Roman Space Telescope

Jet Propulsion Laboratory California Institute of Technology

Roman Space Telescope Coronagraph Instrument (CGI) Status

Dr. Feng Zhao Deputy Project Manager Jet Propulsion Laboratory California Institute of Technology

August 12, 2020

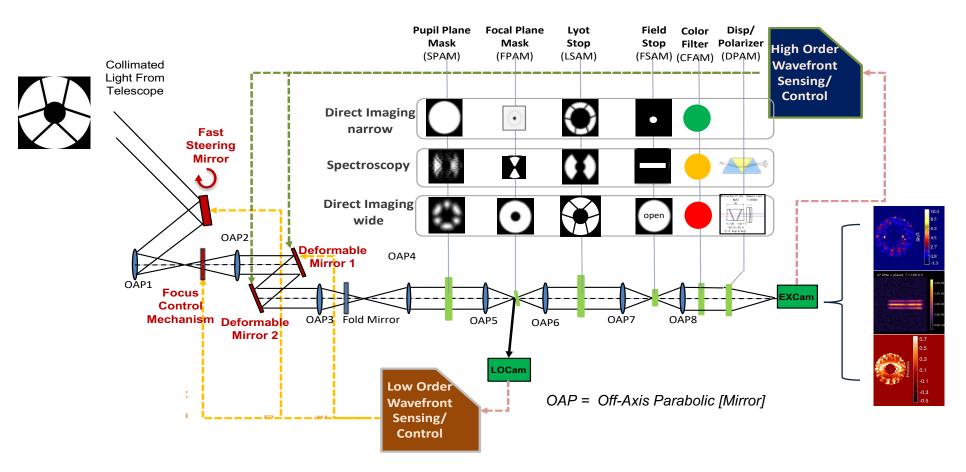
CL#20-3533

Copyright 2020 California Institute of Technology. Government sponsorship acknowledged

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
 • EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

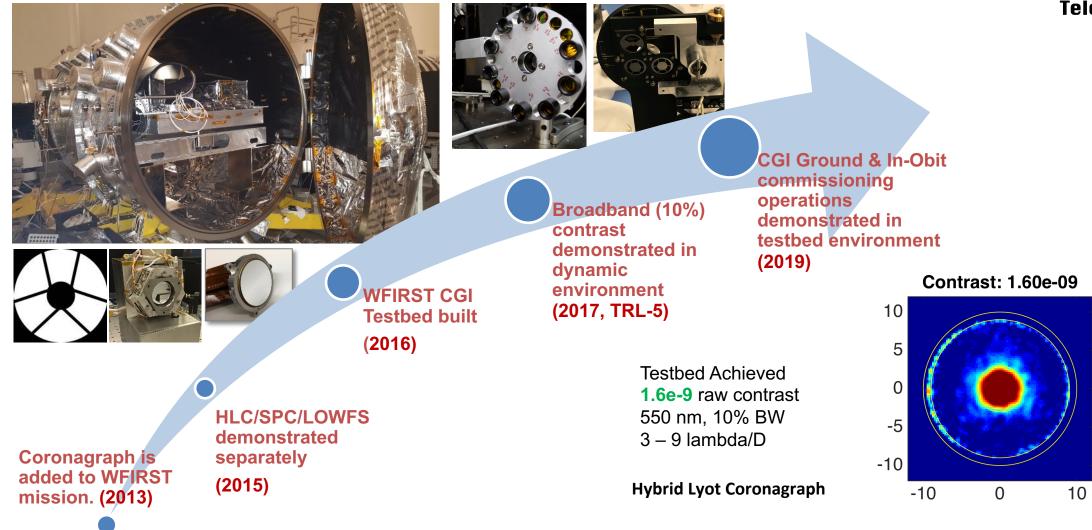
- Recap of key coronagraph technologies
- Major events (changes) since PDR (9/2019)
- CGI baseline design and con-ops updates
- CGI technologies for future missions
- Path to CGI CDR
- Summary

Coronagraph on Key NASA Flagship Missions


		Hubble			Webb		Roman
Instrument name	NICMOS	STIS	ACS	NIRCam	MIRI	NIRISS	CGI
Coronagraph type	Lyot	Lyot	Lyot	Lyot, with Gaussian apodization	1) Quadrant phase mask; 2) Lyot	Aperture Masking Interferometry	1) Hybrid Lyot 2) Shaped pupil
Contrast (raw)	1E-5	1E-5	1E-5	1E-5	1E-5	1E-4	8E9
Contrast (proc))	1E-6	1E-6	1E-6	8E-7			8E-10
Active wavefront sensing and control	No	No	No	Yes on telescope No on Coronagraph	Yes on telescope No on Coronagraph	Yes on telescope No on Coronagraph	Yes on coronagraph No on OTA
IWA (arcsec)	0.5	0.7	0.9	1.7	0.5		0.15
Key Exo-planet science example	HR 8799 (1998) (Lafreniere et al. 2009)	HD 141569 disk (Konishi et al. 2016)	Fomalhaut b, (Kalas et al. 2008)				Photometric images and Spectroscopy of mature exoplanets in nearby solar systems $\int_{0}^{2} \int_{0}^{2} \int_{$

Roman CGI continues <u>space</u> coronagraphy, with addition of active wavefront sensing and control.

CGI Architecture



- Three observation modes implemented with three different sets of masks/filters, in respond to L1 requirements (TTR5) and objectives
- Share the same optical beam train, with two wavefront control loops to achieve high contrast (better than 1E-8)

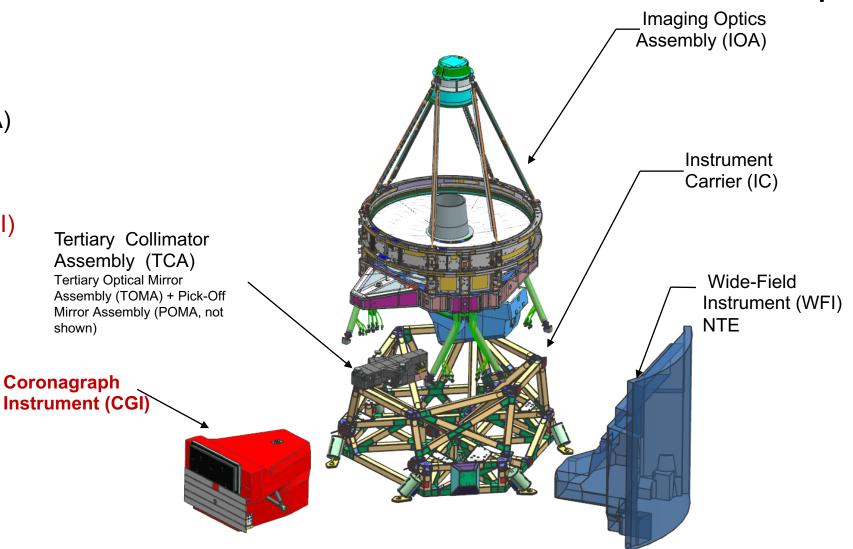
Early Investment Reduced CGI New Technology Risks to Roman Mission

CGI has achieved required technology maturity levels for a flight project

-7.5

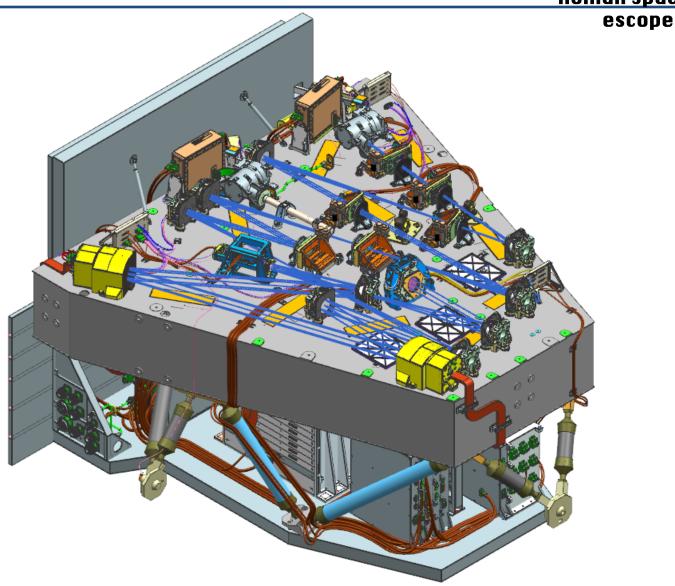
-8

-8.5


-9

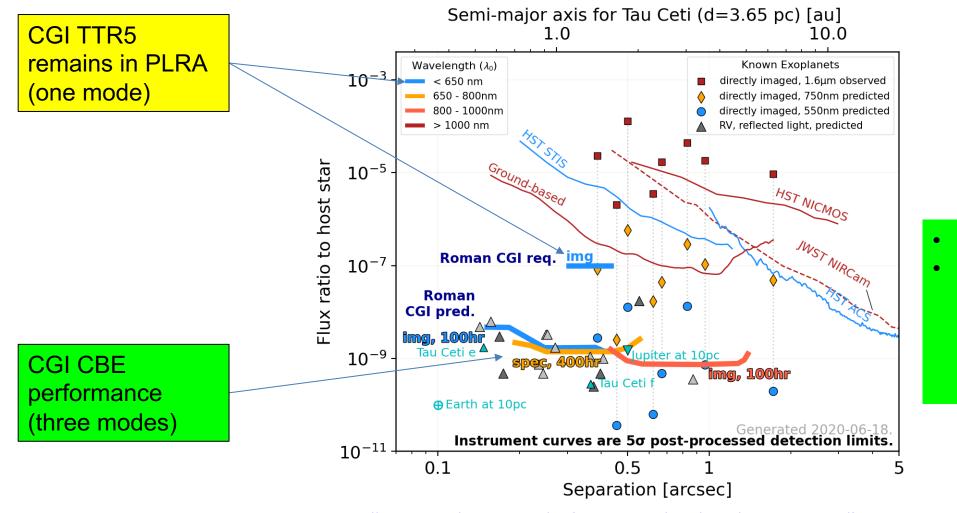
CGI in Roman Payload

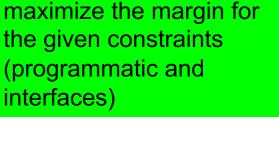
- Roman Space Telescope Payload Includes
 - Imaging Optics Assy (IOA)
 - Tertiary Collimator Assy (TCA)
 - Instrument Carrier (IC)
 - Wide Field Instrument (WFI)
 - Coronagraph Instrument (CGI)



CGI at a Glance (baseline post PDR)

- Dimension: 1.687X1.092X1.760 (m³)
- Mass: 304Kg (CBE)
- Power: 349W Operations (CBE)
- Temperature: ~20°C optical bench
- Wavelength: 460-980nm
- Field-of-view: 20X20 arcsec max
- Pointing jitter: 0.5mas
- Prism spectrometer: R~50
- Wollaston polarizers: 0°+90°, 45°+135°
- Pupil imaging
- Phase retrieval optics
- EMCCD Camera #1: 1K X 1K pixels Exoplanet
- EMCCD Camera #2: 50 X 50 pixels used LOWFS
- Camera temperature: -105°C
- WPC Processor: command and data handling
- LOWFS Board (2X RTG4 FPGA): Pointing control
- Data rate: 4.6 Mbps (CBE)
- Data volume: 0.4 Tbits/day (CBE)

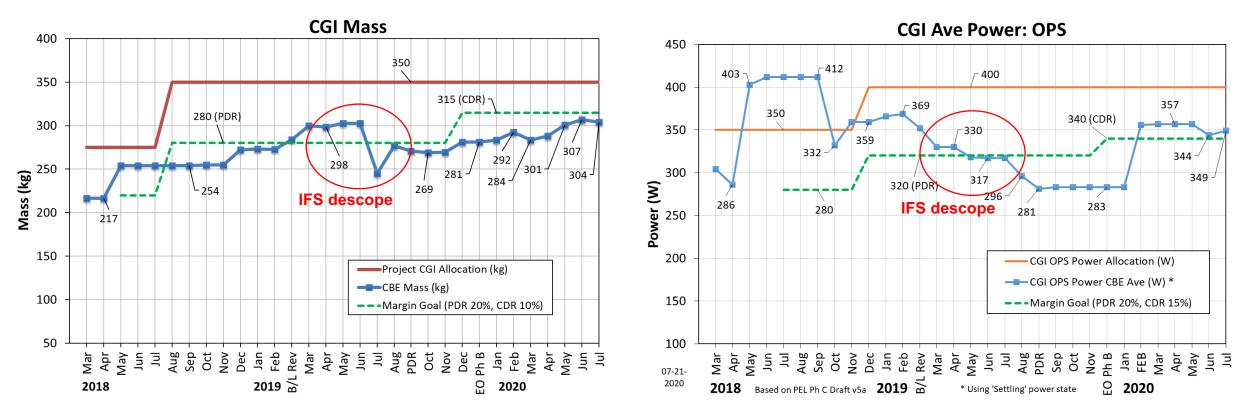

After CGI PDR (9/2019) and WFIRST PDR (11/2019), CGI has been working with JPL and NASA to address CGI programmatic risks. There have been a number of positive steps:


- <u>12/2019</u>. Per NASA Tiger Team recommendation:
 - CGI re-baselined high-order wave-front sensing and control (HOWFS/C) from "in-orbit" to "ground-in-the-loop". This results in descope of two key electronics hardware (1) processor; (2) solid-state recorder. In addition, this change greatly simplifies the flight soft-ware.
- <u>2/28/2020</u>. KDP-C, NASA agreed to:
 - Relax CGI requirement by removing CGI L1 Baseline rqmts, leaving only 1 Threshold rqmt in PLRA (TTR5 direct imaging).
 - Reduce CGI mission life-time requirement from 5.25 years to ~1.75 years (18 months tech demo plus 3 months in-orbit checkout).
 - Remove starshade accommodation requirement for WFIRST, and put on hold starshade accommodation designs (both S/C and CGI). WFIRST will pick up the starshade accommodation design after Astro2020 decadal recommendations.
 - Re-classify CGI from risk class C to risk class D per NPR 8705.4.
 - Manage CGI directly (programmatic), CGI has its own cost cap (\$334M through IOC) without HQ-UFEs
 - Maintain PDR design as allowed by CGI resources (mass, power, budget, schedule, etc.)
- <u>5/1/2020</u>. CGI received additional ~40 JPL DP/FPP waivers from DTAB (Class D Technology Advisory Board)
 - More streamlined mission assurance approach is being finalized under QARTA Quality Assurance Requirements Tailoring Agreement.

Re-cap Technical Requirements: 2-1

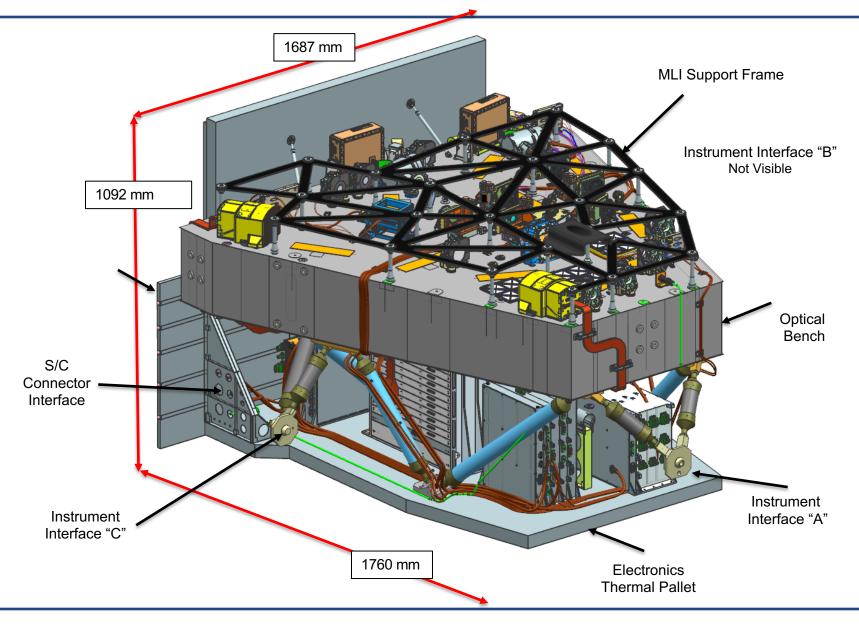
Healthy margin ~90%

CGI project intends to


https://github.com/nasavbailey/DI-flux-ratio-plot/blob/main/documentation/flux_ratio_doc.png

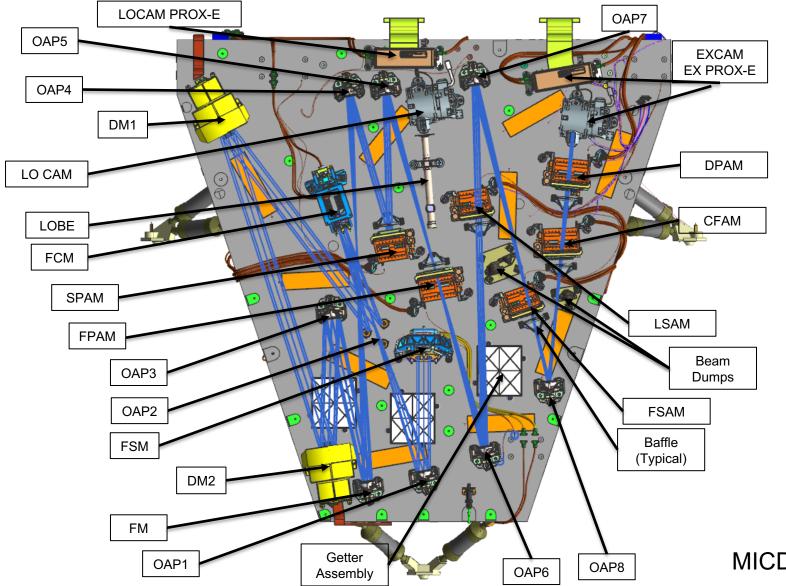
Courtesy of V. Bailey

Re-cap Technical Requirements: 2-2



Technical resources such as mass and power often drive flight projects to simplify (de-scope) capabilities Example: IFS descope;

Coronagraph Instrument (CGI)

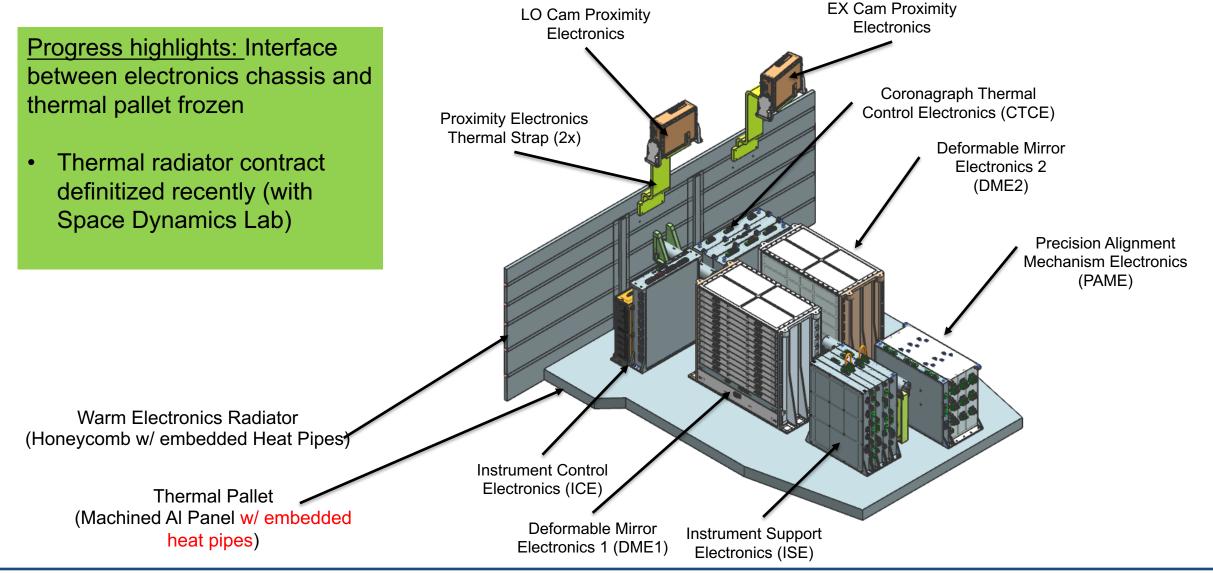

<u>Progress highlights:</u> Major interfaces with payload and S/C stabilized

- CGI to OTA interface: pupil finalized
- CGI to IC interface: 1st mode 35Hz agreed, load-path agreed
- CGI to S/C interface: data, timing, electrical power agreed

Jet Propulsion Laboratory California Institute of Technology

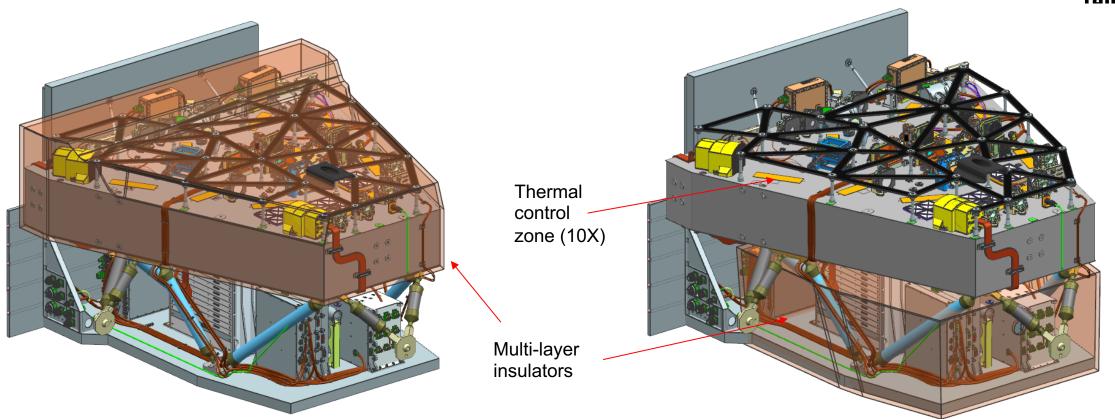
Optical Bench Top View with Ray Traces

Progress highlights: Optical Bench MICD frozen

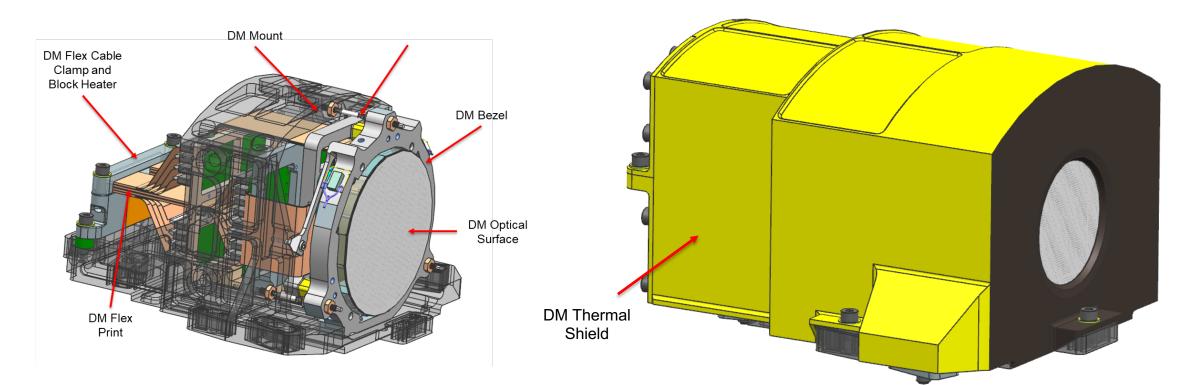

- Enables optical bench contractor (ATK) to progress on schedule
- Optical bench CDR ~10/2020
- Optical bench delivery ~10/2021

MICD: mechanical interface control document

Electronics/Thermal Pallet/Warm Radiator

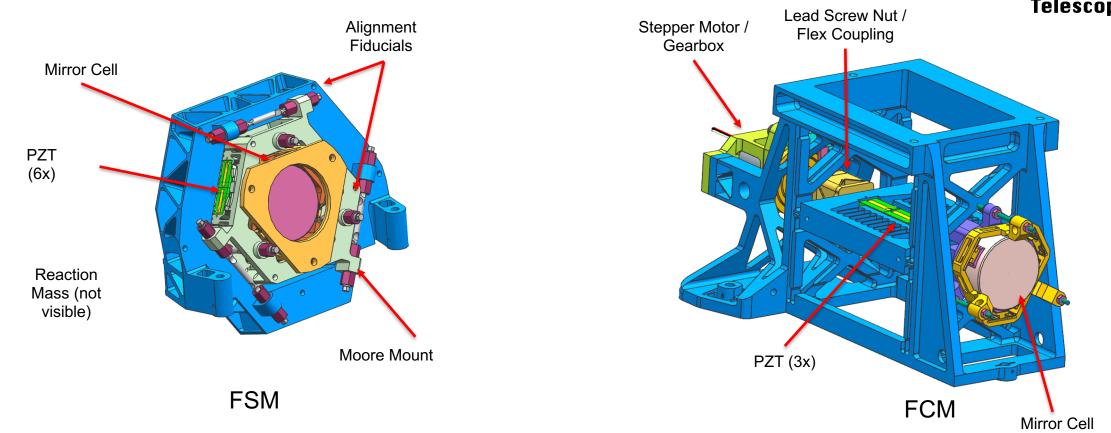


Thermal Control


mK thermal control is crucial to speckle noise stability thus post-processing gain

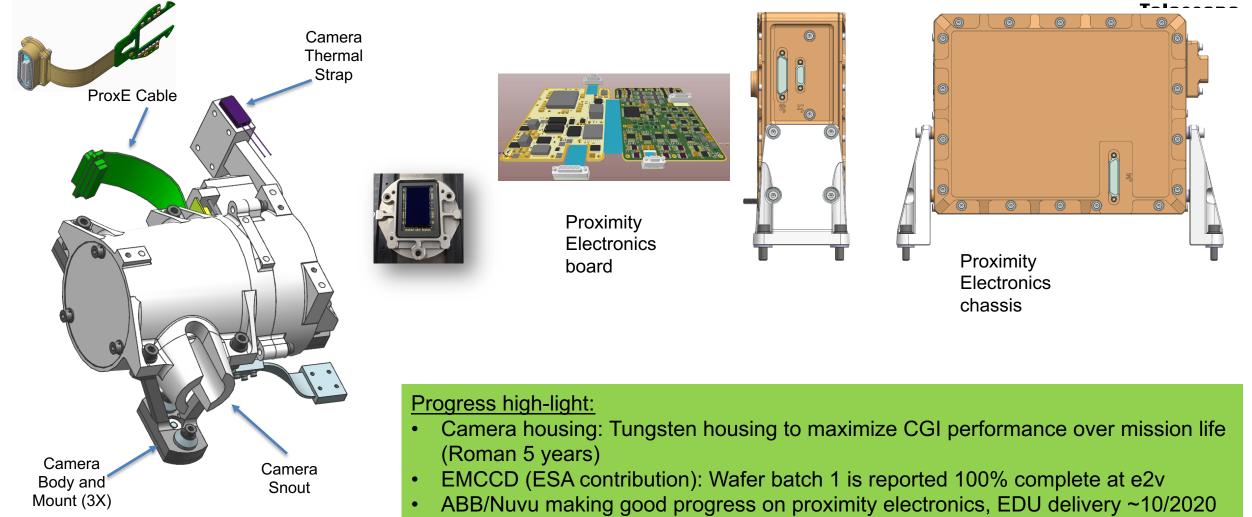
- Multi-layer insulator (MLI) to help maintain thermal stability
- Dedicated mk CTCE Coronagraph Thermal Control Electronics
- 10 thermal control zones on the optical bench, and 2 on DMs

Deformable Mirror Assembly


Progress high-light:

• Completed opto-mechanical peer review recently, one design accommodates all three different types of inter-connect (Fuzz button, micro-coil spring, nail pin)

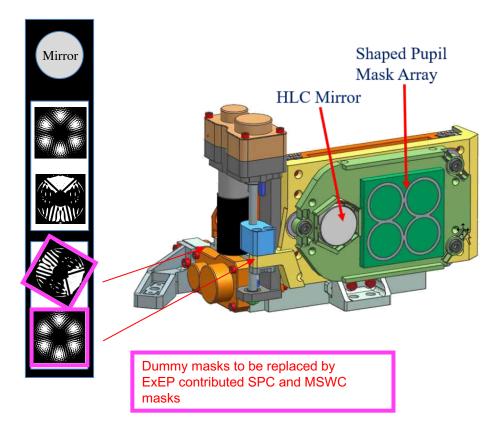
Fast Steering Mirror (FSM) and Focus Control Mirror (FCM)

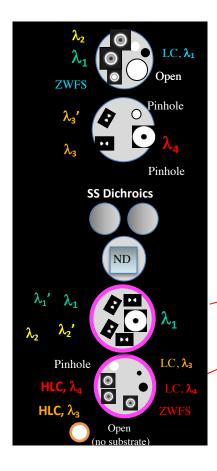

Progress high-light:

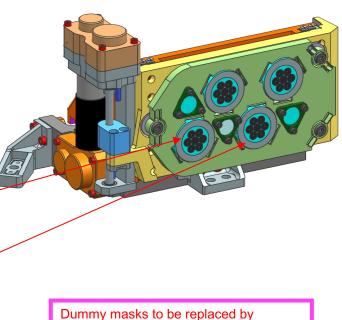
- FSM CDR passed recently; flight PZT screening completed; FSM flight model fabrication underway.
- FCM engineering development unit (EDU) fabrication underway

Jet Propulsion Laboratory California Institute of Technology

Camera Assembly (EX Cam, LOW Cam) and Proximity Electronics



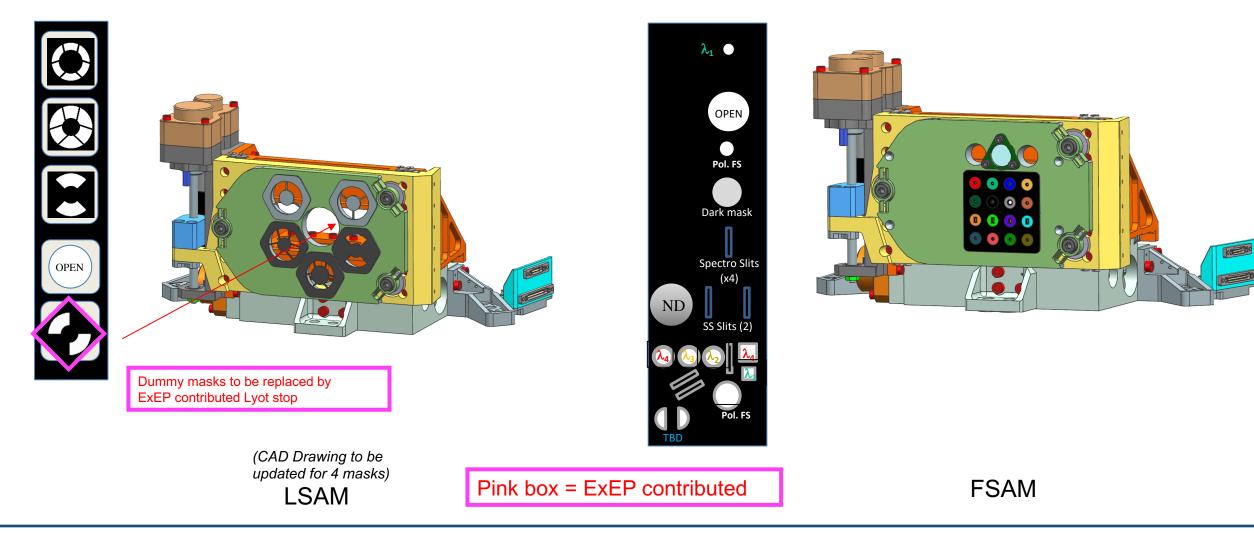




SPAM: Shaped Pupil Alignment Mechanism FPAM: Focal Plane Alignment Mechanism

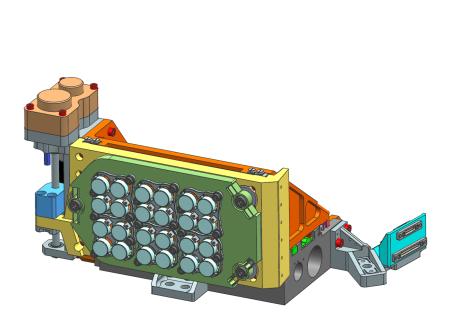
Dummy masks to be replaced by ExEP contributed HLC and ZWFS masks

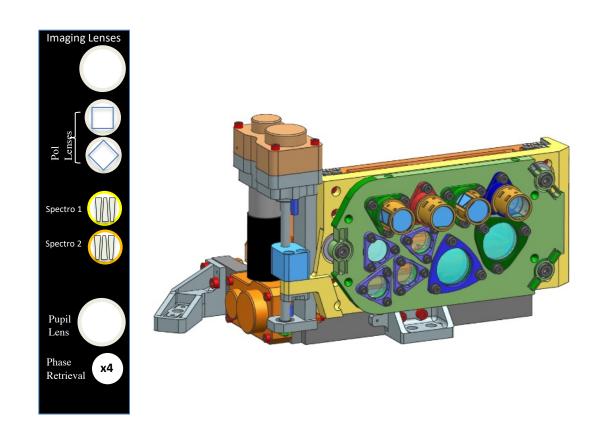
FPAM


SPAM

Pink box = ExEP contributed

LSAM: Lyot Stop Alignment Mechanism FSAM: Field Stop Alignment Mechanism





CFAM: Color Filter Alignment Mechanism DPAM: Dispersion Polarizing Alignment Mechanism

CFAM

DPAM

ExEP Contribution Summary

Mechanism	Substrate WAS	Substrate IS
SPAM	Baseline SPC mask	Baseline SPC mask
	Mirror	Mirror
	Spare/Blank	Contributed SPC mask
	Spare/Blank	Spare/Blank

Mechanism	Substrate WAS	Substrate IS		
FPAM	Baseline Band 1/2	Baseline Band 1/2		
	Baseline Band 3/4	Baseline Band 3/4		
	Starshade Dichroic 1	Starshade Dichroic 1		
	Starshade Dichroic 2	Starshade Dichroic 2		
	Neutral Density Filter	Neutral Density Filter		
	Spare/Blank	Contributed Band 1/2		
	Spare/Blank	Contributed Band 3/4		

Mechanism	Substrate WAS	Substrate IS
LSAM	Baseline HLC stop	Baseline HLC stop
	Baseline SPC bowtie stop	Baseline SPC bowtie stop
	Baseline SPC wide stop	Baseline SPC wide stop
	Open	Open
	Spare/Blank	Contributed SPC bowtie stop
	Spare/Blank	Spare/Blank

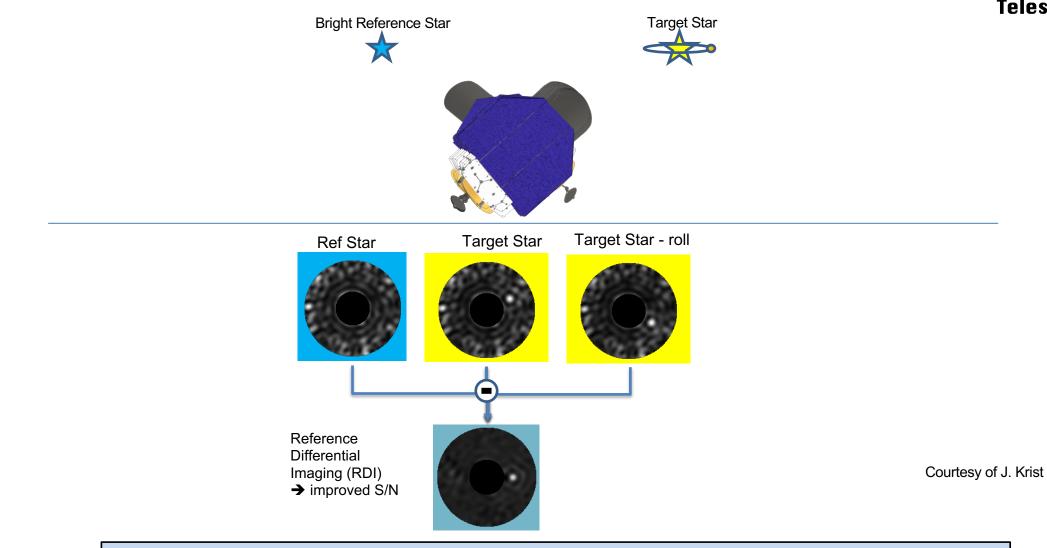
Mechanism	Substrate WAS	Substrate IS
FSAM	Neutral Density Filter	Neutral Density Filter
	Field stops substrate	Field stops substrate

(no change)

The Exoplanet Exploration Program is currently funding contributed hardware as well as corresponding technology maturation efforts as needed.

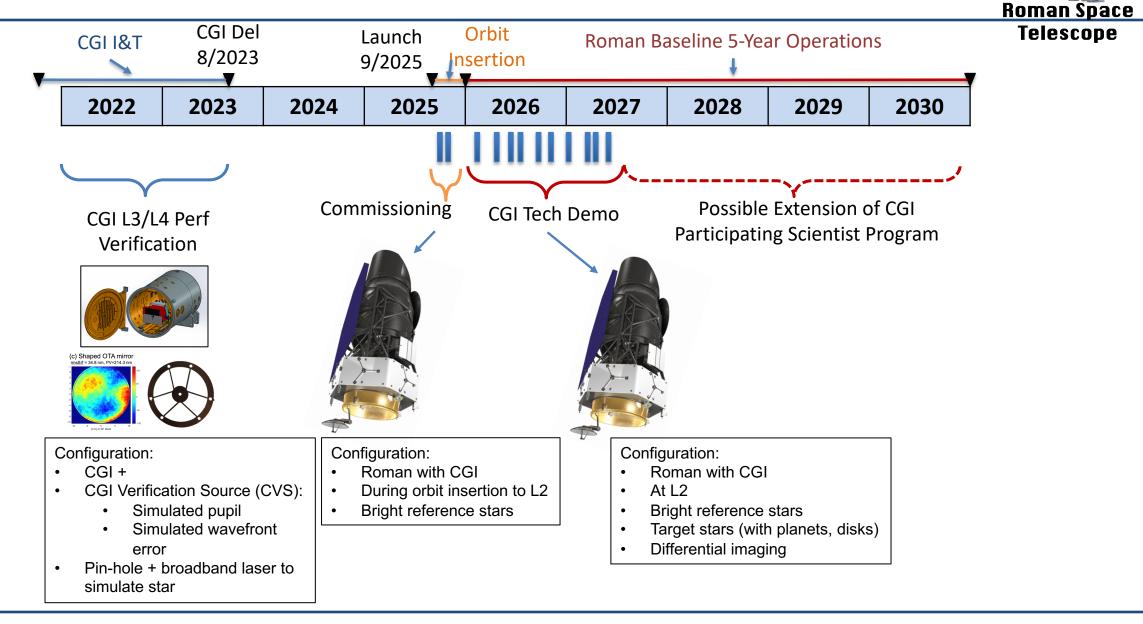
- Algorithms development
- Testbed demonstrations

CGI has no additional performance requirements for these contributions.

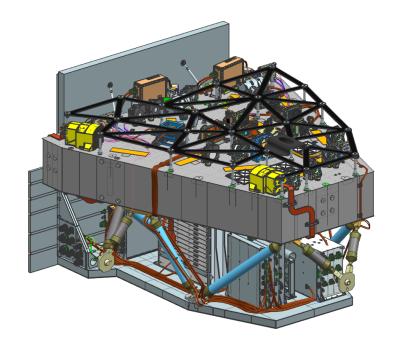

=> No additional programmatic risk to CGI.

Courtesy of Vanessa Bailey.

L1 Requirements Demonstration – Operations Optimization



Need both active wavefront control and optimized in-orbit operations to meet L1 requirements


CGI Operations (dark-hole digging)

Roman CGI as the Exo-Earth Imaging Coronagraph Tech Demo

 In many areas, meeting the requirements for CGI puts us in the regime of performance for the next generation, Earth detecting coronagraphs.

Top Level Mission Parameters Compared

Top Level Characteristics	Roman CGI (CBEs)	HabEx Required (VVC6)	LUVOIR Required A: APLC B: VVC6	
IWA (in lambda/D)	3 (HLC at 575 nm SPC at 730 nm)	3.1 (at 500 nm)	A: 4.0 B: 3.5 (both at 500 nm)	
Flux Ratio Detection Limit at IWA	10^-8 (10 0)	10^-10 (10σ)	10^-10 (10σ)	
Spectral Bandwidth	10% (HLC) 15% (SPC)	20%	20%	
Spectral Resolution	50 (SPC)	70	140 (VIS IFS); 70 (NIR IFS); 200 (NIR Single Point Source)	
Multiplanet Spectroscopy Capability	No	Yes	Yes	
Polarimetric Capability	Yes, 4 linear states, 2 at a time	Yes	Yes	
Entrance Pupil			8.0 m 67 m	
Aperture type	on-axis 2.4m monolith with 6 struts	off-axis 4m monolith	A: on-axis segmented 13.5 m inscribed diameter B: off-axis segmented 6.7 m inscribed diameter	
Primary Obscuration (linear fraction)	28%	0	A: 8% B: 0	
F/#	1.3	2.5	A: 1.3 B: 2.73	

Value as a Technology Demonstrator

Roman CGI compared to future missions:

CGI more stringent than future missions

CGI in family with future missions

CGI easier than future missions

Value as a Technology Demonstrator

Roman CGI compared to future missions:

CGI more stringent than future missions

CGI in family with future missions

CGI easier than future missions

Deformable Mirrors (DM)	rs Roman CGI (CBEs) HabEx Required (VVC6) 48 x 48 64 x 64		LUVOIR Required A: APLC B: VVC6
Number of actuators			A: 128 x 128 B: 64 x 64
Number of DMs per coronagraph channel	2	2	2
DM stroke range (µm)	> 0.5	> 0.5	> 0.5
DM stroke resolution (pm)	7.5	2.5	1.9

Low Flux Detection

Low Flux Detection	Roman CGI (CBEs)	HabEx Required (VVC6)	LUVOIR Required A: APLC B: VVC6	
Photon counting	Y	Y	Y	
Point source flux / PSF core broad-band imaging, (e-/s)	0.14 (HLC around 575 nm)	0.01	0.06 (A)	
Point source flux / PSF core per spectral bin, (e-/s)	0.027 (SPC around 730 nm)	0.0004	0.0008 (A)	
Detector Format	1024 x 1024 (imaging and spectroscopy)	1024 x 1024 (imaging) 2048 x 2048 (IFS)	1024 x 1024 (imaging) 4096 x 4096 (IFS)	
dQE at 550nm	0.5	> 0.56	0.72 (CBE)	
Effective Read Noise, e- (after EM gain)	0.015	< 0.1 (CBE: 0)	0 (CBE)	
Dark Current (e-/pix/s)	1.3x 10-4	< 4 x 10-4 (CBE: 3 x 10-5)	3 x 10-5 (CBE)	
Clock-induced Charge (e-/pix/read)	0.005	< 6 x 10-2 (CBE: 1.3 x 10-3)	1.3 x 10-3 (CBE)	
Lifetime at specified detector parameters	5 years	> 5 years	> 5 years	

Value as a Technology Demonstrator

Roman CGI compared to future missions:

CGI more stringent than future missions

CGI in family with future missions

CGI easier than future missions

Wavefront Sensing and Control

Wavefront Sensing and Control	Roman CGI (CBEs)	HabEx Required (VVC6)	LUVOIR Required A: APLC B: VVC6	
Low Order Wavefront Sensing and Control	Yes (up to Z11)	Yes	Yes	
Pointing jitter after correction (mas rms per axis)	0.35 for V = 5 0.20 for V < 3	< 0.3	< 0.3	
Residual Defocus (pm) drift after correction	3 (OS9 temporal rms)	< 1315	A: < 33, B: < 7	
Residual Astigmatism (pm) drift after correction	3 (OS9 temporal rms)	< 157	A: < 50 B: < 14	
Residual Coma (pm) drift after correction	2 (OS9 temporal rms)	< 94	A: < 1 B: < 8	
Residual Spherical (pm) drift after correction	2 (OS9 temporal rms)	< 76	A: < 2 B: < 4	
High order wavefront drift in pm after any correction	5 (OS9 temporal rms)	< 5	< 5	
Laser Metrology	No	Yes (M1-M2-M3)	Yes (6 per M1 segment-M2-M3)	

Value as a Technology Demonstrator

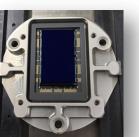
Roman CGI vs. HabEx and easier of LUVIOR A/B

CGI more stringent than future missions

CGI in family with future missions

CGI easier than future missions

- PSP = Participating Scientist Program (to be changed to Community Participation Program)
- Kick-off ~May 2021, continuing through Phase E
- ~10 external scientists from partner countries and US institutions.
 - US team members to be competed via open call in late 2020
- Work with Coronagraph Technology Center (CTC) at JPL in tech demo preparation and operations. Add value by complementing the technologist/engineering experience of JPL staff on CTC:
 - Lead by CGI Technologist (CTC)
 - Assist analysis of image data from I&T
 - Maintain target database, advise observation planning
 - Simulate, process, and interpret astrophysics observations
 - Simulated datasets for performance analysis and community engagement
 - Flux- and wavelength-calibrated spectra
 - High-precision astrometry
 - Polarimetry calibration and interpretation
 - Research alternative wavefront sensing and control algorithms
 - Engage broader astronomy community
 - Publish science and technology results from tech demo phase



CGI International Contributions -- Update

Four international partners with contributions:

- EMCCD from e2v/ESA
 - No major changes since PDR, COVID impact is minimum:
 - Wafer batch #1 completed on schedule
 - Wafer batch #2 ~46% complete
- Precision Alignment Mechanisms (PAMs) from MPIA:
 - Changes since PDR: DLR co-funding lost due to budget re-prioritization at DLR; NASA agreed to replace the lost DLR funding, MPIA on contract with JPL since 12/2019. Progress continues without impact due to DLR funding situation
- Off-axis parabolas (OAPs) from LAM/CNES:
 - Changes since PDR: found four of the eight OAPs not suited for LAM's approach (stress polishing). NASA agreed to fund US vendor (II-VI Optical Systems) to polish these four (#1, #2, #3, #8) using traditional approach to mitigate schedule and technical risks.
- Polarization Optics from JAXA:
 - No major changes since PDR, some COVID schedule impacts:
 - Polarization prisms and lenses experience COVID schedule impact. Working to buy from US vendor (non-rad-hard) optics for EDU development. Flight units schedule being worked.
 - Mask substrates (Si for SPC, and Fused Silica for HLC) batch #1 delivered to JPL on 7/31/2020, just in time for flight mask fab. Batch #2 schedule for late 10/2020 as backups.

EMCCD (3X)

PAM (6X)

Mask substrates & polarization prisms

- CGI staff working from home since 3/17/2020
- JPL has approved ~25 CGI critical tasks, with ~88 CGI "Mission Essential" personnel to return to lab since 4/2020
 - (1) DM TRL-6 development; (2) electronics; (3) camera; (4) mask fab and testing; (4) mechanisms; (5) Performance testbed; (6) parts qualifications.
- All services such as mechanical fab, e-fab, environmental test labs, analytical labs, etc. are open to support CGI for limited capacities

Requests			+ New Request
Project/Org	e x y SC Only	Employee Search Employee Q	Status Approved × × Pending ×
Type Request Type	Last Status Change Single Date/Date Rang	Access Date 😧	Filter Reset
« (1	2) »		Export filtered list to Excel 98 88 REQUESTS EMPLOYEES

COVID Restart Activity Tracking

ng

es

Actions	•						
. ID↓	Project 🖌	Task	Description	Location/Facility	FTE/Day	Requested Start	Current N
1	1 WFIRST/CGI	DM	DM Interconnect	B103-108 (Hybrid lab)	1	4/20/2020	4/20/202
2	0 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	1 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	2 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	3 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	4 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	5 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
2	6 WFIRST/CGI	Avionics EDU	DME PCD	B306; B183	5	5/4/2020	5/4/2020
4	3 WFIRST/CGI	Camera	Camera characterization	B300-151	2	5/4/2020	5/4/2020
4	4 WFIRST/CGI	Camera	DM soldering & camera packaging	B103-108	1	5/11/2020	5/11/202
4	5 WFIRST/CGI	Camera	Camera lab setup & PQV	B300-110	2	6/1/2020	6/1/2020
4	6 WFIRST/CGI	Camera	Camera lab setup & PQV	B300-110	2	6/1/2020	6/1/2020
4	7 WFIRST/CGI	Mechanisms	PZT, mechanism parts	B103; B158; B300- ATL	2	5/4/2020	5/4/2020
5	0 WFIRST/CGI	Mech Fab	FSM life test and EMCCD installation	B318-highbay	2	5/11/2020	5/11/202
5	7 WFIRST/CGI	MDL	DM metalization & mask fab at MDL	B302-MDL	2	5/11/2020	5/11/202
5	8 WFIRST/CGI	MDL	DM metalization & mask fab at MDL	B302-MDL	2	5/11/2020	5/11/202
5	9 WFIRST/CGI	Mech Fab	FSM life test and EMCCD installation	B318-highbay	2	5/11/2020	5/11/202
8	4 WFIRST/CGI	Controls	EDU mask testing	B318-highbay	2	6/15/2020	6/15/202
10	3 WFIRST/CGI	DM	UPDATED 7/16 personnel updated. DM TRL-6 (transition from #11, #57) and module rework	B306-120; B183; ETL	4	5/26/2020	5/26/202
10	4 WFIRST/CGI	Parts evaluation, qualification	Radiation, upgrade screen,	B300	2	6/1/2020	6/1/2020
10	6 WFIRST/CGI	Active Optics	FSM and FCM EDU integration and test	B318-highbay	2	6/22/2020	6/22/202
10	8 WFIRST/CGI	Harness	EDU harness fab, assembly and test		2	7/20/2020	7/6/2020
21	3 WFIRST/CGI	CGI EGSE	On-lab Access Request Addition of lab space to Tasks #22-#26	B183-104	2	6/15/2020	6/15/202
30	6 WFIRST/CGI	CGI DME MGSE Fabrication & Assembly	fabrication of MGSE components and assembly of the final products to their specified configurations to support CGI Deformable Mirror Electronics (DME)	B171-310	1	7/6/2020	7/6/2020
39	9 WFIRST/CGI	Camera I&T, thermal strap	Bonding of PRTs and Heaters to the thermal strap for use in the EDU Camera.	B125-122, B144, B300-132	2	7/20/2020	7/20/202

Approved CGI critical tasks on-lab

Jet Propulsion Laboratory

California Institute of Technology

Path to CDR

- Due to COVID impact, CGI CDR has been rescheduled from 2/2021 to 4/2021.
 - Different degrees of supply chain COVID impacts across the board
- Maintain 8/2023 CGI delivery, by taking 2 months out of I&T schedule (dropping two months
 of testing for two modes)
- DM TRL-6 interconnect demonstration ~ 11/2020
 - Currently carry three different methods for risk reduction (1) 2nd generation fuzz button, (2) micro coil springs, (3) nail pins
 - Down select to one approach ~ end of 8/2020 after risk mitigation studies
 - Focus on one type for 11/2020 demonstration
- Prior to CGI CDR, we expect to complete all element/assembly-level CDRs (9/2020 2/2021)
- FY21 budget risk and COVID impact

- CGI is making solid progress toward CDR (4/2021)
 - DM interconnect TRL-6 technology maturation ~ 11/2020
 - External interfaces stabilized: CGI to OTA, IC, and S/C
 - Internal interfaces frozen: Optical bench, electronics thermal pallet, etc.
 - Next steps: complete all the detailed designs, release ALL drawings by CDR
 - Maintain an acceptable risk posture
 - KDP-C requirement relaxations to CGI, off-ramps to protect CGI schedule and budget, Tiger Team recommendations for simplifications
 - ExEP contribution of additional masks without increasing CGI programmatic risks
 - CGI continues coronagraphy in space on NASA flagship missions, demonstrating key technologies for future earth 2.0 imaging missions

Roman Space Telescope

Back-up charts

Acronyms

•	CAD	Computer Aided Design	≁-	IFS	Integral Field Spectrometer (PISCES at GFSC)
•	Cam	Camera	₽-	IFSCam	Integral Field Spectrometer Camera
•	CF	Color Filter	\triangleright	ISE	Instrument Support Electronics
•	CFAM	Color Filter Alignment Mechanism	\triangleright	LOBE	LOWFS Optical Barrel Element
•	CFWM	Color Filter Wheel Mechanism (aka Color Filter Alignment Mechanism)	\triangleright	LOCam	Low Order [Wave Front Sensing] Camera
•	CGI	Coronagraph Instrument	\triangleright	LOWFS	Low Order Wave Front Sensing
	CSAM	Camera Selector Alignment Mechanism	\triangleright	LS	Lyot Stop
•	CTCE	Coronagraph Thermal Control Electronics	\triangleright	LSAM	Lyot Stop Alignment Mechanism
•	DI	Direct Image	\triangleright	MLI	Multi-Layer Insulation
•	DICam	Direct Imaging Camera	\triangleright	NTE	Not To Exceed
•	DM	Deformable Mirror (by Xinetics)	\triangleright	PAM	Precision Alignment Mechanism
•	DME	Deformable Mirror Electronics	\triangleright	PAME	Precision Alignment Mechanism Electronics
•	DPAM	Dispersion Polarizing Alignment Mechanism	\triangleright	PZ or PZT	Piezoelectrics
•	EXCam	Exoplanetary systems Camera	\triangleright	PRT	Platinum Resistance Thermometer
•	FM	Folding Mirror	\triangleright	SPAM	Shaped Pupil Alignment Mechanism
•	FCM	Focus Control Mirror	\triangleright	WFI	Wide Field Instrument
•	FPA	Focal Plane Array	\triangleright	WFIRST	Wide Field Infrared Survey Telescope
•	FPAM	Focal Plane Alignment Mechanism	\triangleright	OBSA	Optical Bench Structure Assembly
•	FPM	Focal Plane Mask	\triangleright	SMR	Spherical Mounted Reflector
•	FS	Field Stop			
•	FSAM	Field Stop Alignment Mechanism			
	_				

- FSM Fast Steering Mirror
- IC Instrument Carrier
- ICE Instrument Control Electronics