The Zernike wavefront sensor on the Decadal Survey Testbed

Garreth Ruane, J. Kent Wallace, Camilo Mejia Prada, David Marx, A J Eldorado Riggs, Byoung-Joon Seo, John Steeves, Eduardo Bendek, Carl Coker, Brendan Crill, Jeff Jewell, Phillip Poon, David Redding, Nicholas Siegler, Stuart Shaklan, Robert Zimmer

Jet Propulsion Laboratory, California Institute of Technology

© 2020 California Institute of Technology. Government sponsorship acknowledged.

WFS workshop | 2020-05-01

Requirements for HabEx/LUVOIR mission concepts

Science case: Imaging Earth-like exoplanets

- 1. Separations of interest: ~0.05"-0.5"
- 2. Raw contrast: ~10⁻¹⁰
- 3. Integration times: ~10-1000+ hr

Wavefront stability requirements

- 1. Allowable wavefront changes (RMS):
 - a. Lowest orders: ~100 pm
 - b. Mid spatial freq: ~1-10 pm
- 2. Timescales: ~10-100 hr

Solution 1: Build an ultra-stable telescope and instrument that meets these requirements.

Solution 2: Use adaptive optics. Requirements:

Solar-type

star

- 1. Common path sensing (critical optics: everything up to the coronagraph stops)
- 2. Simultaneous with coronagraph observations
- 3. High resolution (resolve individual actuators)
- 4. High sensitivity (picometers of wavefront)

In situ wavefront sensors in high-contrast imagers

Adaptive optics requirements for HabEx/LUVOIR mission concepts:

- 1. Common path
- 2. Simultaneous
- 3. High resolution
- 4. High sensitivity

VLT/SPHERE/ZELDA (N'Diaye+)

- Common path, high-res, sensitive by design
- Not simultaneous

WFIRST CGI LOWFS (Shi+)

- Common path & simultaneous
- Low-order only

Keck/KPIC/ZWFS (Wallace+)

- Simultaneous, high-res, sensitive by design
- No coronagraph

The Zernike wavefront sensor gives high sensitivity and high resolution

Makes use of Zernike's phase contrast method (F. Zernike 1934, 1955). Also see Guyon 2006, Wallace+ 2011, N'Diaye+ 2013, Steeves+ submitted.

An out-of-band ZWFS is part of the HabEx mission concept

- Zernike wavefront sensor (ZWFS) gives high-sensitivity and high-resolution.
- Out-of-band ZWFS allows simultaneous operation with minimal impact to observations.
- Using a dichroic focal plane mask (or Lyot stop) makes it common path.

HabEx Report

5

The DST WFS implementation mimics HabEx, but it's currently not simultaneous!

Raw ZWFS measurements when poking rows and

How to make it simultaneous? FPM coatings and dimples

How to make it simultaneous? FPM coatings and dimples

The reflective WFS responds as expected

We injected (*left*) Zernike polynomials and (*right*) sine waves in the DM voltage commands to demonstrate sensitivity to a large range of relevant spatial frequencies.

Picometer-level sensitivity is feasible, but time consuming!

• The least significant bit corresponds to a motion of 11 pm at the peak of isolated actuators.

10

- Noise in surface height difference measurement is <1 pm.
- Integration time is 10,000 sec (2.8 hr) per DM state.
 - Discrete integration time is 10 ms per frame.
 - We switched between the two DM states 1,000 times taking 10,000 frames at a time.
 - This experiment combines *1 million* WFS frames per DM state.

Building a detailed error budget

For "small" phase changes:

Important terms in the error budget:

- Random noise (detector, photon-counting)
- Calibration error & systematics:
 - Ref wave: dimple diameter and F#
 - Source spectrum and spectral responsivity
 - Dimple depth/phase shift, $\beta \propto \sin(\theta)$
 - Nominal wavefront, Φ , $\beta \propto \cos(\Phi)$
 - Angle of incidence
 - Dynamic wavefront error / Jitter
 - Pupil shear

Ruane+, in prep

Demonstrating closed-loop control

DM model fit using FALCO: translation, rotation, scaling, gains.

Step 2: Flatten the wavefront

Step 1:

model

Build DM

Ruane+, in prep

Demonstrating closed-loop control

Step 3: Close the loop to "lock" the wavefront.

Ruane+, in prep

Closed-loop control of a "noisy" DM

Period of injected disturbance = 1000 sec, 0.2 Hz loop, t_{int} = 1 sec, duration = 3000 sec = 50 min Playback rate = 10 fps = 50x real time

Correction with 1 hr update rate will help stabilize speckles

Correction with 1 hr update rate will help stabilize speckles

Take away points

- We commissioned the hardware needed for simultaneous, commonpath, low- and mid-spatial frequency wavefront sensing on DST.
- The WFS beam path, camera, reflective masks are part of the DST facility hardware are available for use by PIs.
- Non-simultaneous, reflective Zernike WFS on DST achieved picometer sensitivity and closed-loop control.
- DST is now equipped for system-level coronagraph demonstrations using pupil plane wavefront sensing techniques that are simultaneous and common path, in addition to "conventional" focal plane wavefront sensing.