

Picometer Wavefront Sensing using the Phase-Contrast Technique

John Steeves, J. Kent Wallace, Christian Kettenbeil, Jeffrey Jewell

ExEP Workshop on Advanced Wavefront Sensing for Coronagraphs 05/01/2020

Copyright 2020 California Institute of Technology. Government sponsorship acknowledged. Pre-Decisional Information -- For Planning and Discussion Purposes Only

Picometer Wavefront Errors

- Wavefront stability on the order of 10-40 picometer RMS required to maintain 1e-10 contrast
- Necessary to develop wavefront sensing techniques with:
 - Picometer sensitivity
 - High spatial-frequency resolution (~100 cycles per aperture)
 - Photon efficient
 - Computationally efficient

Zernike Wavefront Sensor

- Zernike Wavefront Sensor (ZWFS) phase contrast technique
 - Developed for microscopy of transparent cells (Zernike, F. (1942). *Physica*, *9*(7), 686-698)
 - Modulates phase delays as intensity variations at an exit pupil
- Traditionally used for qualitative observations
 - Understanding electric field propagation required for quantitative measurements

ZWFS Operation

- ZWFS: Common-mode interferometer
- Focal-plane dimple acts as spatial filter producing two interfering fields at a downstream pupil
 - $u_B(\mathbf{x})$: "Low-pass" and phase-shifted ($\pi/2$)
 - u_A(**x**): "High-pass" un-shifted

$$I(\mathbf{x}) = |u_A(\mathbf{x}) + u_B(\mathbf{x})|^2$$

$$\phi(\mathbf{x}) - \beta(\mathbf{x}) = \frac{\pi}{4} + \arcsin\left[\frac{I(\mathbf{x}) - I_{P(\mathbf{x})} - 2I_{b(\mathbf{x})}}{2\sqrt{2I_{P(\mathbf{x})}I_{b(\mathbf{x})}}}\right]$$

ZWFS Testbed

Steeves J., et al. (2017). "Active Mirrors for High-Contrast Imaging". JPL RTD Poster Session (URS270081)

Steeves, J. et al., "Picometer Wavefront Sensing via the Phase-Contrast Technique", in prep.

- ZWFS Testbed established in the Precision Environment Test Enclosure (PETE)
 - Thermally/seismically/acoustically stable laboratory for in-air optical measurements
- 4D Twyman Green Interferometer (IFO) provides source (633nm) and independent wavefront measurement
- Andor iXon 897 EMCCD used as ZWFS Camera
 - Large pixel well depth and frame rate allow for high-speed acquisition
- 12x12 BMC Deformable Mirror (DM) used to induce wavefront errors

Data Acquisition

- DM actuators dithered at constant rate, multiple frames captured in ON or OFF states
- ZWFS operated in differential mode (wavefront error changes)
- Varying levels of averaging performed to eliminate stochastic effects
 - Air turbulence, testbed vibrations, thermal variations, etc.

ZWFS Calibration

- DM commanded to high-spatial frequency "checkerboard" pattern
 - Simultaneous measurement performed with 4D interferometer
- Strong agreement between the two techniques for wavefront changes up to 20 nm RMS
 - ZWFS signal inverts at $-\pi/4$ total wavefront error (static + change)
 - Techniques to extend dynamic range have been established (see vZWFS presentations by Doelman and Wallace)

- DM commanded with +/- 1 bit checkerboard pattern
- 60 picometer RMS measurement sensitivity demonstrated with strong SNR
 - Acquisition time <10sec for N =150
 - Measurement limited by testbed (DM LSB), not ZWFS
 - 0.6 picometer repeatability over 70 independent trials

Steeves, J. et al., "Picometer Wavefront Sensing via the Phase-Contrast Technique", in prep.

Performance Limitations

Parameter	Value	Unit	Symbol
Photon Flux	42 200 000	photons/sec	Φ
Quantum Efficiency	0.95	e-/photon	QE
Read Noise	247	e-'s/pixel, rms	N _r
Dark Current	1000	e-'s/sec/pixel	I_d
Integration Time	4.2	millisec	τ
Pupil Array Size	97 x 97	pixels	
Wavelength	632.8	nanometers	л
Zernike Dimple Size	1.0	λ/D	

$$\sigma_{\Delta I(\mathbf{x})} = \sqrt{2(\sigma_s^2 + \sigma_d^2 + \sigma_r^2)} \propto \sqrt{N}$$

$$\sigma_{\overline{\Delta\phi(\mathbf{x})}} = \frac{1}{N} \frac{\sigma_{\Delta I(\mathbf{x})}}{2\sqrt{2I_1(\mathbf{x})I_{1,lf}(\mathbf{x}))}} \propto \frac{1}{\sqrt{N}}$$

- Numerical models implemented to predict measurement repeatability
 - Camera noise parameters studied
- Sub-picometer repeatability predicted for single measurement (N=1)
- Experiments demonstrate shot-noise limited performance, $(1/\sqrt{N})$, for N > 150

Summary

- The Zernike Wavefront Sensor is a simple, robust method to detect spatially-varying wavefront errors
 - Common-mode interferometer
 - Requires only a focal plane mask and pupil-viewing camera
- Strong agreement demonstrated between ZWFS and commercial IFO for nanometerlevel wavefront errors
- Picometer-level sensitivity demonstrated via in-air testbed
- Repeatability performance agrees with numerical models
- Applications
 - Out-of-band WFS for future coronagraphy missions (HabEx, LUVOIR)
 - In-band calibration/diagnostic tool
 - Dedicated WFS for DM drift monitoring
 - Laboratory-based interferometer for DM/active optic development

Technical Support: David Redding, Frank Loya, Michael Randolph

A part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration (NASA)

Copyright 2020 California Institute of Technology. Government sponsorship acknowledged.