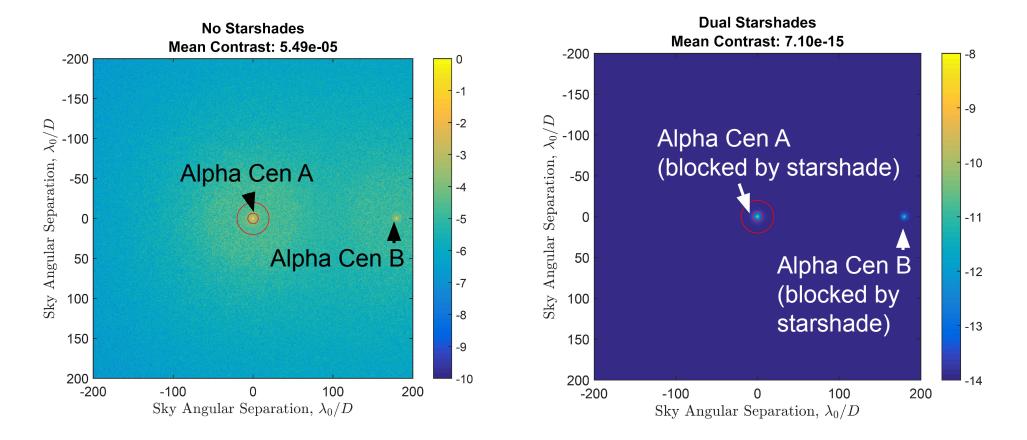

Note: Contrast floor for an on-axis coronagraph/starshade due to unsuppressed off-axis companion star

Required companion suppression:193/259 have leakage > 1e-10

NASA

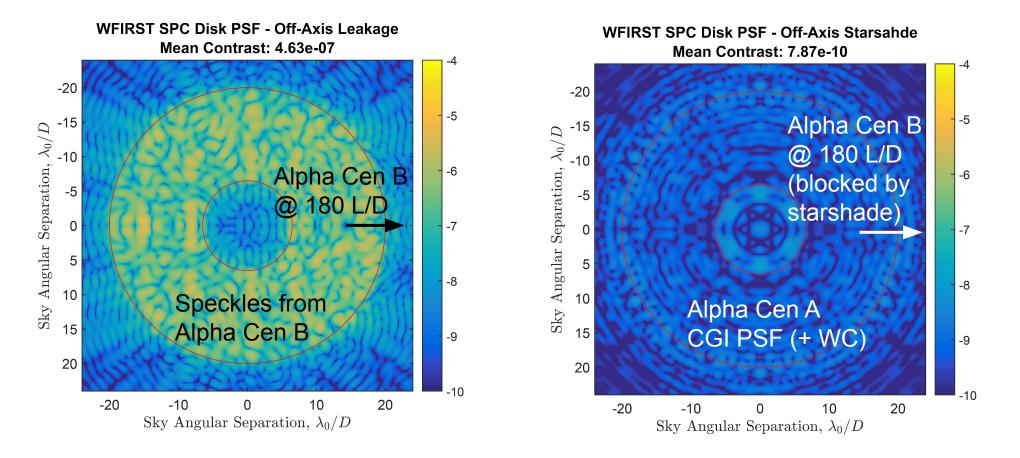
Overview

- 1. Motivation for Binary Star Direct Imaging
- 2. Direct Imaging of Binaries with Starshades

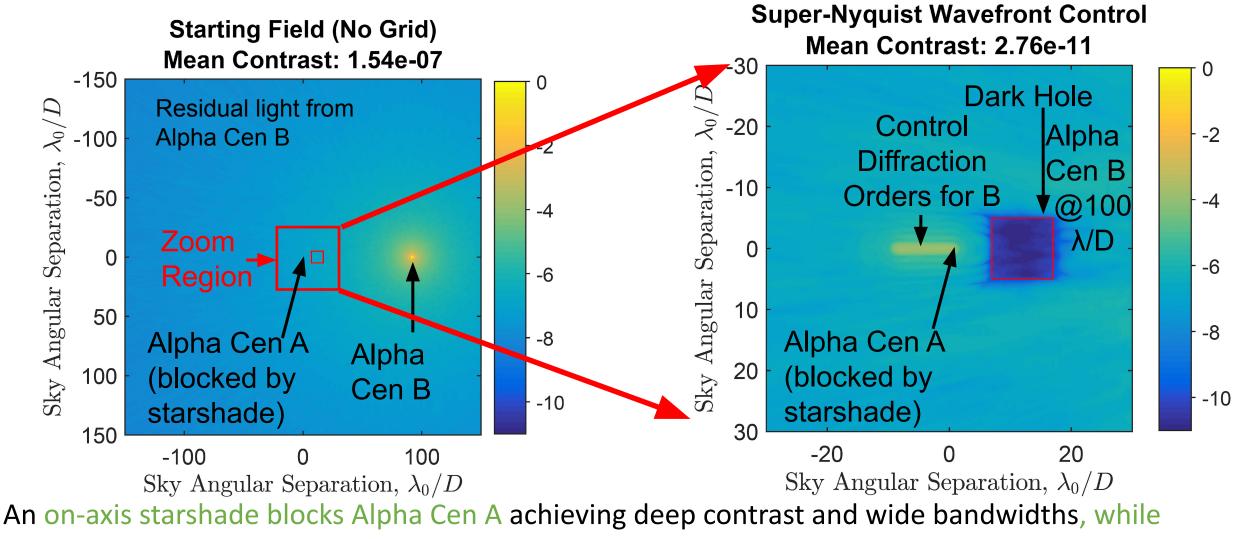


Hubble Image of Alpha Centauri A & B

	SCEN	IARIO	WC SOI	UTIONS	*Assuming DM = NxN actuators	
	On-axis blocker	Off-axis blocker	Star Separation at < N/2 λ/D*	Star Separation at > N/2 λ/D*	Notes	
	Coronagraph	None (WC only)	MSWC-0	MSWC-s	Existing coronagraphic mission concepts are already capable of MSWC-0 with no hardware modifications. MSWC-s requires quilting on the DM or a mild grating in the pupil plane	
	Coronagraph	2 nd Coronagraph	MSWC-0	MSWC-s	An off-axis coronagraph would require an additional mask. The off-axis coronagraph can be compatible with MSWC.	
(1)	Starshade	2nd Starshade	No WC required	No WC required	Adding a starshade for the off-axis star effectively reduces binaries to single-star suppression problem, but at a cost of adding a second starshade	
(2)	Coronagraph	Starshade	SSWC (i.e. standard WC)	SSWC (i.e. standard WC)	Adding a starshade effectively reduces binaries to single-star suppression problem, at a cost of adding a starshade	
	Starshade	None (WC only)	SSWC (i.e. standard WC)	SNWC	Adding a deformable mirror (without a coronagraph) to a starshade mission theoretically enables double-star suppression	
(3)	Starshade	Coronagraph	SSWC (i.e. standard WC)	SNWC	An off-axis coronagraph would require an additional mask. The off-axis coronagraph can be compatible with SNWC.	


SSWC=Single Star Wavefront Control (WC), SNWC=Super-Nyquist WC, MSWC-0 = Multi-Star WC (0th order, or sub-Nyquist) MSWC-s = Multi-Star WC (super-Nyquist)

(1) Dual Roman Starshades

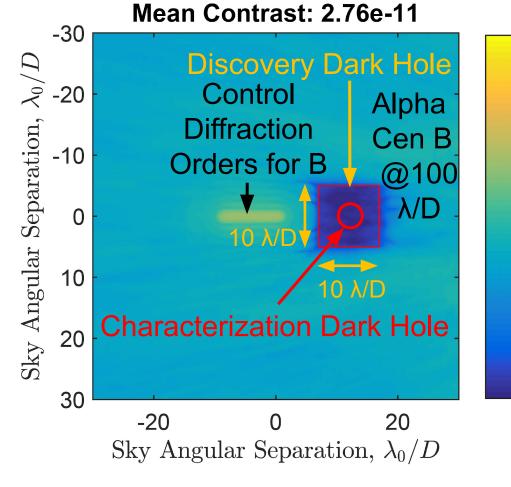

An on-axis and off-axis starshade can effectively suppress both stars operating in wide bandwidths. Requires operation of two starshades simultaneously.

(2) Off-Axis WFIRST Starshade with On-Axis CGI

An off-axis starshade removes leakage from Alpha Cen B turning the binary star problem into a single-star problem that can be controlled using the CGI. Performance set by CGI PSF + WC.

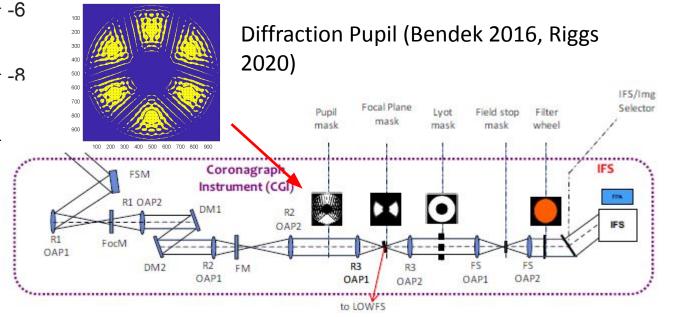
(3) SNWC with Roman Starshade

off-axis speckles from Alpha Cen B are blocked using SNWC.


(3) SNWC with Roman Starshade

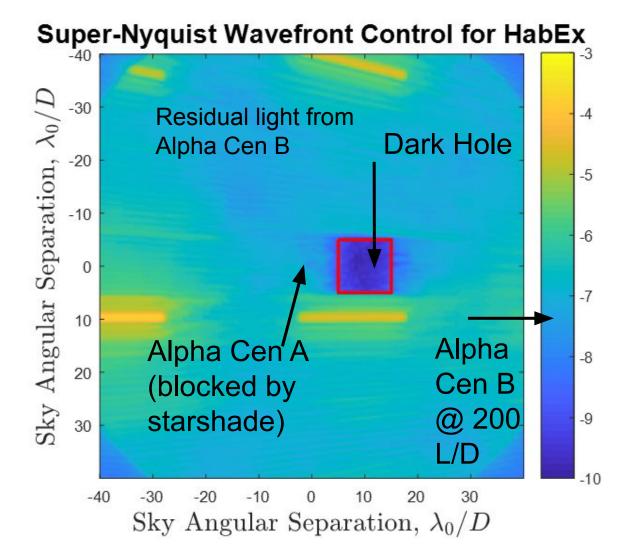
0

-2

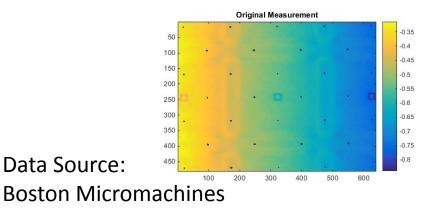

-4

Super-Nyquist Wavefront Control

Observation Strategy:


- (a) Create a larger 10 λ /D x 10 λ /D discovery region with 10% bandwidth
- (b) Create a smaller 2 λ/D x 2 λ/D
 characterization region with 20%
 bandwidth

Roman Starshade Multi-Star Imaging Scenarios


Dual Starshades	(1) Dual Starshade Option On-Axis Off-Axis	 Wide characterization bandwidth Relaxed tolerance for off-axis starshade 	 Cons: Two starshades required Cannot slew while observing binaries
WFIRST Disk SPC PSF - Off-Axis Starshade	(2) CGI + Starshade Option On-Axis Off-Axis	 Uses existing CGI and WFC system Relaxed tolerance for off-axis starshade 	Cons: - On-axis CGI contrast floor at 10 ⁻⁹
Super-Nyquist Wavefront Control Mean Contrast: 2.76e-11	(3) Starshade + SNWC Option On-Axis Off-Axis	 Pros: Achieves 10⁻¹⁰ contrast Uses existing WFC system 	Cons: - May require open slot in SPC wheel for diffraction grating to enable wide binaries

SNWC with Habex Starshade

Simulation parameter summary:

- 10% bandwidth about 650 nm
- 2-DMs [64x64]
- Boston MEMS Quilting
- On-axis star behind focal plane mask
- Off-axis star located 200 λ/D
- Initial contrast: 3e-8
- Final contrast: 1.2e-10

Conclusions

Methods:

- Starshades can be used as the on-axis or off-axis blocker for multi-star imaging:
 - (1) Dual starshade option for both on-axis and off-axis stars
 - (2) Off-axis starshade with CGI on-axis

(3) On-axis starshade with SNWC for off-axis leakage control is possibly the most promising option (can reach 10⁻¹⁰ contrast and uses existing WFC)

- Demonstrated 1e-10 in simulation for both Roman and Habex starshade scenarios
- Discussion question: can we maintain compatibility of hybrid operation between starshade imaging mode with coronagraph's WFC to enable binary star imaging?

Science:

- Starshade + SNWC would enable imaging & characterization of Earth-like planets with Roman
- Multi-star imaging improves quality & quantity of target stars:
 - Alpha Centauri A & B have ~3x better SNR or spatial/spectral resolution
 - Other notable nearby target stars: 61 Cyg A&B, Eta Cass A&B, Mu Her A, Mu Cass A