

Starshade Stray Light Status Report to Science and Industry Partnership Group

Doug Lisman

Jet Propulsion Laboratory, California Institute of Technology

August 20, 2020

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2020

- Primary stray light updates reported here are to account for the:
 - Systematic component of noise (post-calibration residual uncertainty)
 - Latest edge scatter measurements with "Zecoated" coupons
 - Reflected light from center of the Milky Way
 - Levels at 1AU solar equivalent angle rather than IWA
 - Attenuated solar leakage with a labyrinth seal at deployable disk optical shield interface to truss
- Secondary solar reflections are under study via ray trace analysis of system CAD model
 - Telescope facing surfaces with view factors to sun facing surfaces, with or without deformed shape
- Noise budgets compile stray light & astrophysical background noises to yield planet sensitivity
 - Total stray light brightness is less than the local zodiacal light
- Planet sensitivity is translated to HZ search completeness and cumulative HZ search space
 - Sun-like FGK stars with completeness cutoff at $\geq 20\%$
 - Consider variable band, exozodi level and exozodi calibration accuracy
- First, stray light sources and their geometry are reviewed

Starshade stray light

Starlight leakage, Solar glint (edge scatter) Solar leakage: opacity, mm holes, OS closeout Reflected bright-bodies: Earth, Venus, Jupiter, Milky Way Secondary solar reflections, fluorescence, Thruster exhaust solar scatter, micrometeoroid flashes

Exoplanet Exploration Program

Astrophysical Background Milky Way stars Other galaxies Exozodi & local zodi light Companion stars & exoplanets

- Systematic noise stems from the imperfect calibration of any noise source with spatial structure to present photon *source* uncertainty
 - Adds in quadrature with the photon *count* uncertainty from photometric noise
 - Formulation below is consistent with CGI error budgets (B. Nemati, 2016)
- SNR is the ratio of planet counts (KC_p) to the RSS of photometric counts ($\sqrt{(KC_n)}$) and systematic noise counts (KC_n δ), or:
 - $SNR = KC_p / (KC_n + \delta^2 K^2 C_n^2)^{1/2}$
 - where: K is star counts, C_p is planet contrast, C_n is noise contras and δ is calibration accuracy
- Solving for planet contrast (C_p) gives:
 - $C_p = SNR (C_n/K + \delta^2 C_n^2)^{1/2}$
 - Note the systematic term is independent of integration time
- Exozodi calibration accuracy (δ_Z) is critical and highly uncertain
 - Planet extraction simulations to inform exozodi calibration capability are critically needed
 - A δ_Z goal of 5% is evaluated here, but also show results for 3.33% and 0%

- Solar glint is greatly reduced by "ZeCoated" edges
- A JPL optical model is validated and used to choose coating application angle, LoS vs. uniform, etc.
- JATIS paper submitted for review by Dylan McKeithen, Stuart Shaklan, David Sheikh, et al
- Future optimizations include finer coating thickness resolution & weighted sun angles
- Prototype plans include performance verification after thermal cycles and stow cycles

Fig 6: Comparison between the SAS experimental data and Lumerical results for coatings (a) 450:800-3, and (b) 450:1000-1 showing good agreement for coatings applied at three different angles.

Fig 7: Plot of the average in-band scatter as a function of coating angle. Note the minimum around $\alpha=60^\circ,$ and a maximum near $\alpha=150^\circ.$

Table 7: Estimated Glint Lobe Magnitude for the SRM 425-552 nm Band	Table 8: Estimated Glint Lobe Magnitude for the SRM 615-800 nm Band
σ	

		-		
4	IWA Phot.	Improvement	AMag	Final
p	95% conf.	Ratio	Шnag	Mag
	27.3	9.2	2.4	29.7
	27.5	16.7	3.1	30.6
73	27.3	26.8	3.6	30.9
83	26.7	20.5	3.3	30.0

• Center of Milky Way is the brightest body for reflected light, when seasonally behind the telescope

- Peak brightness is 20.57 mags/arc-sec²
- $-\sim$ 5% starshade hemispherical reflectance (+3.25 mags)
- +1 mag fill factor petals instead of disk
- Conservatively assume that all reflected light comes from the brightest part of the Milky Way
- Yields 31.3 mags per resolution element at IWA
- Combine with Earth at grazing angles for total of 28.2 + $\theta_{mas}/40$ mags (Green-Band)
 - 30.8 mags per resolution element at IWA
- Additional light reflected by Jupiter and Venus is possible, but rare and operationally avoidable
- All other bodies are much dimmer

Translation to 1AU solar equivalent angle

Exoplanet Exploration Program

• Off-axis fall-off for star leakage & solar glint is simulated and curve fit over angles of interest

- Deployable disk optical shield (OS) requires a hinged interface at each truss node, with a mechanical clearance (gap) that can leak Sunlight
- A labyrinth seal design (by Manan Aria) expected to transmit ≤ 10⁻¹³ (vs. 10⁻¹² predict for mm holes) is to be verified with straylight tool

Secondary Solar Reflections

Exoplanet Exploration Program

• Photon Engineering (Scott Ellis) is conducting a rigorous analysis of starshade stray light

- Ray tracing tools applied to starshade system CAD model
- Computationally challenged by extremely low light level sensitivity
- Further challenged by limited fidelity CAD model with non-flight like features (iterative CAD fixes)

• Emphasis is on secondary solar reflections for both nominal shape and twisted/out-of-plane petals

- Telescope facing surfaces with a view factor to Sun facing surfaces
- Machined CFRP side-wall of optical edge substrate to disk optical shield is an example
- BRDF measurement of this atypical material is underway

• Expect all secondary reflections will be much dimmer than solar glint, after mitigations

- ZeCoat provided dark coating on Kapton is now under test as one mitigation

- Focus on top 3 stray light terms, plus a conservative allocation for other sources
- Focus on top 3 astrophysical background sources
- Include systematic noise
- All noise terms combine in quadrature (same as CGI methodology)
- Detector QE is per WFIRST ipac website and includes a variable factor for QE degradation (0.5X does not change planet sensitivity)
- SNR is set to 4 for broadband detections
- Consider both Green and Blue Bands
- Exozodi CBE is 3X Local zodi density (6X brightness) and we also explore 2X density
- Exozodi calibration accuracy best guess is 3-5% and we also consider 0% residuals for the case with smooth symmetric exozodi

Rendezvous Green-Band Noise Budget

Exoplanet Exploration Program

1=BOL 0.5~EOL

						Reference s (days=1, L=	star counts 1, d=1pc)			
	Mission	SNR (broadband detection)	Exo-zodi density	Band	Banbdpass	Point sources	Extended sources	QE degrade factor	IWA (mas)	
	Rendezvous	4	3	Green	615-800	4.20E+14	1.40E+15	1	103	

			Star counts (K	, 			
Star	L	d (parsecs)	1AU Angle (θ, mas)	Vmag	Point sources	Extended sources	Planck Function
Tau Ceti	0.52	3.65	198	3.49	1.66E+13	5.52E+13	0.202

Noise Source	Angle dependcence	mags at 1AU	Noise Contrast	Background Counts (BC = Cn K)	Photometric counts = √BC	Cal Accuracy (δ)	Systematic counts = δ BC	RSS Total noise counts
Starlight leakage (1E-10 at IWA)	$\Delta m=21.7+\theta/36$	30.7	1.33E-11	220.7	14.9	10%	22.1	26.6
Solar Glint (coated edges, 73° Sun)	m=27.1+0/40	32.0	3.81E-12	63.0	7.9	10%	6.3	10.1
Reflected Milky Way & Earth	m=28.2+0/40	33.1	1.38E-12	76.2	8.7	25%	19.1	21.0
Other stray light counts (1 per hour)								24.0
Total straylight (RSS)					19		30	43
Local Zodi (22.7 mags/arc-sec2)		28.81	7.45E-11	4110	64	1%	41	76
Exo/Local Zodi brightness ratio	6	26.86	4.47E-10	24661	157	5%	1233	1243
Planet shot noise (iterative solver)					71			71
Astrophysical background (RSS)					184		1234	1247
Stray light & background (RSS)					185			1248
Min detectable planet counts								4992
Planet contrast sensitivity								3.0E-10
Dimmest detectable planet (mags)*								27.3

* A constant for all target stars, dominated by exo-zodi

** micrometeoroid flashes, solar leakage thru micrometeoroid holes, fluorescence, thrust plume solar scatter, etc.

					Reference s (days=1, L=	star counts =1, d=1pc)			
Mission	SNR (broadband detection)	Exo-zodi density	Band	Banbdpass	Point sources	Extended sources	QE degrade factor	IWA (mas)	
Rendezvous	4	3	Blue	460-600	5.50E+14	1.80E+15	1	77	
							1=BOL, 0.5 ~EOL		
					Star counts (ł	K) after 1 day			
Star	L	d (parsecs)	1AU Angle (θ, mas)	Vmag	Point sources	Extended sources	Average Planck Function		
Tau Ceti	0.52	3.65	198	3.49	1.86E+13	6.08E+13	0.173	std. dev is 0.02	
								-	
Noise	e Source	Angle dependcence	mags at 1AU	Noise Contrast	Background Counts (BC = Cn K)	Photometric counts = \sqrt{BC}	Cal Accuracy (δ)	Systematic counts = δ BC	RSS Total noise counts
Starlight leakage (1E	-10 at IWA)	$\Delta m = 22.5 + \theta/36$	31.5	6.38E-12	118.5	10.9	10%	11.8	16.1
Solar Glint (coated eo	dges, 73° Sun)	m=28.8+0/37	34.1	5.50E-13	10.2	3.2	10%	1.0	3.4
Reflected Milky Way	& Earth	m=28.0+0/37	33.3	1.15E-12	69.8	8.4	25%	17.5	19.3
Other stray light cour	nts (1 per hour)								24.0
Total stray light (RS	S)					14		21	35
Local Zodi (22.7 mag	s/arc-sec2)		29.41	4.29E-11	2604	51	1%	26	57
Exo/Local Zodi bright	ness ratio	6	27.46	2.57E-10	15626	125	5%	781	791
Planet shot noise (iterative solver)					56			56	
Astrophysical background (RSS)					146		782	795	
Total noise (stray light & astrophysical (RSS)					147			796	
Min detectable planet counts = Total noise * SNR									3184
Planet contrast sensitivity = min planet / star point source counts									1.7E-10
Dimmest detectable planet (mags)*									27.9

* A constant for all target stars, dominated by exo-zodi

** micrometeoroid flashes, fluorescence, thrust plume solar scatter, etc.

vs. 27.3 for Green-Band (Blue-Band can detect 1.7X dimmer planets)

Planet sensitivity scales with residual Exo-Zodi uncertainty & also λ^2 and the Planck Function

HZ Search Space

(vs. Band, Exozodi level & Exozodi Cal accuracy) Exoplanet Exploration Program

Residual Exozodi uncertainty (systematic noise) decimates Rendezvous performance

Combinations of bandpass, planet size & residual exozodi level restore some performance

Perfect Exozodi Calibration ?

Exoplanet Exploration Program

Evolved systems are expected to have highly uniform (not lumpy) exozodis. This would allow subtraction of exozodi based on image symmetry. Here we assume perfect exozodi calibration.

Conclusions

- The good news is that starshade stray light is well under control
 - Barely detectable at 1AU solar equivalent distances for nearby stars
 - Verification efforts are ongoing and not all sources are quantified
- The bad news is that planet sensitivity is not so good for CBE of 3X mean exozodi density
 - And for reasonable calibration accuracy (3-5%)
 - We critically need to inform the actual calibration capability, via planet extraction simulations
- Evolved systems may have very uniform exozodi that can be very well calibrated
 - Resolution is sufficient to subtract symmetric exozodi
- Performance improves with the Blue-Band and larger rocky planets (1.4X Earth mean)