
Enhancing Direct Imaging Exoplanet Detection 
and Characterization with Astrometry

1

Eduardo Bendek, Ruslan Belikov, Eugene Pluzhnik, Olivier Guyon
ExEP tech Colloquium

September 5, 2017

Image Credit: Eduardo Bendek, Sirius imaged with a diffractive pupil telescope



Why Astrometry?

• Exoplanets (with L. Rogers input)

– Mass determination 
– System inclination ambiguity
– To assess atmospheric loss rates (e.g., Zahnle & Caitling 2013).

– To distinguish terrestrial planets from water-rich planets and 
mini-Neptunes (e.g., Grasset et al. 2009).

– Confirm RV and transit detections
– Explore outer areas of planetary systems i.e.:

• Large SMA
• Long periods
• Younger, brighter stars (As ~ Ms

a/2-1) for planets in the HZ
-> for main sequence stars a=4, => Astrometry grows linearly with 
Luminosity for main sequence stars (As ~ Ms) 

– Distinguish zodi / dust from planets



Overview: Astrometry and direct Imaging

Ground based regime:
Low contrast

Small SMA - Angle
Large RV signal (color coded)

Space regime
High Contrast

Large SMA - angles
Larger Astrometry signal
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4 Year mission, 
1 Month Cadence
Astrometry only
Guyon et al, Apj 2013.

4 Year mission, 
2 Month Cadence
Astrometry + 
Coronagraphy
Guyon et al, ApJ2013.

Overview: Astrometry and direct Imaging



Diffractive Pupil Concept
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Diffractive Pupil Concept
• Create a diffraction pattern that will map the 

distortions induced by the optical system:

Pupil plane
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Combined lab at NASA Ames
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First lab to demonstrate simultaneous astrometry and high contrast imaging.
• Demonstrate real mission configuration
• Increase astrometry fidelity
• Coronagraph independent
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Key Components

16mm DP Location Pick off mirror

Retrofitted secondary with tip/tilt control 



Assembly 



Thermal Control
Thermal enclosure
• 15 min A/C thermal cycle ~0.4˚C PV 
• Two nested thermal enclosures
• Active air temperature control in the 

gap between enclosures
• Liquid cooling to remove heat
• 3mK PV over 24
• 1mK RMS over 24

The picture can't be displayed.



Milestones Definitions

Milestone #1 definition
Broadband medium fidelity imaging astrometry demonstration
Demonstrate 2.4x10-4 l/D astrometric accuracy per axis performing a null 
result test. 
=> Equivalent to 10μas on a 2.4m telescope at 500nm (i.e. Hubble)

Milestone #2 definition
Broadband medium fidelity simultaneous imaging astrometry and high-
contrast imaging
Demonstration of milestone #1, and performing high-contrast imaging 
achieving 5x107 raw contrast between 1.6 and 6l/D by a single instrument, 
which shares the optical path



Astrometry 

Relative measurement

Success if:  Aabs(n)-Arel(n) < 2.4x10-4 λ/D

Astrometry Milestone Null Test
Difficult to create well calibrated astrometric signals at ~1uas
=> How well we can measure no motion in presence or real perturbations?

Demonstrate 2.4x10-4 l/D astrometric accuracy per axis performing a null result test. 
=> Equivalent to 10μas on a 2.4m telescope at 500nm (i.e. Hubble)
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The picture can't be displayed.

The picture can't be displayed.



Milestone 1 Results

Extracted 
FoV = 39λ/D

Wide-Field Camera FoV 20’x20’ 

Spikes = Host star astrometry

Stars = Background reference



Milestone 1 Results

Set 2 Null test RMS (λ/D) Milestone #1 (λ/D) Stars to spikes relative(λ/D)
X-axis Y-axis 1-axis X-axis Y-axis

TDEM 2.38x10-5 4.00x10-5 2.0x10-4 4.0x10-4 2.0x10-4

2.4m 1.0μas 1.7μas 10.0μas 17μas 8.5μas

4.0m 0.6μas 1.0μas 6.2μas 10μas 5.0μas

3 data sets:
• 48 hrs long, 12 Epochs, 5 images per epoch, delay of 4hrs between epochs
• Thermal stabilization to 22.5˚C+/- 20mK over 48hrs
• T/T Jitter stabilization 



Milestone #1 successfully met
Factor of 10 improvement over milestone requierement
Þ 1μas for 2.4m aperture achieved => High Fidelity Demo
Þ Open the grounds for earth-like planet characterization

Other important info
NO detector calibration, normal APOGEE Alta U16000 used with TEC cooling
• Result can be further improved, far from photon limit 

Þ Software and CCD Calibration
• Thermal stability is remarkable, 5m˚K PV, over 12hrs and 15m˚K over 48hrs

Milestone 1 Results



Milestone 2 Results

5λ/D

1.6λ/D

Coronagraph:

• Standard PIAA 
lenses

• 16mm aperture

• λ=655nm 

• C-shape Focal 
plane occulter

• Kilo-DM 
1024x1024

• Tip/Tilt Jitter 
stability loop

• Lyot stop 



3 data sets:
• Speckle Nulling Algorithm (Starts from Flat DM)
• 2.18x10-7 Raw contrast between 1.6 to 5λ/D, Factor 2 better than the milestone!

• Stability test at the end of the run
• Simple average subtraction reached 3.50x10-9 contrast between 1.6 to 5λ/D
=> PROOF of no IWA contamination down to 3.50x10-9

Milestone 2 Results

2.18x10-7 Raw contrast 
between 1.6 to 5λ/D

Contrast stability over 30 iterations at low amplitude 
speckle nulling

WFC by Eugene Pluzhnik



Impact for the community
=> Astrometry for HABEX (and maybe LUVOIR)
Expected exo-earth yields is between 6 to 17 planets, 

- Even if RV instruments achieve <10cm/s to constrain the mass
- It will be still be a function of sin(i)
- And no signal in the case of best configuration for imaging: Face-on

Why not put dots on the primary mirror?
-Almost imperceptible in comparison with segments or spiders that we are used to
-No co-phasing problem. 
-No mid-spatial frequency instabilities
-No Polarization issues
-No IWA contamination, demonstrated to 3.5x10-9
-BONUS!! => Independent tomography to track optics motion/deformation

HABEX has the right configuration, scientific goals and 
appropriate targets for this technology



General astrophysics
and diffractive telescope 

• The diffractive pupil is compatible with a general astrophysics mission.
• Spiders diffracted light is 5 times more.
• Huge gain: Better than 1uas astrometry!  
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For the case presented (Dots cover 1% of the primary)

Mitigation strategy:
1. Spikes’ positions are very accurate and can be subtracted.
2. A trade study is needed to determine the best possible 

astrometry with minimal interference with other uses of the 
telescope.

Fluxspike/FluxZodi ratio for different star magnitudes
mV=8 mV=6 mV=3.7 mV=-1.46

99% of FoV < 8x10-3 < 5 x10-2 < 4x10-1 < 4.5x101

95% of FoV < 1.7x10-4 < 1.1x10-3 < 8.8x10-3 < 1

90% of FoV < 5.8x10-5 < 3.6x10-4 < 3.0x10-3 < 3.4x10-1

Typical deep imaging bright stars Very unlikely to get a bright star in the field
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Sirius imaged with a diffractive pupil telescope

• Modified 14” SC telescope at Ames
• Diff Pupil imprinted on the corrector (Pupil for an Schmidt Cassegrian)
• Goal: Multi-month observation of a single target to beat down turbulence.
• Anybody wants to help with a second telescope somewhere else?

Going on sky



Conclusions

1) Astrometry and direct imaging TDEM completed! Milestone 
meets by ample margin.
• 2.4x10-5 λ/D astrometry achieved (1μas on Hubble)
• 2.3x10-7 raw contrast between 1.6 to 5λ/D

3) The Diffractive Pupil  technology would enable measuring 
masses of earth-like planets.

4) There is no significant telescope performance degradation 
cause by the Diffractive Pupil

5) Next steps: Ground demo, and a microsat.

Thank you


