New Concepts in Wavefront Sensing for High-Contrast Imaging

Jeffrey Jewell

In collaboration with: J. Kent Wallace, John Steeves, Christian Kettenbeil, David Redding, Ryan Briggs, Peter Weigel, Mahmood Bagheri

NASA Exoplanet Exploration Program / JPL: Workshop on Advanced Wavefront Sensing for Coronagraphs

May 1, 2020

Overview: WFS for Segmented Aperture Coronagraphs

- Picometer-level accurate Wavefront Sensing (WFS) required for coronagraph 10^{-10} contrast ٠
- WFS sensitivity sets closed-loop stability constraints ٠
- This talk: ٠
 - Nonlinear reconstruction algorithms and WFS dynamic range
 - Simulations of ZWFS-driven dark hole acquisition (including DM monitoring)
 - Achromatic WFS with geometric phase metasurface or liquid crystal polymers
 - Integrated WFS and Coronagraph architectures
 - Photonics for Focal Plane-WFS (calibrate non-common path error with direct measurement)
- Summary

01 May 2020

Review of ZWFS and Some Notation Input Amplitude (left) and Phase(right) $Y_{\pm} = Ae^{i\phi} - (1\mp i)F^{\dagger}RFAe^{i\phi}$ $B = F^{\dagger}RFAe^{i\phi}$ $\equiv |B|e^{i\beta}$ $F^{\dagger}RFA$ B_0 \equiv $Ae^{i\phi}$ ZWFS/C L1 BS ZWFS/D IFO 13 FM $Be^{i\beta}$ Figure: J. Steeves, et al., "Picometer Wavefront Sensing (Left) Low-pass reference beam amplitude ٠ via the Phase-Contrast (Right) Low-pass reference beam phase ٠ ZWFS "Dimple" Technique", to be submitted Predecisional information, for planning and discussion only 01 May 2020

Two Dimples, with Perfect Knowledge of the Low-Pass Reference: Exact Analytic Phase Reconstruction

4

01 May 2020

Predecisional information, for planning and discussion only

Architecture with Multiple ZWFS for DM State Estimation

Dark Hole Acquisition with Entrance and Conjugate Pupil ZWFS

Dark Hole Acquisition with ZWFS Inferred DM States

- Acquiring a "dark hole", and subsequent closed-loop control, requires knowledge of the DM states
- The DM states represent one of the most uncertain model elements in the coronagraph (i.e. knowledge of influence functions, errors in linear superposition, etc)
- We explore the ability to infer the DM states with 'Pupil 1' and 'Pupil 3' measurements provided by ZWFS1 and ZWFS2
- Measurement sequence: 1) Generate piston primary mirror "probe" fields in 'Pupil 1', and measure before and after DM's with ZWFS1 and ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM states (pixel-based, independent of influence functions), 3) DM state estimates are used in the control Jacobian to improve the dark hole.
- (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator heights. The initial states were inferred with ZWFS measurements to initialize the Jacobian.
- (c-d): DM solutions computed using the ZWFS estimated DM states at each iteration. These solutions achieve 3e-11 normalized intensity (single wavelength here due to computational expense – ongoing work to generalize to broadband on a cluster architecture)
- Ongoing work fully Bayesian approach including ZWFS detector noise, and Bayes optimal closed-loop control
- This architecture has the potential for continuous dark hole closed-loop control while taking science data!!

Vector Zernike Wavefront Sensor: Simultaneous $\pm \pi/2$ Measurements

Figure Credit: D. Doelman et al, Optics Letters, vol 44, Jan. 2019

- vector Zernike Wavefront Sensor imparts geometric (achromatic) $\pm \pi/2$ phase to PSF core, serving as the "piston" reference beam for in-line interferometric intensity measurements.
- The TWO split polarization beams allow full $\pm \pi$ wavefront dynamic range
- "Size chromaticity" of the PSF (see Doelman et al for a discussion of this point)
- Can we find a solution to achromatic wavefront sensing?
 - Improved efficiency shorter integration times to achieve accurate wavefront sensing
 - Could directly translate into relaxed segmented primary stability requirements

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Original Double Vortex Wavefront Sensor Concept – Introduced by J. Kent Wallace, GPI Fall Retreat, Nov. 2009!! (original slide shown here, courtesy J. Kent Wallace)

- Can we make the above "achromatic"?
- What is the optimal way to split off light for wavefront sensing, with minimal impact to planet light throughput?

Predecisional information, for planning and discussion only

11

01 May 2020

- We are working at JPL on advanced photonic approaches to focal plane wavefront sensing for coronagraph applications (Jewell et al, in preparation)
- Represents another example of *photonic technology* assimilation into coronagraphs (and other instruments):
 - *All-photonic (lantern) focal plane wavefront sensor* (Neural Network wavefront reconstruction) (B.R.M. Norris et al, arXiv:2003.05158, 11 Mar 2020)
 - Lenslet-fed single-mode fiber focal plane array "SCAR Coronagraph" (Por, E.H.; Haffert, S.Y, arXiv:1803.10691 and Haffert, S.Y. et al, arXiv 1803.10693):
 - Vortex Fiber Nuller (Ruane, G; et al., ApJ, 867,143): Vortex nulling on single-mode fiber
 - Integrated photonic spectrographs (Jovanovic et al, Astro2020 APC white paper, arXiv 1907.07742v2)

DM (100 nm @ 600 nm) Aberrations: 2-Ring FPWFS Subspace

Modulus

Phase

LUVOIR B Piston (100 nm @ 600 nm) Aberrations: FPWFS Subspace Modulus Phase Modulus: Pupil QR Projector Phase: Pupil QR Projector Phase: Pupil Aberrated Wavefront "Perfect Coupling"

Modulus (Focal Plane): (QR) Subspace Mode

Telescope Aperture

Q1 M4 Y 2020 80 100 120 140 160 180 200

Modulus: Pupil Lantern Subspace Projector

Phase: Pupil Lantern Subspace Projector

Photonic Lantern

Summary

- Wavefront Sensing with simultaneous $\pm \pi/2$ provides $\pm \pi$ phase reconstruction
 - Novel vector ZWFS (Doelman et al, 2019)
 - Achromatic Double Vortex WFS
- Simulations with WFS capability both upstream and downstream of DM's provide accurate (enough) closed-loop control Jacobian measurements
 - Simultaneous Primary Mirror closed loop control
 - DM state estimation for accurate commanding while acquiring the dark hole
 - Can we be more aggressive in Dark Hole acquisition with advanced WFS? More time for science!
- Calibration of closed-loop control enabled with Focal Plane WFS
 - Before Dark Hole is acquired, can calibrate non-common path errors with simultaneous ZWFS and FP-WFS measurements
 - Advanced applications of photonics enable FP-WFS
- What will state-of-the-art segmented aperture telescope and high-contrast imaging designs look like after the next 5-10 years of development??

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged.

01 May 2020

Background on Meta-surfaces:

Sub-wavelength structures allow local (at each pixel) any 2x2 symmetric Jones matrix operation n the incoming polarization vector!!

Jones Matrix in the Linear Polarization Basis:

Controlled by pillar orientation (achromatic – controls geometric phase)

$$U = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} e^{i\phi_x} & 0 \\ 0 & e^{i\phi_y} \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Controlled by pillar DX and DY (chromatic – controls propagation phase)

01 May 2020

Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015

Right, Left CP Basis:

Quarter Wave Plate:

QWP Jones Matrix Elements in XY-Basis

$$\begin{split} |R\rangle &= \frac{1}{\sqrt{2}} \left(|X\rangle - i|Y\rangle \right) \\ |L\rangle &= \frac{1}{\sqrt{2}} \left(|X\rangle + i|Y\rangle \right) \end{split}$$

 $U = |R\rangle \langle X| + |L\rangle \langle Y|$

 $U = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1\\ -i & i \end{array} \right]$

