

Enabling Space Telescope Technologies

OPTIIX Technology Feed-Forward

January 10, 2013

David Redding, Shanti Rao, Kent Wallace and Joseph J. Green

Jet Propulsion Laboratory, California Institute of Technology

OPTIIX Technology Feed-Forward

- OPTIIX assembly procedures and latching technologies will enable larger robotically-assembled space telescopes
 - These are not new technologies
- OPTIIX Active Optics technologies correct alignment and figure errors after assembly, from millimeter WFE to nanometer WFE
 - New technologies that can enable or benefit a range of space telescopes

- OPTIIX Active Optics technologies:
 - 1. Lightweight Actuated Hybrid Mirrors (AHMs), with active thermal control
 - 2. Wavefront Sensing and Control
 - 3. Laser Truss Metrology
- Benefits for on-orbit assembled space telescopes
 - Corrects post-assembly optical errors, to achieve WFE of 10s of nanometers
- Benefits for space telescopes in general
 - Lower mass large optics, leading to lower mission mass and cost
 - Looser fabrication and alignment tolerances
 - Testable in 1g to 0g specs
 - Correct nearly any optical error after launch, reducing mission risk
 - Maintain optical quality in variable thermal conditions

Actuated Hybrid Mirrors (AHMs)

Actuated Hybrid Mirrors (AHMs)

- Made by replication
- 0.5 to 1.35 m size demonstrated
- <14 nm rms SFE demonstrated
- <10 Å microroughness (projected)
- 10-15 kg/m² substrate
- <25 kg/m² total
 - Active mirror
 - 37 to 414 actuators
 - Solid state, integrated into SiC substrate

Testable in 1G to 0G specs

- Nanolaminate facesheet
 - Multilayer metal foil, made by sputter deposition on a super-polished mandrel
- SiC substrate
 - Reaction-bonded Ceraform SiC is cast in a mold, fired, then bonded to facesheet
- Electroceramic actuators
 - Surface-parallel embedded actuators give large stroke and high accuracy, by design
- Integrated closed-loop thermal control
 - Film heaters behind mirror keep figure constant

AHM Facesheet and Substrate

- Nanolaminates: multilayer solids with high interface concentration, developed at LLNL
- Nanolaminate foils are sputter deposited onto a nanoclean, superpolished glass mandrel
- Targets are switched to change materials
 - Au layer for AHM outer surface
 - 446 periods of:
 - 42 nm crystalline Zr layer
 - 3 nm amorphous Zr/Cu layer

- Ceraform SiC: reaction bonded, low shrinkage Silicon Carbide, by Xinetics
 - Fugitive core foam mold created by CNC machining
 - SiC nanopowder slip fills mold
 - Part is freeze-dried, then mold core is leached out
 - First firing creates green state "prefired" part
 - Part is machined
 - Second firing to full hardness
- SiC has superior material properties

AHM Actuators and Integration

Robotic bonder

PMN actuator schematic

PMN actuators with titanium tabs for integration into SiC ribs

- SiC substrate is robotically bonded to nanolaminate on the mandrel
 - Epoxy fills in gaps between SiC and nanolaminate
- Mirror is released from the mandrel after cure
 - Mandrel is reused for other mirrors
- Xinetics actuators use PMN-PT
 electrostrictive ceramics
 - Multiple layers of ceramic and conductive electrode are co-fired to form a solid body
 - Used for AO deformable mirrors many thousands used in observatories around the world
 - High stroke, low voltage
 - ±2.5 um stroke at 20C
 - 0-100V operating rangeActuator integration
- Actuator tabs provide CTE-tailored interface to the SiC
 - Actuators bonded into cutouts in major ribs
 - Actuators powered to 50V during bonding and cure
 - Wires routed to connectors
- Mounts and thermal control hardware integration completes AHM integration

AHM Closed Loop Optical Performance

- AHMs can meet stringent Astrophysics
 performance requirements
 - 14 nm RMS Surface Figure Error demonstrated
- AHMs can be significantly lighter than lowexpansion glass
 - SiC is 5x stiffer and 8x stronger than glass
- AHMs mirrors are highly thermally controllable
 - SiC substrate is strong enough to use openback structure, for direct thermal view factors into the ribs and facesheet
 - High thermal conductivity

SFE = 1.88 µm RMS

SFE = 0.014 µm RMS

Wavefront Sensing

- OPTIIX uses image-based Wavefront Sensing (WFS), while staring at a bright star
- WFS camera has selectable modes:
 - Shack-Hartmann
 Sensing for initial segment alignment
 - High dynamic range
 - Dispersed Fringe Sensing for segment cophasing
 - Absolute piston sensor
 - Phase-Retrieval
 Sensing for fine
 wavefront adjustment
 - High accuracy (<5 nm) and high resolution (>1k × 1k)
 - Imaging camera
 - Internal calibration sources
- OPTIIX also uses a Fine Guidance System (FGS) camera, for line-of-sight stabilization
 - Fast detector for 1kHz pointing error estimation
 - Steerable mirror for Guide Star acquisition

WFS&C: Initial Capture

- Wavefront Sensing and Control (WFS&C) begins by pointing the telescope at a bright, isolated guide star
- Initial Capture operations scan each segment in tip and tilt, until the "spot" (subimage) appears on the WFS Camera focal plane
- WF error (WFE) is reduced from millimeters to 100 microns or so

WFS&C: Segment Stacking

- Coarse Figuring operations uses the Shack-Hartmann Sensing mode of the WFS Camera to correct the segment figure errors
- Figure error component of total WFE is reduced from a few microns to under 100 nanometers
- Segment Stacking operations remove the tilt but not piston – segment rigid body errors, by stacking the segment subimages in the center of the field

WFS&C: Coarse Phasing

WFS&C: Fine Phasing

Wave Front Sensing and Control

- WFS&C establishes the ideal alignment of the optics of the telescope...
- Laser Metrology-based control (MET) is used to maintain the ideal alignment in a changing thermal environment
 - MET monitors changes in the primary mirror segment and secondary mirror positions
 - Segment and SM Rigid-Body actuators continuously correct measured motions

- MET uses a "Laser Truss" network of Laser Distance Gauges to measure each segment wrt the SM, and the SM wrt the "Snout" optical bench
- These measurements enable continuous alignment control with BW < 10 Hz and WFE < 20 nm (95%)

OPTIIX Laser Metrology

Non-Polarizing

50/50

Beamsplitter

Polarizer & Mask

Annular EM

- Individual Laser Distance Gauges use CoPHI Commonpath Heterodyne Interferometer developed by SIM project
 - **Demonstrated precision < 50pm** with low-cost, low-power elex

Polarizing

Beamsplitter

Metrology Performance

LDG measured performance meets requirements

Simulation of typical MET performance following a WFS&C update

- Required for on-orbit assembled telescopes, to correct expected large WFE
- Passive telescopes have had mission-threatening optical errors; HST is a good example, with 250 nm uncorrected WFE
 - Active mirrors offer correctability without astronaut servicing
- Reduced mission risk
 - Active SSMs or AHMs can correct nearly any optical errors that might arise on orbit to assure mission performance
 - SiC materials are more resilient than glass, lowering risk of failure
- Improved testability
 - Active SSMs or AHMs enable testing to spec during system assembly and integration, without backouts, even in 1 G
- Reduced mission cost
 - By reducing mission mass
 - By relaxing assembly tolerances
 - By speeding up I&T
 - By reducing mirror cost

Backup

Active Optics Block Diagram

- Major elements include:
 - Laser Truss Metrology WF control to stabilize alignments
 - Segment Thermal Control to stabilize optical figure
 - Periodic Wavefront Sensing and Control to update control setpoints
 - Isolation and Damping to attenuate vibration disturbances

Active Mirror PSFs

Simulated narrow-band PSFs at 200nm wavelength, for a UV telescope optimized for 300nm wavelength

- Nominal WFE = 20nm
- Detector is critically sampled at λ = 300nm
- 400 actuators for control case

- AHMs and active SSMs, like Deformable Mirrors generally, have a different distribution of WFE vs. *f* than conventional optics
 - Lower error in the low spatial frequencies
 - Higher error at and beyond the actuator spatial frequency
- This results in a tighter PSF core, but a raised "halo" in the sidebands
- Post-control PSF quality is a function of actuator density and initial WFE, and can be engineered to meet science requirements