

Enhancing Direct Imaging Exoplanet Detection and Characterization with Astrometry

Eduardo Bendek, Ruslan Belikov, Eugene Pluzhnik, Olivier Guyon ExEP tech Colloquium September 5, 2017

Image Credit: Eduardo Bendek, Sirius imaged with a diffractive pupil telescope

Why Astrometry?

• Exoplanets (with L. Rogers input)

Mass determination

- System inclination ambiguity
- To assess atmospheric loss rates (e.g., Zahnle & Caitling 2013).
- To distinguish terrestrial planets from water-rich planets and mini-Neptunes (e.g., Grasset et al. 2009).
- Confirm RV and transit detections
- Explore outer areas of planetary systems i.e.:
 - Large SMA
 - Long periods
 - Younger, brighter stars ($A_s \sim M_s^{a/2-1}$) for planets in the HZ
 - -> for main sequence stars a=4, => Astrometry grows linearly with Luminosity for main sequence stars ($A_s \sim M_s$)
- Distinguish zodi / dust from planets

Overview: Astrometry and direct Imaging

Overview: Astrometry and direct Imaging

4 Year mission, 1 Month Cadence Astrometry only Guyon et al, Apj 2013.

4 Year mission, 2 Month Cadence Astrometry + Coronagraphy Guyon et al, ApJ2013.

Diffractive Pupil Concept

Diffractive Pupil Concept

Create a diffraction pattern that will map the distortions induced by the optical system:

Pupil plane

Combined lab at NASA Ames

First lab to demonstrate simultaneous astrometry and high contrast imaging.

- Demonstrate real mission configuration
- Increase astrometry fidelity
- Coronagraph independent

Key Components

Assembly

Thermal Control

Thermal enclosure

- 15 min A/C thermal cycle ~0.4°C PV
- Two nested thermal enclosures
- Active air temperature control in the gap between enclosures
- Liquid cooling to remove heat
- 3mK PV over 24
- 1mK RMS over 24

Milestones Definitions

Milestone #1 definition

Broadband medium fidelity imaging astrometry demonstration

Demonstrate 2.4x10⁻⁴ λ /D astrometric accuracy per axis performing a null result test.

=> Equivalent to 10µas on a 2.4m telescope at 500nm (i.e. Hubble)

Milestone #2 definition

Broadband medium fidelity simultaneous imaging astrometry and highcontrast imaging

Demonstration of milestone #1, and performing high-contrast imaging achieving $5x10^7$ raw contrast between 1.6 and $6\lambda/D$ by a single instrument, which shares the optical path

Astrometry

Astrometry Milestone Null Test

Difficult to create well calibrated astrometric signals at ~1uas => How well we can measure no motion in presence or real perturbations?

Demonstrate 2.4x10⁻⁴ λ /D astrometric accuracy per axis performing a null result test. => Equivalent to 10µas on a 2.4m telescope at 500nm (i.e. Hubble)

Success if: $A_{abs}(n) - A_{rel}(n) < 2.4 \times 10^{-4} \lambda/D$

Milestone 1 Results

3 data sets:

- 48 hrs long, 12 Epochs, 5 images per epoch, delay of 4hrs between epochs
- Thermal stabilization to 22.5°C+/- 20mK over 48hrs
- T/T Jitter stabilization

Set 2	Null test RMS (λ/D)		Milestone #1 (λ/D)	Stars to spikes relative(λ /D)	
	X-axis	Y-axis	1-axis	X-axis	Y-axis
TDEM	2.38x10 ⁻⁵	4.00x10 ⁻⁵	2.0x10 ⁻⁴ 💙	4.0x10 ⁻⁴	2.0x10 ⁻⁴
2.4m	1.0µas	1.7µas	10.0µas	17µas	8.5µas
4.0m	0.6µas	1.0µas	6.2µas	10µas	5.0µas

Milestone 1 Results

Milestone #1 successfully met

Factor of 10 improvement over milestone requierement \Rightarrow 1µas for 2.4m aperture achieved => High Fidelity Demo \Rightarrow Open the grounds for earth-like planet characterization

Other important info

NO detector calibration, normal APOGEE Alta U16000 used with TEC cooling

- Result can be further improved, far from photon limit
 ⇒ Software and CCD Calibration
- Thermal stability is remarkable, 5m°K PV, over 12hrs and 15m°K over 48hrs

Milestone 2 Results

1.6λ/D

5λ/D

<u>Coronagraph:</u>

- Standard PIAA lenses
- 16mm aperture
- λ=655nm
- C-shape Focal plane occulter
- Kilo-DM 1024x1024
- Tip/Tilt Jitter stability loop
- Lyot stop

Milestone 2 Results

3 data sets:

- Speckle Nulling Algorithm (Starts from Flat DM)
- 2.18x10⁻⁷ Raw contrast between 1.6 to 5λ/D, Factor 2 better than the milestone!
- Stability test at the end of the run
- Simple average subtraction reached 3.50x10⁻⁹ contrast between 1.6 to 5λ/D
- => PROOF of no IWA contamination down to 3.50x10⁻⁹

Contrast stability over 30 iterations at low amplitude speckle nulling

WFC by Eugene Pluzhnik

Impact for the community

=> Astrometry for HABEX (and maybe LUVOIR)

Expected exo-earth yields is between 6 to 17 planets,

- Even if RV instruments achieve <10cm/s to constrain the mass
- It will be still be a function of sin(i)
- And no signal in the case of best configuration for in

Why not put dots on the primary mirror?

-Almost imperceptible in comparison with segments or spider

- -No co-phasing problem.
- -No mid-spatial frequency instabilities
- -No Polarization issues
- -No IWA contamination, demonstrated to 3.5x10-9
- -BONUS!! => Independent tomography to track optics motion/deformation

HABEX has the right configuration, scientific goals and appropriate targets for this technology

General astrophysics and diffractive telescope

- The diffractive pupil is compatible with a general astrophysics mission.
- Spiders diffracted light is 5 times more.
- Huge gain: Better than 1uas astrometry!

For the case presented (Dots cover 1% of the primary)

	Flux _{spike} /Flux _{zodi} ratio for different star magnitudes				
	mV=8	mV=6	mV=3.7	mV=-1.46	
99% of FoV	< 8x10 ⁻³	< 5 x10 ⁻²	< 4x10 ⁻¹	< 4.5x10 ¹	
95% of FoV	< 1.7x10 ⁻⁴	< 1.1x10 ⁻³	< 8.8x10 ⁻³	< 1	
90% of FoV	< 5.8x10⁻⁵	< 3.6x10 ⁻⁴	< 3.0x10 ⁻³	< 3.4x10 ⁻¹	
]]	

Typical deep imaging bright stars

Very unlikely to get a bright star in the field

Mitigation strategy:

- 1. Spikes' positions are very accurate and can be subtracted.
- 2. A trade study is needed to determine the best possible astrometry with minimal interference with other uses of the telescope.

6

8

-5

6

8

-5

0

Field [arcsec]

5

20

-7.5

-8

5

0

Field [arcsec]

Going on sky

- Modified 14" SC telescope at Ames
- Diff Pupil imprinted on the corrector (Pupil for an Schmidt Cassegrian)
- Goal: Multi-month observation of a single target to beat down turbulence.
- Anybody wants to help with a second telescope somewhere else?

Conclusions

1) Astrometry and direct imaging TDEM completed! Milestone meets by ample margin.

- 2.4x10⁻⁵ λ /D astrometry achieved (1µas on Hubble)
- 2.3x10-7 raw contrast between 1.6 to $5\lambda/D$

3) The Diffractive Pupil technology would enable measuring masses of earth-like planets.

4) There is no significant telescope performance degradation cause by the Diffractive Pupil

5) Next steps: Ground demo, and a microsat.

Thank you