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OPTIIX Technology Feed-Forward

• OPTIIX assembly procedures and latching technologies will enable larger 
robotically-assembled space telescopes

– These are not new technologies

• OPTIIX Active Optics technologies correct alignment and figure errors 
after assembly, from millimeter WFE to nanometer WFE

– New technologies that can enable or benefit a range of space telescopes
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OPTIIX Active Optics Technologies

• OPTIIX Active Optics technologies:
1. Lightweight Actuated Hybrid Mirrors (AHMs), with active thermal control
2. Wavefront Sensing and Control
3. Laser Truss Metrology

• Benefits for on-orbit assembled space telescopes
– Corrects post-assembly optical errors, to achieve WFE of 10s of nanometers

• Benefits for space telescopes in general
– Lower mass large optics, leading to lower mission mass and cost
– Looser fabrication and alignment tolerances
– Testable in 1g to 0g specs
– Correct nearly any optical error after launch, reducing mission risk
– Maintain optical quality in variable thermal conditions
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Actuated Hybrid Mirrors (AHMs)

• Nanolaminate facesheet
– Multilayer metal foil, made by sputter deposition on a super-polished mandrel

• SiC substrate
– Reaction-bonded Ceraform SiC is cast in a mold, fired, then bonded to facesheet

• Electroceramic actuators 
– Surface-parallel embedded actuators give large stroke and high accuracy, by design

• Integrated closed-loop thermal control
– Film heaters behind mirror keep figure constant

AHM 1.35m

Actuated Hybrid Mirrors (AHMs)
• Made by replication
• 0.5 to 1.35 m size 

demonstrated
• <14 nm rms SFE 

demonstrated
• <10 Å microroughness

(projected)
• 10-15 kg/m2 substrate
• <25 kg/m2 total
• Active mirror

• 37 to 414 actuators
• Solid state, integrated 

into SiC substrate
• Testable in 1G to 0G specs



AHM Facesheet and Substrate
• Nanolaminates: multilayer solids with high 

interface concentration, developed at LLNL
• Nanolaminate foils are sputter deposited 

onto a nanoclean, superpolished glass 
mandrel

• Targets are switched to change materials
– Au layer for AHM outer surface
– 446 periods of:

• 42 nm crystalline Zr layer
• 3 nm amorphous Zr/Cu layer

Mandrel

Target

• Ceraform SiC: reaction bonded, low shrinkage 
Silicon Carbide, by Xinetics

– Fugitive core foam mold created by CNC 
machining

– SiC nanopowder slip fills mold
– Part is freeze-dried, then mold core is leached out 
– First firing creates green state “prefired” part
– Part is machined
– Second firing to full hardness

• SiC has superior material properties



AHM Actuators and Integration
• SiC substrate is robotically bonded to 

nanolaminate on the mandrel
– Epoxy fills in gaps between SiC and nanolaminate

• Mirror is released from the mandrel after 
cure

– Mandrel is reused for other mirrors

• Xinetics actuators use PMN-PT 
electrostrictive ceramics

– Multiple layers of ceramic and conductive 
electrode are co-fired to form a solid body

– Used for AO deformable mirrors – many 
thousands used in observatories around the world

• High stroke, low voltage
– ±2.5 um stroke at 20C
– 0-100V operating rangeActuator integration

• Actuator tabs provide CTE-tailored interface 
to the SiC

– Actuators bonded into cutouts in major ribs 
– Actuators powered to 50V during bonding and 

cure
– Wires routed to connectors

• Mounts and thermal control hardware 
integration completes AHM integration

PMN actuators with titanium tabs 
for integration into SiC ribs
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AHM Closed Loop Optical Performance

• AHMs can meet stringent Astrophysics 
performance requirements

– 14 nm RMS Surface Figure Error 
demonstrated

• AHMs can be significantly lighter than low-
expansion glass

– SiC is 5x stiffer and 8x stronger than glass

• AHMs mirrors are highly thermally controllable
– SiC substrate is strong enough to use open-

back structure, for direct thermal view factors 
into the ribs and facesheet

– High thermal conductivity 

SFE = 1.88 µm RMS SFE = 0.014 µm RMS



Wavefront Sensing
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- Imaging camera
- Internal calibration sources

• OPTIIX also uses a Fine Guidance System (FGS) camera, for line-of-sight stabilization
- Fast detector for 1kHz pointing error estimation
- Steerable mirror for Guide Star acquisition

• WFS camera has 
selectable modes:
- Shack-Hartmann 

Sensing for initial 
segment alignment
- High dynamic range

- Dispersed Fringe 
Sensing for segment co-
phasing
- Absolute piston 

sensor
- Phase-Retrieval 

Sensing for fine 
wavefront adjustment
- High accuracy (<5 

nm) and high 
resolution (>1k×1k)

• OPTIIX uses image-based Wavefront Sensing (WFS), while staring at a bright star



WFS&C: Initial Capture

• Wavefront Sensing and Control (WFS&C) begins 
by pointing the telescope at a bright, isolated 
guide star

• Initial Capture operations scan each segment in 
tip and tilt, until the “spot” (subimage) appears on 
the WFS Camera focal plane

• WF error (WFE) is reduced from millimeters to 
100 microns or so
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WFS&C: Segment Stacking

• Coarse Figuring operations uses the Shack-
Hartmann Sensing mode of the WFS Camera to 
correct the segment figure errors

• Figure error component of total WFE is reduced 
from a few microns to under 100 nanometers

• Segment Stacking operations remove the tilt –
but not piston – segment rigid body errors, by 
stacking the segment subimages in the center of 
the field
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WFS&C: Coarse Phasing

• Coarse Phasing uses the Dispersed Fringe 
Sensing mode in the WFS Camera to generate 
interference fringes across segment pairs

– A grism disperses the light from stacked pairs of 
segments, modulating the wavelength to find 
points where interference is constructive (peaks) 
or destructive (valleys)

– Fringes are matched to a model to estimate piston 
error with high accuracy 
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WFS&C: Fine Phasing

• Fine Phasing uses the Phase Retrieval mode in 
the WFS Camera to make high accuracy, high 
resolution WF measurements

– Defocussed images of a star provide good SNR 
measurements of WFE

– WF Control sets final figure and RB state

Fine Phasing

10 um 100nm

Fine Phasing100nm <40nm

Phase Retrieval

Defocussed Star Images for 
Phase Retrieval



Shack-Hartman
Dispersed Fringe Sensing

Phase Retrieval
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Laser Metrology

• WFS&C establishes the ideal alignment of the optics of the telescope…
• Laser Metrology-based control (MET) is used to maintain the ideal 

alignment in a changing thermal environment
– MET monitors changes in the primary 

mirror segment and secondary mirror 
positions

– Segment and SM Rigid-Body actuators 
continuously correct measured motions

• MET uses a “Laser Truss” network of 
Laser Distance Gauges to measure 
each segment wrt the SM, and the 
SM wrt the “Snout” optical bench

• These measurements enable 
continuous alignment control with 
BW < 10 Hz and WFE < 20 nm (95%)
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OPTIIX Laser Metrology

• Individual Laser Distance 
Gauges use CoPHI Common-
path Heterodyne Interferometer 
developed by SIM project

– Demonstrated precision < 50pm 
with low-cost, low-power elex
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Metrology Performance

• Simulation of typical MET performance following a WFS&C update

9/26/2012 16

Telescope performance requirement
WFS leads to 
near-perfect 
wavefront

• LDG measured performance meets requirements

LDG Metrology PSD for Feb. 17, 2008 16 hour run LDG Metrology Data for Feb. 17, 2008, 16 hour run 

Drift
 due t

o unsta
biliz

ed
lab la

ser



Benefits of Active Optics

• Required for on-orbit assembled telescopes, to correct expected large WFE

• Passive telescopes have had mission-threatening optical errors; HST is a 
good example, with 250 nm uncorrected WFE

– Active mirrors offer correctability without astronaut servicing

• Reduced mission risk
– Active SSMs or AHMs can correct nearly any optical errors that might arise on 

orbit to assure mission performance
– SiC materials are more resilient than glass, lowering risk of failure

• Improved testability
– Active SSMs or AHMs enable testing to spec during system assembly and 

integration, without backouts, even in 1 G

• Reduced mission cost
– By reducing mission mass
– By relaxing assembly tolerances
– By speeding up I&T
– By reducing mirror cost



Backup

January 22, 2012 18



WF Control

VibrationOrbital 
Environment

Laser Truss 
Metrology

Isolation & 
Damping

Low BW (0.1 Hz)

Fabrication  
Errors

STRUCTURES

Control Set Points

Active Optics Block Diagram

Periodic WFS&C
(Ground-in-the-loop)

WFE(t)

1/day to 1/week

Segment Figure Control Update
Segment Rigid Body Control Update

OPTICS
AHMs

§ Major elements include:
– Laser Truss Metrology WF control to stabilize alignments
– Segment Thermal Control to stabilize optical figure 
– Periodic Wavefront Sensing and Control to update control setpoints
– Isolation and Damping to attenuate vibration disturbances

§ Chief disturbances include:
– Time-varying heat load from sun
– S/C vibration
– Static errors, including fabrication errors
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Active Mirror PSFs

• AHMs and active SSMs, like Deformable Mirrors generally, have a different 
distribution of WFE vs. ƒ than conventional optics

– Lower error in the low spatial frequencies
– Higher error at and beyond the actuator spatial frequency

• This results in a tighter PSF core, but a raised “halo” in the sidebands
• Post-control PSF quality is a function of actuator density and initial WFE, and 

can be engineered to meet science requirements

Simulated narrow-band PSFs 
at 200nm wavelength, for a 
UV telescope optimized for 
300nm wavelength
• Nominal WFE = 20nm
• Detector is critically 

sampled at λ = 300nm
• 400 actuators for 

control caseControlled 
PSF is better Low ƒ 

PSF is better
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