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Overview: WFS for Segmented Aperture Coronagraphs
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Picometer-level accurate Wavefront Sensing (WFS) required for coronagraph 10719 contrast
WEFS sensitivity sets closed-loop stability constraints
This talk:

* Nonlinear reconstruction algorithms and WFS dynamic range

* Simulations of ZWFS-driven dark hole acquisition (including DM monitoring)

* Achromatic WFS with geometric phase metasurface or liquid crystal polymers

* Integrated WFS and Coronagraph architectures

* Photonics for Focal Plane-WFS (calibrate non-common path error with direct measurement)

* Summary
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Review of ZWFS and Some Notation
Input Amplltude (left) and Phase(rlght)
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* (Left) Low-pass reference beam amplitude

“Picometer Wavefront Sensing
* (Right) Low-pass reference beam phase PWES via the Phase-Contrast

“Dimple” Technique”, to be subm3itted

PSF
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Two Dimples, with Perfect Knowledge of the Low-Pass Reference:
Exact Analytic Phase Reconstruction
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”Intensity Error:”

’ NL-WFS Reconstruction Algorithm
E+(p; o) =1+(p) — Z Ly (p,p’)A(p’)ew(p')

(builds on NL-ZWFS in Moore, Redding, SPIE 10698, July 2018)
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ZWFS Accuracy for Conjugate Pupil Fields
* a) DM1, b) DM2 beam-shaping solutions for a
charge 6 vortex (Peak to Valley 40 nm at 600 nm)
* ¢) Phase in ‘Pupil 3° downstream of DM’s, with 100
| nanometer (Peak to Valley) primary mirror segment
piston errors

* d) NL-ZWFS phase reconstruction (building on
Moore and Redding, 2018 [1]) after 20 iterations.

1 e) Error vs. iteration of the Nonlinear ZWFS.

* Neglecting photon noise, the NL-ZWF'S algorithm
can reconstruct the amplitude and phase at each
pixel to machine precision.
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Architecture with Multiple ZWFS for DM State Estimation

Pupil 1 Pupil 2 Fresnel Plane Pupil 3 Vortex Focal Lyot Science
(Primary) (DM1) (DM2) Plane Mask Stop Focal
Plane
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* Pupil 1: Re-imaged primary

* Pupil 2, with DM1

* Fresnel Propagation to DM2

* Adjoint Fresnel Propagation back to Pupil 3

* Fourier Transform to Vortex Focal Plane Mask
» Inverse Fourier Transform to Lyot Plane

* Fourier Transform to Science Focal Plane

ZWFS 1 ZWFS 2
(+7/2 dimple) (+7/2 dimple)

01 May 2020 Predecisional information, for planning and discussion only 6




Dark Hole Acquisition with Entrance and Conjugate Pupil ZWFS

Step 1. |X+) Probe fields in 'Pupil 1', measured by ZWFS1 Dark Hole Acquisition with ZWFS Inferred DM States
|Y2)  Probe fields in "Pupil 3, measured by ZWFS2 * Acquiring a “dark hole”, and subsequent closed-loop control, requires
knowledge of the DM states
Step2. DM State Estimate : ([, ®) = minl||Ys) — Pte™Pe’®|X4)| | « The DM states represent one of the most uncertain model elements in
o the coronagraph (i.e. knowledge of influence functions, errors in linear
Step 3. Dark Hole Correction: —|Ef, .o plane) = J[I ®J(6T, 62) superposition, etc)
R Freenet lane Prace il Pre o ~ * We explore the ability to infer the DM states with ‘Pupil 1” and ‘Pupil 3’

. measurements provided by ZWFS1 and ZWFS2

» * Measurement sequence: 1) Generate piston primary mirror “probe”

* fields in ‘Pupil 1°, and measure before and after DM’s with ZWFS1 and
ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM

states (pixel-based, independent of influence functions), 3) DM state
. estimates are used in the control Jacobian to improve the dark hole.

* (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator
heights. The initial states were inferred with ZWFS measurements to
R C reerwersem ' nitialize the Jacobian.
< . *(c-d): DM solutions computed using the ZWFS estimated DM states at
each iteration. These solutions achieve 3e-11 normalized intensity
(single wavelength here due to computational expense — ongoing work
to generalize to broadband on a cluster architecture)
_* Ongoing work — fully Bayesian approach including ZWFS detector
noise, and Bayes optimal closed-loop control
* This architecture has the potential for continuous dark hole closed-loop
control while taking science data!!

B
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Vector Zernike Wavefront Sensor: Simultaneous + w/2 Measurements
Figure Credit: D. Doelman et al, Optics Letters, vol 44, Jan. 2019
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vector Zernike Wavefront Sensor — imparts geometric (achromatic) + /2 phase to PSF core, serving as the “piston”
reference beam for in-line interferometric intensity measurements.
The TWO split polarization beams allow full +7 wavefront dynamic range
“Size chromaticity” of the PSF (see Doelman et al for a discussion of this point)
Can we find a solution to achromatic wavefront sensing?
* Improved efficiency — shorter integration times to achieve accurate wavefront sensing
* Could directly translate into relaxed segmented primary stability requirements
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Input Pupil
Amp Phase Lyot Pllpll

Original Double Int Tmaginary

Vortex Wavefront
Sensor Concept -
Introduced by J. Kent

Wallace, GPI Fall B e

Retreat, Nov. 2009!! — B Seicetedn
(original slide shown
here, courtesy J. Kent

Wallace)

* Can we make the above “achromatic”?

* What is the optimal way to split off light for
wavefront sensing, with minimal impact to
planet light throughput?




Metasurface Extension of the DV—WFS Achromatic” Wavefront Sensing!

Achromatic geometric + 1t /2 pol.

) Exit Pupil: Light in Segment
dependent phase shift In Lyot plane

Gaps and Secondary!!

Entrance Pupil

1

09
08
07
06
05
04
03
02
0.1
0

600 800 1000 1200 1400 1600 1800 2000

Modulus: Vortex ZWFS Conjugate Pupil

Intermediate Lyot Plane
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o0 ooz om0 4 Light outs:de entrance pupil region IS the pupil
‘piston”’ mode and serves as the WFS reference

Jewell, Wallace, et al. in prep. beam. We use a metasurface to impart a

geometric phase of +/- PI/2 to this light!

01 May 2020 Predecisional information, for planning and discussion only 10

4000



Example Seg. Aperture: Integrated DV-WFS and Metasurface CG

6 meter primary Vortex Coronagraph

120 mm struts -H ( :
50 mm seg gaps E! !i Pol
.6 meter secondary Spli.t

DM’s

o
oo

One (of two) polarization branch shown above
Apodization and phase (geometric,”achromatic”) mask in
conjugate pupil, downstream of DM’s (optimized with
“Auxiliary Field” approach, Jewell et al, Proc. SPIE
10400,10400H,2017))

Wavefront sensing with in-band light, picked off the

o
o

Throughput
o
AN

apodization mask in reflection (either the + w/2 or B} 0.21
— 1 /2 in each polarization channel) -
Solution above with 5e-12 normalized intensity (relative 0

to final vortex FPM removed) § 0123 456 7 8 910
(Jewell et al, in prep.) T Angular separation (A/ D)
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Direct Calibration with Focal Plane WFS (Prior to Dark Hole Acquisition) 4@

Fig: Moore, Redding,
SPIE 10698, July 2018
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Photonic Focal Plane
Wavefront Sensing!

Apodized Pupil Lyot
Coronagraph (APLC)

Vector Vortex
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 We are working at JPL on advanced photonic approaches to focal plane wavefront sensing for coronagraph
applications (Jewell et al, in preparation)

Represents another example of photonic technology assimilation into coronagraphs (and other instruments):

» All-photonic (lantern) focal plane wavefront sensor (Neural Network wavefront reconstruction) (B.R.M.
Norris et al, arXiv:2003.05158, 11 Mar 2020)

» Lenslet-fed single-mode fiber focal plane array “SCAR Coronagraph” (Por, E.H.; Haffert, S.Y,
arXiv:1803.10691 and Haffert, S.Y. et al, arXiv 1803.10693):

* Vortex Fiber Nuller (Ruane, G; et al., ApJ, 867,143): Vortex nulling on single-mode fiber

* Integrated photonic spectrographs (Jovanovic et al, Astro2020 APC white paper, arXiv 1907.07742v2)
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DM (100 nm @ 600 nm) Aberrations: 2-Ring FPWFS Subspace

Modulus Phase

Phase: Pupil QR Projector

Phase: Pupil Aberrated Wavefront

Modulus: Pupil QR Projector
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Telescope Aperture

Focal Plane (Log Intensity)

LUVOIR B Piston (100 nm @ 600 nm) Aberrations: FPWFS Subspace

Modulus Phase

Phase: Pupil QR Projector

Phase: Pupil Aberrated Wavefront Modulus: Pupil QR Projector
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Summary

Wavefront Sensing with simultaneous + ™/, provides +m phase reconstruction

* Novel vector ZWFS (Doelman et al, 2019)

e Achromatic Double Vortex WFS
Simulations with WFS capability both upstream and downstream of DM’s provide accurate (enough)
closed-loop control Jacobian measurements

* Simultaneous Primary Mirror closed loop control

* DM state estimation for accurate commanding while acquiring the dark hole

* Can we be more aggressive in Dark Hole acquisition with advanced WFS? More time for science!
Calibration of closed-loop control enabled with Focal Plane WFS

» Before Dark Hole is acquired, can calibrate non-common path errors with simultaneous ZWFS and FP-

WES measurements

* Advanced applications of photonics enable FP-WFS
What will state-of-the-art segmented aperture telescope and high-contrast imaging designs look like after
the next 5-10 years of development??

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged.
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Background on Meta-surfaces:
Sub-wavelength structures allow local (at each pixel) any
2x2 symmetric Jones matrix operation n the incoming
polarization vector!!
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Local (Pixel) Meta-surface degrees of freedom

a b
Side view Top view
Eout (x,y)

ZA Y

X

o 0 0 0 o
e 0 0 0 0

N0 0 0 0

- - - - -
- - L ] L
L J L L - L J
- L d L ] L ]
L J . L J L ] L ]
L d L d L J L ]
L4 - - - L]
o o L °
® ) L4 L4 L4 - -
L4 Ld L ] L)
7’ ’ . - LY
in 7/ ’ .o 7/
EM(xy) S A S
LY - . ]
&> e & e eVle
k L) L . R4
L ° L d L L S
L ] L J L L4
L ] L ] L ] L L J
&> - . . -
- - - @ L
- - L] -
- - - -

e

>

Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015

Controlled by pillar orientation
(achromatic — controls geometric phase)

A
i i [ |[ e smer]

Jones Matrix in the Linear Polarization Basis:

Controlled by pillar DX and DY (chromatic — controls propagation phase)
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Polarization basis states and transformations (quarter wave plates)
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Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015 X
Right, Left CP Basis: Quarter Wave Plate: QWP Jones Matrix Elements in XY-Basis
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Geometric Phase

(a) Propagation Phase (b) Geometric Phase
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Unitary Matrix Elements in LP Basis:
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“Geometric Phase” Unitary:
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