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Figure 1. Potential LUVOIR coronagraph elements including hardware for the APLC and VVC modes. The telescope is

pointed at a target star, whose light is passed to the coronagraph, through an apodized pupil mask, and then focused

on a focal plane mask. The mask suppresses the target star image. The rest of the light, including the o↵-axis planet

light, passes by the mask. Downstream, a Lyot stop suppresses residual di↵racted starlight, and then the planet light is

refocused onto a Focal Plane Array (FPA) detector, or fed into an Integral Field Spectrograph. Two Deformable Mirrors

(DMs) are used to establish high contrast. OBWFS and LOWFS wavefront sensors (see Sections 2, 3) drive the DMs and

primary mirror segments to stabilize wavefront and intensity variations to preserve contrast.

2. CONCURRENT OUT OF BAND WAVEFRONT SENSING

Coronagraphs require careful shaping of the complex amplitude field using Deformable Mirrors (DMs) prior
to the masks. With one DM at a pupil image and another at a di↵erent location, both phase and amplitude
aberrations can be addressed. Iterative algorithms such as electric field conjugation (EFC) then act to suppress
speckles of light that occur in the “dark hole” detection region on the focal plane. Successive iterations of such
algorithms measure speckles on the FPA and then adjust the DMs to suppress speckle in the dark hole region.
This establishes the contrast, the ratio of peak starlight to peak planet light, required to image exoplanets. The
contrast required to direct image exo-Earths orbiting Sun-like stars is 10�11. Achieving this contrast requires
shaping of the wavefront error or optical path di↵erences over the pupil to a precision of about 20 pm RMS. Note
that this is not a requirement for nulling or fully-correcting the wavefront error, just precise control. Furthermore,
the wavefront shape once established by the DMs, must be preserved with an accuracy of 10 pm RMS at the
highest spatial frequencies. This includes stabilizing drift e↵ects from throughout the beam train, from the large
telescope, the relay optics, and the DMs themselves.4 This “ultra-stability” cannot be provided by purely passive
means since basic material drifts quickly overwhelm the extraordinarily tight precision required. Therefore, active
means, including a wavefront sensing method operating concurrently with the science instrument, will be required
to preserve the speckle nulling during coronagraphy.

For this paper, we consider concurrent wavefront sensing (WFS) strategies for an Out-Of-Band Wavefront
Sensing (OBWFS) method that would acquire a copy of the post-DM field at a wavelength shorter than the
science instrument. As sketched in Figure 1, the OBWFS would sample a pupil-like beam post DMs using
a dichroic mirror. This would be done for several reasons; the first being that sampling the post DM fields
eliminates most sources of drift (significantly that of the DMs) that other metrology methods, such as edge
sensors on the primary mirror, might miss due to non-common paths. The second reason is e�ciency; since
exoplanets have most of their power in the longer wavelengths, OBWFS decreases the amount of exoplanet light
that would be wasted for WFS purposes rather than being passed to the science camera. The third reason
is accuracy as the shorter wavelengths are inherently more useful for wavefront sensing of tiny optical path
di↵erences than the longer wavelengths going to the science camera. A final reason is spatial resolution: since
OBWFS would sample the entire post-DM pupil it has the advantage of accessing all spatial frequencies in the
field. This is in contrast to concurrent WFS strategies like the Low Order Wavefront Sensor5 (LOWFS) which
have an integral spatial filter that prevents recovery of fine wavefront detail.

Figure: D. Moore, 
D. Redding; SPIE 
10698, July 2018

Overview: WFS for Segmented Aperture Coronagraphs

• Picometer-level accurate Wavefront Sensing (WFS) required for coronagraph 10!"# contrast
• WFS sensitivity sets closed-loop stability constraints
• This talk:

• Nonlinear reconstruction algorithms and WFS dynamic range
• Simulations of ZWFS-driven dark hole acquisition (including DM monitoring)
• Achromatic WFS with geometric phase metasurface or liquid crystal polymers
• Integrated WFS and Coronagraph architectures
• Photonics for Focal Plane-WFS (calibrate non-common path error with direct measurement)

• Summary
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Review of ZWFS and Some Notation

Zernike Wavefront Sensor - Testbed Validation

ABSTRACT

Notes on the forward model for a Zernike wavefront sensor, with details on numerical implementation.
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Input Amplitude (left) and Phase(right)

• (Left) Low-pass reference beam amplitude
• (Right) Low-pass reference beam phase

Figure: J. Steeves, et al., 
“Picometer Wavefront Sensing 
via the Phase-Contrast 
Technique”, to be submitted
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Two Dimples, with Perfect Knowledge of the Low-Pass Reference:
Exact Analytic Phase Reconstruction

a) b)

b)

a)
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Simulation of Zernike Wavefront Sensing and Closed-Loop 
Control for Segmented Aperture Vortex Coronagraphs

Jeffrey Jewell(1), John Steeves(1), J. Kent Wallace(1), Dustin Moore(1), Dave Redding(1), 
Chris Shelton(1), John Z. Lou(1)

(1) Jet Propulsion Laboratory, California Institute of Technology
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Dark Hole Acquisition with ZWFS Inferred DM States
• Acquiring a ”dark hole”, and subsequent closed-loop control, requires 

knowledge of the DM states
• The DM states represent one of the most uncertain model elements in 

the coronagraph (i.e. knowledge of influence functions, errors in linear 
superposition, etc)

• We explore the ability to infer the DM states with ‘Pupil 1’ and ‘Pupil 3’ 
measurements  provided by ZWFS1 and ZWFS2 

• Measurement sequence: 1) Generate piston primary mirror “probe” 
fields in ‘Pupil 1’, and measure before and after DM’s with ZWFS1 and 
ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM 
states (pixel-based, independent of influence functions), 3) DM state 
estimates are used in the control Jacobian to improve the dark hole.

• (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator 
heights.  The initial states were inferred with ZWFS measurements to 
initialize the Jacobian.

• (c-d): DM solutions computed using the ZWFS estimated DM states at 
each iteration.  These solutions achieve 3e-11 normalized intensity 
(single wavelength here due to computational expense – ongoing work 
to generalize to broadband on a cluster architecture)

• Ongoing work – fully Bayesian approach including ZWFS detector 
noise, and Bayes optimal closed-loop control

• This architecture has the potential for continuous dark hole closed-loop 
control while taking science data!!

Pupil 2
(DM1)

Fresnel Plane
(DM2)

Pupil 3 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

Pupil 1
(Primary)
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(DM1)

P3
(DM2)

P4 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

P1
(Primary)

ZWFS 1
(±"/2 dimple)

ZWFS 2
(±"/2 dimple)

• Pupil 1: Re-imaged primary
• Pupil 2, with DM1
• Fresnel Propagation to DM2
• Adjoint Fresnel Propagation back to Pupil 3
• Fourier Transform to Vortex Focal Plane Mask
• Inverse Fourier Transform to Lyot Plane
• Fourier Transform to Science Focal Plane

• a) DM1,  b) DM2 beam-shaping solutions for a 
charge 6 vortex (Peak to Valley 40 nm at 600 nm)

• c) Phase in ‘Pupil 3’ downstream of DM’s, with 100 
nanometer (Peak to Valley) primary mirror segment 
piston errors

• d) NL-ZWFS phase reconstruction (building on 
Moore and Redding, 2018 [1]) after 20 iterations. 

• e)  Error vs. iteration of the Nonlinear ZWFS.
• Neglecting photon noise, the NL-ZWFS algorithm 

can reconstruct the amplitude and phase at each 
pixel to machine precision.

a) b)

c) d)

e)

References:
[1] Dustin B. Moore, David C. . Redding, “Picometer Differential Wavefront Metrology by Nonlinear 
Zernike Wavefront Sensing for LUVOIR”, Proc. SPIE 10698,  1069841-1, July 2018.

b)

where we denote the model-dependent probe field |⇢i = (i)QCM |Ai. The focal plane intensity to first order is
then

I±(x) = hEab|xihx|Eabi+ h⇢|xihx|⇢i± 2Real {h⇢|xihx|Eabi} (5)

The probe pairs can be di↵erenced to provide a first-order accurate estimate of the focal-plane aberrated field,
giving a target for EFC or stroke-minimization to target for DM variations through the sensitivity matrix . . .

There is an advantage to the approach above - there are no non-common path errors in the wavefront sensing.
The two challenges however are that the intensity variations are related to the field estimate in a first-order
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– ”Infinite focal plane” approximation for ”low-pass reference beam”

– ”Pinhole” approximation in neglecting low-pass reference beam

– Nonlinear reconstructor - applicable both for overcoming approximations in reference ”low-pass” mode ’B’
in standard ZWFS, and also incorporating more complicated WFS such as here with stops in intermediate
planes

– Chromatic e↵ects: traditional, vector ZWFS (PSF ”size chromaticity”)

4. IMPACT ON SIGNAL-TO-NOISE

• Quantify the impact on increasing bandwidth
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A. NONLINEAR WAVEFRONT RECONSTRUCTION ALGORITHM

We form a measure of error - for any phase estimate we have the di↵erence (at each pixel) of the observed and
model-predicted intensity
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Dark Hole Acquisition with ZWFS Inferred DM States
• Acquiring a ”dark hole”, and subsequent closed-loop control, requires 

knowledge of the DM states
• The DM states represent one of the most uncertain model elements in 

the coronagraph (i.e. knowledge of influence functions, errors in linear 
superposition, etc)

• We explore the ability to infer the DM states with ‘Pupil 1’ and ‘Pupil 3’ 
measurements  provided by ZWFS1 and ZWFS2 

• Measurement sequence: 1) Generate piston primary mirror “probe” 
fields in ‘Pupil 1’, and measure before and after DM’s with ZWFS1 and 
ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM 
states (pixel-based, independent of influence functions), 3) DM state 
estimates are used in the control Jacobian to improve the dark hole.

• (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator 
heights.  The initial states were inferred with ZWFS measurements to 
initialize the Jacobian.

• (c-d): DM solutions computed using the ZWFS estimated DM states at 
each iteration.  These solutions achieve 3e-11 normalized intensity 
(single wavelength here due to computational expense – ongoing work 
to generalize to broadband on a cluster architecture)

• Ongoing work – fully Bayesian approach including ZWFS detector 
noise, and Bayes optimal closed-loop control

• This architecture has the potential for continuous dark hole closed-loop 
control while taking science data!!

Pupil 2
(DM1)

Fresnel Plane
(DM2)

Pupil 3 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

Pupil 1
(Primary)

P2
(DM1)

P3
(DM2)

P4 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

P1
(Primary)

ZWFS 1
(±"/2 dimple)

ZWFS 2
(±"/2 dimple)

• Pupil 1: Re-imaged primary
• Pupil 2, with DM1
• Fresnel Propagation to DM2
• Adjoint Fresnel Propagation back to Pupil 3
• Fourier Transform to Vortex Focal Plane Mask
• Inverse Fourier Transform to Lyot Plane
• Fourier Transform to Science Focal Plane

• a) DM1,  b) DM2 beam-shaping solutions for a 
charge 6 vortex (Peak to Valley 40 nm at 600 nm)

• c) Phase in ‘Pupil 3’ downstream of DM’s, with 100 
nanometer (Peak to Valley) primary mirror segment 
piston errors

• d) NL-ZWFS phase reconstruction (building on 
Moore and Redding, 2018 [1]) after 20 iterations. 

• e)  Error vs. iteration of the Nonlinear ZWFS.
• Neglecting photon noise, the NL-ZWFS algorithm 

can reconstruct the amplitude and phase at each 
pixel to machine precision.

a) b)

c) d)

e)

References:
[1] Dustin B. Moore, David C. . Redding, “Picometer Differential Wavefront Metrology by Nonlinear 
Zernike Wavefront Sensing for LUVOIR”, Proc. SPIE 10698,  1069841-1, July 2018.
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where we denote the model-dependent probe field |⇢i = (i)QCM |Ai. The focal plane intensity to first order is
then

I±(x) = hEab|xihx|Eabi+ h⇢|xihx|⇢i± 2Real {h⇢|xihx|Eabi} (5)

The probe pairs can be di↵erenced to provide a first-order accurate estimate of the focal-plane aberrated field,
giving a target for EFC or stroke-minimization to target for DM variations through the sensitivity matrix . . .

There is an advantage to the approach above - there are no non-common path errors in the wavefront sensing.
The two challenges however are that the intensity variations are related to the field estimate in a first-order
approximation for the field, resulting in smaller steps along the computed DM variations required to reduce the
dark hole intensity, and therefore several to tens of measurement steps are required to acquire the dark hole , and
the integration time gets increasingly longer as |Eab| ! 0.

We instead ask two related questions, first ”Can we directly compute variations in the DM’s given perfect
measurement of the conjugate pupil field?”, and second, ”What can focal plane intensity measurements tell us
about the pupil plane field?” The former is concerned with our ability to optimize the DM solutions using the
pupil field where we can use a ZWFS for measurement taking advantage of the fact that we have not suppressed
the starlight (and therefore have much shorter integration times for accurate wavefront sensing measurements)
while the latter is related to our ability to calibrate non-common path error through the coronagraph. The
latter question is also similar in spirt to Bayesian approaches (COFFEE for example). Our focus here is not
on the Bayesian framework as we will for now neglect detector noise (but come back to this in a subsequent
paper on closed-loop control). Instead we focus on the function space considerations and show that the focal
planet intensity measurements in principle measure the conjugate pupil field in a specific function subspace of
the downstream coronagraph operator

3. CLOSED-LOOP CONTROL: DARK HOLE ACQUISITION

Comments on correcting for non-common path error, and imperfect coronagraph knowledge. We assume a
Newton step is taken using the ZWFS measurement and the model C. We now investigate another Newton step
using the observed science focal plane intensity measurement and model predicted intensity. Can we prove a
reduction in observed (true) science focal plane intensity?

|X±i Probe fields in ’Pupil 1’, measured by ZWFS1

|Y±i Probe fields in ’Pupil 3’, measured by ZWFS2
(6)
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Architecture with Multiple ZWFS for DM State Estimation
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Dark Hole Acquisition with ZWFS Inferred DM States
• Acquiring a ”dark hole”, and subsequent closed-loop control, requires 

knowledge of the DM states
• The DM states represent one of the most uncertain model elements in 

the coronagraph (i.e. knowledge of influence functions, errors in linear 
superposition, etc)

• We explore the ability to infer the DM states with ‘Pupil 1’ and ‘Pupil 3’ 
measurements  provided by ZWFS1 and ZWFS2 

• Measurement sequence: 1) Generate piston primary mirror “probe” 
fields in ‘Pupil 1’, and measure before and after DM’s with ZWFS1 and 
ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM 
states (pixel-based, independent of influence functions), 3) DM state 
estimates are used in the control Jacobian to improve the dark hole.

• (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator 
heights.  The initial states were inferred with ZWFS measurements to 
initialize the Jacobian.

• (c-d): DM solutions computed using the ZWFS estimated DM states at 
each iteration.  These solutions achieve 3e-11 normalized intensity 
(single wavelength here due to computational expense – ongoing work 
to generalize to broadband on a cluster architecture)

• Ongoing work – fully Bayesian approach including ZWFS detector 
noise, and Bayes optimal closed-loop control

• This architecture has the potential for continuous dark hole closed-loop 
control while taking science data!!

Pupil 2
(DM1)

Fresnel Plane
(DM2)

Pupil 3 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

Pupil 1
(Primary)

P2
(DM1)

P3
(DM2)

P4 Vortex Focal
Plane Mask

Lyot
Stop

Science 
Focal
Plane

P1
(Primary)

ZWFS 1
(±"/2 dimple)

ZWFS 2
(±"/2 dimple)

• Pupil 1: Re-imaged primary
• Pupil 2, with DM1
• Fresnel Propagation to DM2
• Adjoint Fresnel Propagation back to Pupil 3
• Fourier Transform to Vortex Focal Plane Mask
• Inverse Fourier Transform to Lyot Plane
• Fourier Transform to Science Focal Plane

• a) DM1,  b) DM2 beam-shaping solutions for a 
charge 6 vortex (Peak to Valley 40 nm at 600 nm)

• c) Phase in ‘Pupil 3’ downstream of DM’s, with 100 
nanometer (Peak to Valley) primary mirror segment 
piston errors

• d) NL-ZWFS phase reconstruction (building on 
Moore and Redding, 2018 [1]) after 20 iterations. 

• e)  Error vs. iteration of the Nonlinear ZWFS.
• Neglecting photon noise, the NL-ZWFS algorithm 

can reconstruct the amplitude and phase at each 
pixel to machine precision.

a) b)

c) d)

e)

References:
[1] Dustin B. Moore, David C. . Redding, “Picometer Differential Wavefront Metrology by Nonlinear 
Zernike Wavefront Sensing for LUVOIR”, Proc. SPIE 10698,  1069841-1, July 2018.
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approximation for the field, resulting in smaller steps along the computed DM variations required to reduce the
dark hole intensity, and therefore several to tens of measurement steps are required to acquire the dark hole , and
the integration time gets increasingly longer as |Eab| ! 0.

We instead ask two related questions, first ”Can we directly compute variations in the DM’s given perfect
measurement of the conjugate pupil field?”, and second, ”What can focal plane intensity measurements tell us
about the pupil plane field?” The former is concerned with our ability to optimize the DM solutions using the
pupil field where we can use a ZWFS for measurement taking advantage of the fact that we have not suppressed
the starlight (and therefore have much shorter integration times for accurate wavefront sensing measurements)
while the latter is related to our ability to calibrate non-common path error through the coronagraph. The
latter question is also similar in spirt to Bayesian approaches (COFFEE for example). Our focus here is not
on the Bayesian framework as we will for now neglect detector noise (but come back to this in a subsequent
paper on closed-loop control). Instead we focus on the function space considerations and show that the focal
planet intensity measurements in principle measure the conjugate pupil field in a specific function subspace of
the downstream coronagraph operator
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Dark Hole Acquisition with Entrance and Conjugate Pupil ZWFS
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Vector Zernike Wavefront Sensor: Simultaneous ± ⁄𝜋 2Measurements
Figure Credit: D. Doelman et al, Optics Letters, vol 44, Jan. 2019

• vector Zernike Wavefront Sensor – imparts geometric (achromatic) ± ⁄𝜋 2 phase to PSF core, serving as the “piston” 
reference beam for in-line interferometric intensity measurements.

• The TWO split polarization beams allow full ±𝜋 wavefront dynamic range
• “Size chromaticity” of the PSF (see Doelman et al for a discussion of this point)
• Can we find a solution to achromatic wavefront sensing? 

• Improved efficiency – shorter integration times to achieve accurate wavefront sensing
• Could directly translate into relaxed segmented primary stability requirements

01 May 2020 Predecisional information, for planning and discussion only 8



GPI V2.0

Cal Phase Estimate

Amp Phase
Input Pupil

Int Imaginary
Lyot PupilOriginal Double 

Vortex Wavefront 
Sensor Concept –
Introduced by J. Kent 
Wallace, GPI Fall 
Retreat, Nov. 2009!!
(original slide shown 
here, courtesy J. Kent 
Wallace)

• Can we make the above “achromatic”?
• What is the optimal way to split off light for 

wavefront sensing, with minimal impact to 
planet light throughput?



Metasurface Extension of the DV-WFS: “Achromatic” Wavefront Sensing!

Incident Focal Plane Field Prior to First Vortex
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Exit Pupil: Light in Segment 
Gaps and Secondary!! 

Light outside entrance pupil region IS the pupil 
‘piston’ mode and serves as the WFS reference 
beam.  We use a metasurface to impart a 
geometric phase of +/- PI/2 to this light!

Entrance Pupil
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Jewell, Wallace, et al. in prep.



Entrance Pupil
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Test: Contrast after Vortex

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110
-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

Vortex Coronagraph
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DM’s

• One (of two) polarization branch shown above
• Apodization and phase (geometric,”achromatic”) mask in 

conjugate pupil, downstream of DM’s (optimized with 
“Auxiliary Field” approach, Jewell et al, Proc. SPIE 
10400,10400H,2017))

• Wavefront sensing with in-band light, picked off the 
apodization mask in reflection (either the + ⁄𝜋 2 or 
− ⁄𝜋 2 in each polarization channel)

• Solution above with 5e-12 normalized intensity (relative 
to final vortex FPM removed)

• (Jewell et al, in prep.)

Example Seg. Aperture:
• 6 meter primary
• 120 mm struts
• 50 mm seg gaps
• .6 meter secondary

Pol.
Split



OBWFS IFSLOWFS
Lyotstop FPA
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Focal Plane 
Mask

Lyot Pupil 
Mask

Focal Plane 
Array

Telescope 
Pupil

LUVOIR 
telescope

DM1

DM2

Vector Vortex 
Coronagraph (VVC)

Apodized Pupil Lyot
Coronagraph (APLC)

Apodized
Pupil Mask

Figure 1. Potential LUVOIR coronagraph elements including hardware for the APLC and VVC modes. The telescope is

pointed at a target star, whose light is passed to the coronagraph, through an apodized pupil mask, and then focused

on a focal plane mask. The mask suppresses the target star image. The rest of the light, including the o↵-axis planet

light, passes by the mask. Downstream, a Lyot stop suppresses residual di↵racted starlight, and then the planet light is

refocused onto a Focal Plane Array (FPA) detector, or fed into an Integral Field Spectrograph. Two Deformable Mirrors

(DMs) are used to establish high contrast. OBWFS and LOWFS wavefront sensors (see Sections 2, 3) drive the DMs and

primary mirror segments to stabilize wavefront and intensity variations to preserve contrast.

2. CONCURRENT OUT OF BAND WAVEFRONT SENSING

Coronagraphs require careful shaping of the complex amplitude field using Deformable Mirrors (DMs) prior
to the masks. With one DM at a pupil image and another at a di↵erent location, both phase and amplitude
aberrations can be addressed. Iterative algorithms such as electric field conjugation (EFC) then act to suppress
speckles of light that occur in the “dark hole” detection region on the focal plane. Successive iterations of such
algorithms measure speckles on the FPA and then adjust the DMs to suppress speckle in the dark hole region.
This establishes the contrast, the ratio of peak starlight to peak planet light, required to image exoplanets. The
contrast required to direct image exo-Earths orbiting Sun-like stars is 10�11. Achieving this contrast requires
shaping of the wavefront error or optical path di↵erences over the pupil to a precision of about 20 pm RMS. Note
that this is not a requirement for nulling or fully-correcting the wavefront error, just precise control. Furthermore,
the wavefront shape once established by the DMs, must be preserved with an accuracy of 10 pm RMS at the
highest spatial frequencies. This includes stabilizing drift e↵ects from throughout the beam train, from the large
telescope, the relay optics, and the DMs themselves.4 This “ultra-stability” cannot be provided by purely passive
means since basic material drifts quickly overwhelm the extraordinarily tight precision required. Therefore, active
means, including a wavefront sensing method operating concurrently with the science instrument, will be required
to preserve the speckle nulling during coronagraphy.

For this paper, we consider concurrent wavefront sensing (WFS) strategies for an Out-Of-Band Wavefront
Sensing (OBWFS) method that would acquire a copy of the post-DM field at a wavelength shorter than the
science instrument. As sketched in Figure 1, the OBWFS would sample a pupil-like beam post DMs using
a dichroic mirror. This would be done for several reasons; the first being that sampling the post DM fields
eliminates most sources of drift (significantly that of the DMs) that other metrology methods, such as edge
sensors on the primary mirror, might miss due to non-common paths. The second reason is e�ciency; since
exoplanets have most of their power in the longer wavelengths, OBWFS decreases the amount of exoplanet light
that would be wasted for WFS purposes rather than being passed to the science camera. The third reason
is accuracy as the shorter wavelengths are inherently more useful for wavefront sensing of tiny optical path
di↵erences than the longer wavelengths going to the science camera. A final reason is spatial resolution: since
OBWFS would sample the entire post-DM pupil it has the advantage of accessing all spatial frequencies in the
field. This is in contrast to concurrent WFS strategies like the Low Order Wavefront Sensor5 (LOWFS) which
have an integral spatial filter that prevents recovery of fine wavefront detail.

Fig: Moore, Redding, 
SPIE 10698, July 2018

Log of Modulus: Light in Lantern Subspace
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Direct Calibration with Focal Plane WFS (Prior to Dark Hole Acquisition)

Photonic Focal Plane 
Wavefront Sensing!

• We are working at JPL on advanced photonic approaches to focal plane wavefront sensing for coronagraph 
applications (Jewell et al, in preparation)

• Represents another example of photonic technology assimilation into coronagraphs (and other instruments): 
• All-photonic (lantern) focal plane wavefront sensor (Neural Network wavefront reconstruction) (B.R.M. 

Norris et al, arXiv:2003.05158, 11 Mar 2020)
• Lenslet-fed single-mode fiber focal plane array “SCAR Coronagraph” (Por, E.H.; Haffert, S.Y, 

arXiv:1803.10691 and Haffert, S.Y. et al, arXiv 1803.10693):
• Vortex Fiber Nuller (Ruane, G; et al., ApJ, 867,143): Vortex nulling on single-mode fiber
• Integrated photonic spectrographs (Jovanovic et al, Astro2020 APC white paper, arXiv 1907.07742v2)
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DM (100 nm @ 600 nm) Aberrations: 2-Ring FPWFS Subspace
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LUVOIR B Piston (100 nm @ 600 nm) Aberrations: FPWFS Subspace
Phase: Pupil Aberrated Wavefront
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Summary

• Wavefront Sensing with simultaneous ± ⁄$ % provides ±𝜋 phase reconstruction
• Novel vector ZWFS (Doelman et al, 2019)
• Achromatic Double Vortex WFS

• Simulations with WFS capability both upstream and downstream of DM’s provide accurate (enough) 
closed-loop control Jacobian measurements
• Simultaneous Primary Mirror closed loop control
• DM state estimation for accurate commanding while acquiring the dark hole
• Can we be more aggressive in Dark Hole acquisition with advanced WFS?  More time for science!

• Calibration of closed-loop control enabled with Focal Plane WFS
• Before Dark Hole is acquired, can calibrate non-common path errors with simultaneous ZWFS and FP-

WFS measurements
• Advanced applications of photonics enable FP-WFS

• What will state-of-the-art segmented aperture telescope and high-contrast imaging designs look like after 
the next 5-10 years of development??

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged.



Background on Meta-surfaces:
Sub-wavelength structures allow local (at each pixel) any 
2x2 symmetric Jones matrix operation n the incoming 
polarization vector!!
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Light scattering by high-refractive-index single dielectric scat-
terers has been studied previously, and it has been shown that
they may possess strong effective magnetic dipoles and exhibit
large forward scattering26–28 (Supplementary Fig. 1). Here, instead
of studying the properties of a single elliptical post, we use a differ-
ent approach and examine the transmission properties of periodic
arrays of weakly coupled posts. Such periodic arrays better approxi-
mate the local transmission properties of a metasurface composed of
gradually varying posts. We use the Jones matrix of the periodic
array to approximate the local Jones matrix of each pixel. This

approximation is used here to successfully realize high-performance
devices for polarization and phase control (discussed later in Figs 4
and 5), thus further validating its accuracy.

A periodic array of elliptical posts with one ellipse axis aligned to
one of the hexagonal lattice vectors (a1, which is along the x axis) is
shown in Fig. 2a. Due to symmetry, a normally incident optical wave
linearly polarized along one of the ellipse axes does not change
polarization and only acquires phase as it passes though the array.
The phase shifts imposed by the array to the x- and y-polarized
waves (that is, ϕx and ϕy) are functions of the elliptical post
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Eout (x,y) x
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Figure 1 | Illustration of the proposed metasurface for complete polarization and phase control. a, Schematic side view (left) and top view (right) of a
generic metasurface composed of hexagonal pixels. The polarization and phase of a normally incident optical wave with electric field Ein(x,y) is modified at
each pixel according to the pixel design. Pixels are coloured differently to emphasize that they can have different designs. In the top view, the spatially
varying electric field of the output transmitted light (Eout(x,y)) at one moment in time and its polarization ellipse at each pixel are shown by blue arrows and
red dashed ellipses, respectively. b, Top view of the proposed implementation of the metasurface. The metasurface is composed of elliptical amorphous
silicon posts with the same height, but different diameters (Dx and Dy) and orientations (θ). The posts are located at the centres of the hexagonal unit cells
(pixels). Insets: schematic three-dimensional view of an amorphous silicon post and its magnified top view.
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Figure 2 | Birefringence of the elliptical post arrays. a, Schematic illustration of a periodic array of elliptical posts with one of the ellipse axes aligned with
one of the lattice vectors (a1). The array exhibits an effective birefringence such that x- and y-polarized optical waves undergo different phase shifts as they
transmit through the array. b,c, Simulated colour-coded values of the elliptical post diameters (Dx and Dy) for achieving ϕx and ϕy phase shifts for x- and
y-polarized optical waves, respectively. To realize a periodic array as shown in a, which imposes ϕx and ϕy phase shifts to x- and y-polarized optical waves,
the diameter of the elliptical posts along x(Dx) is obtained from b, and their corresponding diameter along y(Dy) is found from c. d,e, Simulated colour-coded
values of the intensity transmission coefficients corresponding to the choice of ellipse diameters shown in b and c. tx and ty represent amplitude transmission
coefficients for x- and y-polarized light, respectively. An operating wavelength of 915 nm, lattice constant of 650 nm and amorphous silicon post height of
715 nm are assumed (see Methods for simulation details).
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Local (Pixel) Meta-surface degrees of freedom

Notes on Metasurfaces with Applications to ZWFS and Coronagraphy

Je↵rey B. Jewell
⇤

NASA Jet Propulsion Laboratory
(Dated: February 3, 2020)

We review the formalism of implementing any input-output operation on a polarization state
vector with a 2⇥ 2 symmetric unitary matrix, and discuss applications to both a Zernike Wavefront
Sensor (ZWFS) and coronagraph design.

I. METASURFACES

We use only two building blocks to generate the metasurfaces. We have the linear decompositions and target

unitary symmetric in a specified choice of basis. For the former, we have the target one-parameter family of modal

decompositions and unitary as

|�i = ↵|T i+ �|Ri
|⇠i = ��⇤|T i+ ↵⇤|Ri
U = |T ih�|+ e�i� |Rih⇠| (1)

where � is to be determined such that U in a chosen basis is symmetric. The above leaves only one phase to be

determined, and the symmetry condition in the specified (linear polarization) basis implies

Uxy = tx�
⇤
y + e�i�rx⇠

⇤
y

= ty�
⇤
x + e�i�ry⇠

⇤
x (2)

which is equivalent to

e�i�
�
ry⇠

⇤
x � rx⇠

⇤
y

�
=

�
tx�

⇤
y � ty�

⇤
x

�
(3)

The above determines � from the phase di↵erence of the right and left sides.

Note that we are free to choose any |�i ! |T i, and the unitary is determined by the condition that it be symmetric

in some basis. If we specify two input-output relations, all the degrees of freedom are used up and we cannot in general

find a symmetric matrix (which suggests that a single meta-surface could not do this). However two presumably could.

The significance of a symmetric 2⇥ 2 unitary is that it can be diagonalized with a real rotation matrix

U =


cos(✓) � sin(✓)
sin(✓) cos(✓)

� 
ei�x 0

0 ei�y

� 
cos(✓) sin(✓)
� sin(✓) cos(✓)

�
(4)

A. Transforms Between Linear and Circular Polarizations

We give some examples of operations which can be done with purely geometric phase (inherently achromatic). We

first define the circular polarization basis as

|Ri = 1p
2
(|Xi � i|Y i)

|Li = 1p
2
(|Xi+ i|Y i)

We define the unitary operation

U = |RihX|+ |LihY | (5)

(which is performed by a quarter wave plate). In the linear polarization basis the matrix elements are

U =
1p
2


1 1

�i i

�
(6)

⇤ je↵rey.b.jewell@jpl.nasa.gov

Controlled by pillar DX and DY (chromatic – controls propagation phase)

Controlled by pillar orientation
(achromatic – controls geometric phase)Jones Matrix in the Linear Polarization Basis:

Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015

01 May 2020 Predecisional information, for planning and discussion only 17



Light scattering by high-refractive-index single dielectric scat-
terers has been studied previously, and it has been shown that
they may possess strong effective magnetic dipoles and exhibit
large forward scattering26–28 (Supplementary Fig. 1). Here, instead
of studying the properties of a single elliptical post, we use a differ-
ent approach and examine the transmission properties of periodic
arrays of weakly coupled posts. Such periodic arrays better approxi-
mate the local transmission properties of a metasurface composed of
gradually varying posts. We use the Jones matrix of the periodic
array to approximate the local Jones matrix of each pixel. This

approximation is used here to successfully realize high-performance
devices for polarization and phase control (discussed later in Figs 4
and 5), thus further validating its accuracy.

A periodic array of elliptical posts with one ellipse axis aligned to
one of the hexagonal lattice vectors (a1, which is along the x axis) is
shown in Fig. 2a. Due to symmetry, a normally incident optical wave
linearly polarized along one of the ellipse axes does not change
polarization and only acquires phase as it passes though the array.
The phase shifts imposed by the array to the x- and y-polarized
waves (that is, ϕx and ϕy) are functions of the elliptical post
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Figure 1 | Illustration of the proposed metasurface for complete polarization and phase control. a, Schematic side view (left) and top view (right) of a
generic metasurface composed of hexagonal pixels. The polarization and phase of a normally incident optical wave with electric field Ein(x,y) is modified at
each pixel according to the pixel design. Pixels are coloured differently to emphasize that they can have different designs. In the top view, the spatially
varying electric field of the output transmitted light (Eout(x,y)) at one moment in time and its polarization ellipse at each pixel are shown by blue arrows and
red dashed ellipses, respectively. b, Top view of the proposed implementation of the metasurface. The metasurface is composed of elliptical amorphous
silicon posts with the same height, but different diameters (Dx and Dy) and orientations (θ). The posts are located at the centres of the hexagonal unit cells
(pixels). Insets: schematic three-dimensional view of an amorphous silicon post and its magnified top view.
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Figure 2 | Birefringence of the elliptical post arrays. a, Schematic illustration of a periodic array of elliptical posts with one of the ellipse axes aligned with
one of the lattice vectors (a1). The array exhibits an effective birefringence such that x- and y-polarized optical waves undergo different phase shifts as they
transmit through the array. b,c, Simulated colour-coded values of the elliptical post diameters (Dx and Dy) for achieving ϕx and ϕy phase shifts for x- and
y-polarized optical waves, respectively. To realize a periodic array as shown in a, which imposes ϕx and ϕy phase shifts to x- and y-polarized optical waves,
the diameter of the elliptical posts along x(Dx) is obtained from b, and their corresponding diameter along y(Dy) is found from c. d,e, Simulated colour-coded
values of the intensity transmission coefficients corresponding to the choice of ellipse diameters shown in b and c. tx and ty represent amplitude transmission
coefficients for x- and y-polarized light, respectively. An operating wavelength of 915 nm, lattice constant of 650 nm and amorphous silicon post height of
715 nm are assumed (see Methods for simulation details).
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We review the formalism of implementing any input-output operation on a polarization state
vector with a 2⇥ 2 symmetric unitary matrix, and discuss applications to both a Zernike Wavefront
Sensor (ZWFS) and coronagraph design.

I. METASURFACES

We use only two building blocks to generate the metasurfaces. We have the linear decompositions and target

unitary symmetric in a specified choice of basis. For the former, we have the target one-parameter family of modal

decompositions and unitary as

|�i = ↵|T i+ �|Ri
|⇠i = ��⇤|T i+ ↵⇤|Ri
U = |T ih�|+ e�i� |Rih⇠| (1)

where � is to be determined such that U in a chosen basis is symmetric. The above leaves only one phase to be

determined, and the symmetry condition in the specified (linear polarization) basis implies

Uxy = tx�
⇤
y + e�i�rx⇠

⇤
y

= ty�
⇤
x + e�i�ry⇠

⇤
x (2)

which is equivalent to

e�i�
�
ry⇠

⇤
x � rx⇠

⇤
y

�
=

�
tx�

⇤
y � ty�

⇤
x

�
(3)

The above determines � from the phase di↵erence of the right and left sides.

Note that we are free to choose any |�i ! |T i, and the unitary is determined by the condition that it be symmetric

in some basis. If we specify two input-output relations, all the degrees of freedom are used up and we cannot in general

find a symmetric matrix (which suggests that a single meta-surface could not do this). However two presumably could.

The significance of a symmetric 2⇥ 2 unitary is that it can be diagonalized with a real rotation matrix

U =


cos(✓) � sin(✓)
sin(✓) cos(✓)

� 
ei�x 0

0 ei�y

� 
cos(✓) sin(✓)
� sin(✓) cos(✓)

�
(4)

A. Transforms Between Linear and Circular Polarizations

We give some examples of operations which can be done with purely geometric phase (inherently achromatic). We

first define the circular polarization basis as

|Ri = 1p
2
(|Xi � i|Y i)

|Li = 1p
2
(|Xi+ i|Y i)

We define the unitary operation

U = |RihX|+ |LihY | (5)

(which is performed by a quarter wave plate). In the linear polarization basis the matrix elements are

U =
1p
2


1 1

�i i

�
(6)
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Geometric Phase

retarders convert right-circularly polarized (RCP) [left-
circularly polarized (LCP)] light to LCP [RCP] light along
a state-space path determined by the element’s orientation,
yielding a geometric phase that increases linearly from 0 to
2π as the element is rotated at angles from 0 to π. If,
however, the phase profile imposed in this way on RCP
light is some ϕRCPðx; y Þ, the phase profile imparted on a
LCP wave front is automatically ϕLCPðx; y Þ ¼ −ϕRCPðx; y Þ.
This restriction—an inherent symmetry of the geometric
phase—still allows for, e.g., circular polarization beam

splitters that deflect opposite circular polarizations by equal
and opposite angles [4,13,14], but has important practical
consequences: a geometric phase converging lens for one
circular polarization, for example, will act as a diverging
lens for the other [15].
We now show that using a single layer of birefringent

metasurface elements, one can indeed impose arbitrary and
independent phase profiles on any set of orthogonal
polarizations by combining the propagation and geometric
phases [Fig. 1(c)], the only restriction being that the
handedness of each polarization is flipped upon interaction
with the metasurface. In contrast to previous designs using
propagation or geometric phase alone, this allows for
metasurfaces imparting fully independent phase profiles
separately on each of any two orthogonal polarizations
(including circular and elliptical).
Let the orthogonal polarization states upon which the

metasurface should impart independent phase profiles be
given by orthogonal Jones vectors ~λþ ¼ ½λ

þ
1
λþ2
& and ~λ− ¼ ½λ

−
1
λ−2
&.

The output wave front corresponding to each input polari-
zation state f~λþ; ~λ−g should have homogenous polariza-
tion, so we require that the metasurface consistently
transforms the input polarization states to output polariza-
tion states f~κþ; ~κ−g as ~λþ → ~κþ and ~λ− → ~κ− over its entire
spatial extent. Suppose we are interested in designing a
metasurface imposing arbitrary spatial phase profiles
ϕ'ðx; y Þ on the states ~λ'. That is, at each point ðx; y Þ
we require a metasurface element whose Jones matrix
J ðx; y Þ simultaneously satisfies

J ðx; y Þ~λþ ¼ e iϕ
þðx;y Þ~κþ ð2Þ

and

J ðx; y Þ~λ− ¼ e iϕ
−ðx;y Þ~κ−: ð3Þ

This treatment is justified because each element is
assumed to be much smaller than the illuminating
beam, so that it experiences plane wavelike light.
Mathematically, the above system [Eqs. (2) and (3)] is
solvable for any choice of f~κþ; ~κ−g. However, restricting
ourselves to a single layer of metasurface elements with
linear structural birefringence, J is constrained to the
form of Eq. (1). It can be shown that this constraint
directly implies that the output polarization states
f~κþ; ~κ−g must be the same states as the input states
f~λþ; ~λ−g with flipped handedness—mathematically, ~κ' ¼
ð~λ'Þ( where ( denotes the complex conjugate. The
reason for this follows intuitively from the physics of
wave plates (a simple geometrical argument is detailed in
the Supplemental Material [16]).
Given this knowledge of f~κþ; ~κ−g, the original system

can be recast as

(a) (b)

(c)

FIG. 1. Conceptual schematic. (a) At each point ðx; y Þ on a
metasurface, the dimensions of a wave plate-like shape-birefrin-
gent element (inset) can be varied to impose unique phases ϕx and
ϕy on light linearly polarized along each axis. In this approach,
which employs the propagation phase alone, element dimensions
are varied while the orientation angle θ is held fixed. When each
of two orthogonal, linear input polarizations (red, on left) are
incident, arbitrary, and independent phase profiles, ϕxðx; y Þ and
ϕy ðx; y Þ can be imparted upon each; the output states (green, on
right) are unconverted. (b) Using the geometric phase alone,
phase profiles of equal and opposite magnitude can be imparted
on the two circular polarizations. If elements with half-wave (π)
retardance are rotated at angles θðx; y Þ at each point, one input
circular polarization (red, on left) will pick up a phase of 2θðx; y Þ
and the other −2θðx; y Þ with each changing handedness upon
reflection or transmission (green, on right). Here, element
dimensions are fixed and the orientation θ is varied. (c) By
varying both element dimensions and θ over the extent of the
metasurface—that is by combining the geometric and propaga-
tion phases—we show that arbitrary and independent phase
profiles ϕ'ðx; y Þ can be imparted on any set of orthogonal input
states ~λ' (red, on left). Each must flip handedness upon reflection
or transmission (green, right).
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We also have

|Xi = 1p
2
(|Ri+ |Li)

|Y i = ip
2
(|Ri � |Li)

and the inverse unitary with matrix elements in the circular polarization

U = |XihR|+ |Y ihL|

! 1p
2


1 i
1 �i

�
(7)

Can we perform the linear to circular (and conjugate transpose) achromatically?

II. GEOMETRIC PHASE

We consider the unitary which achieves

U = ei�|LihR|+ e�i�|RihL| (8)

The above is determined by specifying only the output of |Ri, but since we switched handedness, the entire unitary

is determined. In the linear polarization basis this gives

U = |Xi
✓
ei� + e�i�

2

◆
hX|+ (i)|Xi

✓
ei� � e�i�

2

◆
hY |

+(i)|Y i
✓
ei� � e�i�

2

◆
hX|+ (�1)|Y i

✓
e�i�

+ e+i�

2

◆
hY |

=


cos(2✓) sin(2✓)
sin(2✓) � cos(2✓)

�
(9)

where ✓ 2 [0,⇡]. This shows that a rotation (at a given pixel) in the linear polarization basis provides a phase shift

in the circular polarization basis. A spatially varying fast axis gives such a spatially varying phase shift in a circular

polarization basis, which is achromatic (”geometric phase”).

Interesting note on the 2✓ (see comment in first section in Mueller et al, PRL, 118, 2017). Notice that for a

symmetric unitary and |�x � �y| = ⇡,

U =


cos(✓) sin(�✓)

� sin(�✓) cos(�✓)

� 
ei�x 0

0 ei�y

� 
cos(✓) sin(✓)
� sin(✓) cos(✓)

�

= ei�x


cos(✓) � sin(✓)
sin(✓) cos(✓)

� 
1 0

0 �1
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cos(✓) sin(✓)
� sin(✓) cos(✓)

�

= ei�x
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cos(✓) � sin(✓)
sin(✓) cos(✓)

� 
cos(✓) sin(✓)
sin(✓) � cos(✓)

�

= ei�x


cos(2✓) sin(2✓)
sin(2✓) � cos(2✓)

�

= ei�x


1 0

0 �1

�
R(2✓) (10)

III. ACHROMATIC

IV. HILBERT SPACE UNITARY OPERATORS

Can we use metasurfaces to generate any Hilbert space unitary? We want a unitary operator to achieve

|�i = ↵|W i+ �|Gi
|Zi = ��⇤|W i+ ↵⇤|Gi
U = |W ih�|+ e�i� |GihZ| (11)
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“Geometric Phase” Unitary:
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