ZELDA: a Link to exoplanet imaging

Mamadou N'Diaye (Observatoire de la Côte d'Azur) & Arthur Vigan (LAM)

K. Dohlen, J.-F. Sauvage, J. Milli, G. Zins, C. Petit, Z. Wahhaj, F. Cantalloube, A. Caillat, J. Le Merrer, A. Carlotti, J.-L. Beuzit, D. Mouillet, and many others

Virtual Workshop on Advanced Wavefront Sensing - May 1st, 2020

Exoplanet imaging and spectroscopy

- Ground-based observations in the near-infrared
 - VLT/SPHERE, Gemini/GPI, Subaru/SCExAO, etc
 - Extreme adaptive optics (XAO), coronagraphy, image processing
 - disks, warm or massive gas giant planets
 - Expected contrast up to 10⁷ @0.2" in H-band

Current performance: 104-106 contrast @ 0.1-0.5"

Imaging colder/lighter exoplanets

- Instrument limitations
 - quasi-static aberrations
 - temporal stability

- Need for a clean and stable star image optimal starlight rejection
- Our solution:
 - calibration with ZELDA
 - N'Diaye+2013, 2016, Vigan+2019

Coronagraphic image on VLT/SPHERE

Contrast limit: 104-106

The Legend of ZELDA

Zernike wavefront sensor

Implementation in VLT/SPHERE

Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations

• Initial measurement strategies

- VLT/SPHERE: off-line phase diversity
- Gemini/GPI: Mach-Zehnder interferometer behind coronagraph

Our proposal

 ZELDA, a concept based on phase-contrast technique

Current implementation in VLT/SPHERE Beuzit et al. 2019

ZELDA prototype in SPHERE

- Fused silica substrate
- Photolithography (SILIOS, France)
- Within 1% specs

Installation during SPHERE integration in Paranal in April 2014

ZELDA II : The adventure on SPHERE

ZELDAII

Measurement of introduced low-order aberration

- Internal point source
- IRDIS pupil-imaging mode, $\lambda = 1642$ nm (Fe II filter)
- PSF centered manually + closed loop on near-IR DTTS
- Zernike and Fourier modes, amplitude ramps: -250 → 600 nm PtV

Zernike modes introduced with 400nm on the deformable mirror

Performance assessment

NCPA measurement and compensation

12

NCPA measurement and compensation

Impact on coronagraphic images on internal source

Tests in Dec. 2015

N'Diaye et al.A&A 2016

Impact on coronagraphic images on internal source APLC image in H-band

Gain x10 in contrast @ 0.2"

Impact on coronagraphic images on internal source

Gain x10 in contrast @ 0.2"

N'Diaye et al.A&A 2016

ZELDA III : A link to the sky

A LINK TO THE PAST"

THE LEGEND OF

On-sky closed-loop correction

nm RMS WFE for 0 < freq.<15 cyc/p

On-sky closed-loop correction

Reduction of the aberrations by a factor 2 on sky

Vigan et al.A&A 2019

On-sky contrast performance

APLC image in H-band

On-sky contrast performance

APLC image in H-band

On-sky contrast performance

Modest gain x2.5 - Images dominated by XAO residuals and aliasing term

Vigan et al.A&A 2019

Analysis of the limitations

- Coronagraphic image reconstruction with analytical model using
 - XAO residuals from telemetry data
 - NCPA from ZELDA
 - Pupil amplitude errors
 - APLC components

Good agreement between model and data Limitations due to the coronagraph

Analysis of the limitations

• Analysis of the expected performance by just replacing the apodizer

Improved contrast with ZELDA NCPA correction + new coronagraph

Conclusion

• ZELDA for the calibration of residual aberrations

easy to manufacture, align, and simple data analysis

• Validation on VLT/SPHERE

- excellent agreement between measurements and theory
- NCPA compensation:
 - x10 gain in contrast on internal source
 - factor of 2 reduction of the aberrations on sky
- promising ZELDA NCPA compensation scheme + new coronagraph
 - imaging colder/lighter planets with current AO facilities

• Promising diagnostic tool for current and future facilities

- Iow-wind effects, internal turbulence, derotator behavior
- segment cophasing, low-order aberrations through coronagraph