New Concepts in Wavefront Sensing for High-Contrast Imaging

Jeffrey Jewell
In collaboration with: J. Kent Wallace, John Steeves, Christian Kettenbeil, David Redding, Ryan Briggs, Peter Weigel, Mahmood Bagheri

NASA Exoplanet Exploration Program / JPL:
Workshop on Advanced Wavefront Sensing for Coronagraphs

May 1, 2020

Jet Propulsion Laboratory
California Institute of Technology

Overview: WFS for Segmented Aperture Coronagraphs

- Picometer-level accurate Wavefront Sensing (WFS) required for coronagraph 10^{-10} contrast
- WFS sensitivity sets closed-loop stability constraints
- This talk:
- Nonlinear reconstruction algorithms and WFS dynamic range
- Simulations of ZWFS-driven dark hole acquisition (including DM monitoring)
- Achromatic WFS with geometric phase metasurface or liquid crystal polymers
- Integrated WFS and Coronagraph architectures
- Photonics for Focal Plane-WFS (calibrate non-common path error with direct measurement)
- Summary

Review of ZWFS and Some Notation

Input Amplitude (left) and Phase(right)

$$
\begin{aligned}
Y_{ \pm} & =A e^{i \phi}-(1 \mp i) F^{\dagger} R F A e^{i \phi} \\
B & =F^{\dagger} R F A e^{i \phi} \\
& \equiv|B| e^{i \beta} \\
B_{0} & \equiv F^{\dagger} R F A
\end{aligned}
$$

- (Left) Low-pass reference beam amplitude
- (Right) Low-pass reference beam phase

Figure: J. Steeves, et al., "Picometer Wavefront Sensing via the Phase-Contrast Technique", to be submitted

Two Dimples, with Perfect Knowledge of the Low-Pass Reference:
Exact Analytic Phase Reconstruction

a) IF $\frac{I_{+}-I_{-}}{4|B||A|} \geq 0 \quad$ IF $\quad\left[(-1)\left[\frac{I_{+}-|A|^{2}-2|B|^{2}}{2 \sqrt{2}|B||A|}\right] \geq-\frac{1}{\sqrt{2}}\right] \quad \rightarrow \quad \phi-\beta=\cos ^{-1}\{\cdot\}-\frac{\pi}{4}$
$\operatorname{ELSE}\left[(-1)\left[\frac{I_{+}-|A|^{2}-2|B|^{2}}{2 \sqrt{2}|B||A|}\right]<-\frac{1}{\sqrt{2}}\right] \quad \rightarrow \quad \phi-\beta=\pi-\sin ^{-1}\{\cdot\}$
b) IF $\quad \frac{I_{+}-I_{-}}{4|B||A|}<0 \quad$ IF $\quad(-1)\left[\frac{I_{-}-|A|^{2}-2|B|^{2}}{2 \sqrt{2}|B||A|}\right] \quad \geq \quad-\frac{1}{\sqrt{2}} \quad \rightarrow \quad \phi-\beta=-\cos ^{-1}\{\cdot\}+\frac{\pi}{4}$

"Intensity Error:"

$$
\mathcal{E}_{ \pm}(p ; \phi)=I_{ \pm}(p)-\left|\sum_{p^{\prime}} \mathcal{L}_{ \pm}\left(p, p^{\prime}\right) A\left(p^{\prime}\right) e^{i \phi\left(p^{\prime}\right)}\right|^{2}
$$

NL-WFS Reconstruction Algorithm

 (builds on NL-ZWFS in Moore, Redding, SPIE 10698, July 2018)$$
\mathcal{E}_{ \pm}(p ; \phi+\nu \gamma)=(1-\nu) \mathcal{E}_{ \pm}(p ; \phi)+\nu^{2} \mathcal{E}^{(2)}(\phi ; \gamma)+\nu\left[\mathcal{E}_{ \pm}(p ; \phi)-2 \operatorname{Re}\left\{Y^{*}(\phi) \mathcal{L}_{ \pm} A e^{i \phi}(i \gamma)\right\}\right]
$$

$$
\begin{array}{ll}
\text { "Step size" } \mathrm{vin} \\
\text { "direction" } \gamma(p)
\end{array} \quad \begin{aligned}
\left\|\mathcal{E}_{ \pm}(p ; \phi+\nu \gamma)\right\| & \leq(1-\nu)\left\|\mathcal{E}_{ \pm}(p ; \phi)\right\|+\nu\left(\nu\left\|\mathcal{E}^{(2)}(\phi ; \gamma)\right\|\right) \\
& <\left\|\mathcal{E}_{ \pm}(p ; \phi)\right\|
\end{aligned}
$$

Architecture with Multiple ZWFS for DM State Estimation

Dark Hole Acquisition with Entrance and Conjugate Pupil ZWFS

\(\left.\begin{array}{ll}Step 1. \& \left|X_{ \pm}\right\rangle Probe fields in 'Pupil 1', measured by ZWFS1

\left|Y_{ \pm}\right\rangle Probe fields in 'Pupil 3', measured by ZWFS2\end{array}\right]\)| | |
| :--- | :--- |
| Step 2. | DM State Estimate : $\quad(\hat{\Gamma}, \hat{\Phi})=\min \\|\left\|Y_{ \pm}\right\rangle-P^{\dagger} e^{i \Gamma} P e^{i \Phi}\left\|X_{ \pm}\right\rangle \\|$ |
| Step 3. | Dark Hole Correction: $-\left\|E_{\text {focal plane }}\right\rangle=J[\hat{\Gamma}, \hat{\Phi}](\delta \Gamma, \delta \Phi)$ |

Dark Hole Acquisition with ZWFS Inferred DM States

- Acquiring a "dark hole", and subsequent closed-loop control, requires knowledge of the DM states
- The DM states represent one of the most uncertain model elements in the coronagraph (i.e. knowledge of influence functions, errors in linear superposition, etc)
- We explore the ability to infer the DM states with 'Pupil 1' and 'Pupil 3' measurements provided by ZWFS1 and ZWFS2
- Measurement sequence: 1) Generate piston primary mirror "probe" fields in 'Pupil 1', and measure before and after DM's with ZWFS1 and ZWFS2, 2) Nonlinear iterative (Newton) method to estimate the DM states (pixel-based, independent of influence functions), 3) DM state estimates are used in the control Jacobian to improve the dark hole.
- (a-b): Initial (and unknown) DM states, with 5 nm (rms) DM actuator heights. The initial states were inferred with ZWFS measurements to initialize the Jacobian.
- (c-d): DM solutions computed using the ZWFS estimated DM states at each iteration. These solutions achieve $3 \mathrm{e}-11$ normalized intensity (single wavelength here due to computational expense - ongoing work to generalize to broadband on a cluster architecture)
- Ongoing work - fully Bayesian approach including ZWFS detector noise, and Bayes optimal closed-loop control
- This architecture has the potential for continuous dark hole closed-loop control while taking science data!!

Vector Zernike Wavefront Sensor: Simultaneous $\pm \pi / 2$ Measurements

Figure Credit: D. Doelman et al, Optics Letters, vol 44, Jan. 2019

- vector Zernike Wavefront Sensor - imparts geometric (achromatic) $\pm \pi / 2$ phase to PSF core, serving as the "piston" reference beam for in-line interferometric intensity measurements.
- The TWO split polarization beams allow full $\pm \pi$ wavefront dynamic range
- "Size chromaticity" of the PSF (see Doelman et al for a discussion of this point)
- Can we find a solution to achromatic wavefront sensing?
- Improved efficiency - shorter integration times to achieve accurate wavefront sensing
- Could directly translate into relaxed segmented primary stability requirements

GPI V2.0

Metasurface Extension of the DV-WFS: "Achromatic" Wavefront Sensing!

Jewell, Wallace, et al. in prep.

Exit Pupil: Light in Segment Gaps and Secondary!!

Light outside entrance pupil region IS the pupil 'piston' mode and serves as the WFS reference beam. We use a metasurface to impart a geometric phase of +/- PI/2 to this light!

Example Seg. Aperture:

Integrated DV-WFS and Metasurface CG

- 6 meter primary
- 120 mm struts
- 50 mm seg gaps
- . 6 meter secondary

- One (of two) polarization branch shown above
- Apodization and phase (geometric,"achromatic") mask in conjugate pupil, downstream of DM's (optimized with "Auxiliary Field" approach, Jewell et al, Proc. SPIE 10400,10400H,2017))
- Wavefront sensing with in-band light, picked off the apodization mask in reflection (either the $+\pi / 2$ or $-\pi / 2$ in each polarization channel)
- Solution above with 5e-12 normalized intensity (relative to final vortex FPM removed)
- (Jewell et al, in prep.)

Direct Calibration with Focal Plane WFS (Prior to Dark Hole Acquisition)

- We are working at JPL on advanced photonic approaches to focal plane wavefront sensing for coronagraph applications (Jewell et al, in preparation)
- Represents another example of photonic technology assimilation into coronagraphs (and other instruments):
- All-photonic (lantern) focal plane wavefront sensor (Neural Network wavefront reconstruction) (B.R.M.

Norris et al, arXiv:2003.05158, 11 Mar 2020)

- Lenslet-fed single-mode fiber focal plane array "SCAR Coronagraph" (Por, E.H.; Haffert, S.Y, arXiv:1803.10691 and Haffert, S.Y. et al, arXiv 1803.10693):
- Vortex Fiber Nuller (Ruane, G; et al., ApJ, 867,143): Vortex nulling on single-mode fiber
- Integrated photonic spectrographs (Jovanovic et al, Astro2020 APC white paper, arXiv 1907.07742v2)

DM (100 nm @ 600 nm) Aberrations: 2-Ring FPWFS Subspace

Phase

LUVOIR B Piston (100 nm @ 600 nm) Aberrations: FPWFS Subspace

Modulus

Phase

Phase: Pupil Lantern Subspace Projector

Summary

- Wavefront Sensing with simultaneous $\pm \pi / 2$ provides $\pm \pi$ phase reconstruction
- Novel vector ZWFS (Doelman et al, 2019)
- Achromatic Double Vortex WFS
- Simulations with WFS capability both upstream and downstream of DM's provide accurate (enough) closed-loop control Jacobian measurements
- Simultaneous Primary Mirror closed loop control
- DM state estimation for accurate commanding while acquiring the dark hole
- Can we be more aggressive in Dark Hole acquisition with advanced WFS? More time for science!
- Calibration of closed-loop control enabled with Focal Plane WFS
- Before Dark Hole is acquired, can calibrate non-common path errors with simultaneous ZWFS and FPWFS measurements
- Advanced applications of photonics enable FP-WFS
- What will state-of-the-art segmented aperture telescope and high-contrast imaging designs look like after the next 5-10 years of development??

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged.

Background on Meta-surfaces:

Sub-wavelength structures allow local (at each pixel) any 2×2 symmetric Jones matrix operation n the incoming polarization vector!!

Local (Pixel) Meta-surface degrees of freedom

Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015
Jones Matrix in the Linear Polarization Basis:
Controlled by pillar orientation (achromatic - controls geometric phase)

$$
U=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \underbrace{\left[\begin{array}{cc}
e^{i \phi_{x}} & 0 \\
0 & e^{i \phi_{y}}
\end{array}\right]}\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Controlled by pillar DX and DY (chromatic - controls propagation phase)

Polarization basis states and transformations (quarter wave plates)

Figure Credit: Arbabi et al, Nature Nanotechnology, August 2015

Right, Left CP Basis:

$$
\begin{aligned}
|R\rangle & =\frac{1}{\sqrt{2}}(|X\rangle-i|Y\rangle) \\
|L\rangle & =\frac{1}{\sqrt{2}}(|X\rangle+i|Y\rangle)
\end{aligned}
$$

Quarter Wave Plate:

$$
U=|R\rangle\langle X|+|L\rangle\langle Y|
$$

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]
$$

$$
\begin{aligned}
& 1 \\
& - \\
& - \\
& - \\
& -
\end{aligned}
$$

$$
\rightarrow
$$

$$
\begin{aligned}
& |\overrightarrow{\mathrm{x}}\rangle \rightarrow \mathrm{e}^{\mathrm{i} \phi_{x}(\mathrm{x}, \mathrm{y})}|\overrightarrow{\mathrm{x}}\rangle \\
& |\overrightarrow{\mathrm{y}}\rangle \rightarrow \mathrm{e}^{\mathrm{i} \phi_{y}(\mathrm{x}, \mathrm{y})}|\overrightarrow{\mathrm{y}}\rangle
\end{aligned}
$$

(b)

Geometric Phase

Figure: Mueller et al, PRL, 118,2017)

$$
\left|\vec{\sigma}^{+}\right\rangle \rightarrow \mathrm{e}^{-\mathrm{i} 2 \theta(\mathrm{x}, \mathrm{y})}\left|\vec{\sigma}^{-}\right\rangle
$$

$$
\left|\vec{\sigma}^{-}\right\rangle \longrightarrow \mathrm{e}^{\mathrm{i} 2 \theta(\mathrm{x}, \mathrm{y})}\left|\vec{\sigma}^{+}\right\rangle
$$

$$
\left|\phi_{x}-\phi_{y}\right|=\pi
$$

$$
U=e^{i \phi}|L\rangle\langle R|+e^{-i \phi}|R\rangle\langle L|
$$

$$
\begin{aligned}
U & =e^{i \phi_{x}}\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right] \\
& =e^{i \phi_{x}}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] R(2 \theta)
\end{aligned}
$$

