

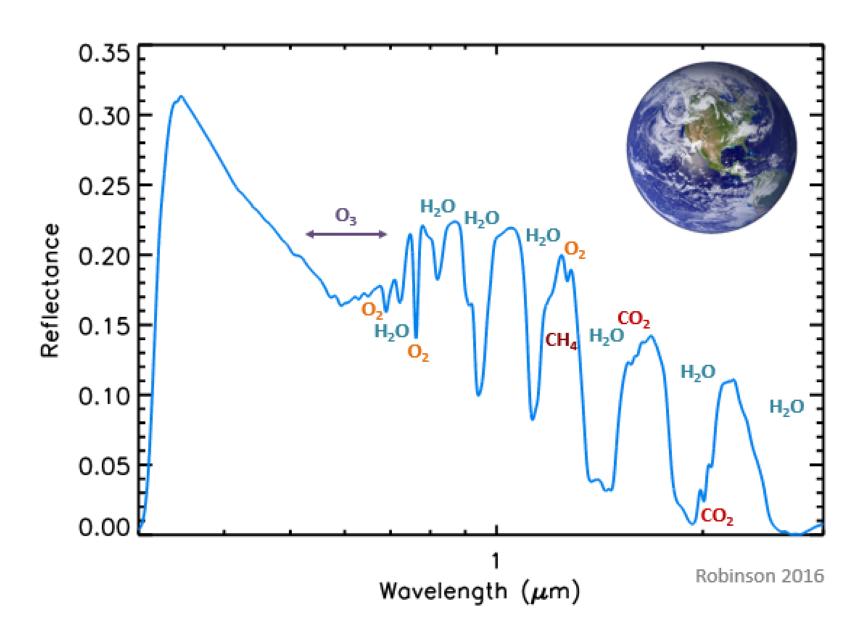
Welcome to the Workshop on Advanced Wavefront Sensing for Coronagraphs!

May 1, 2020

Brendan Crill

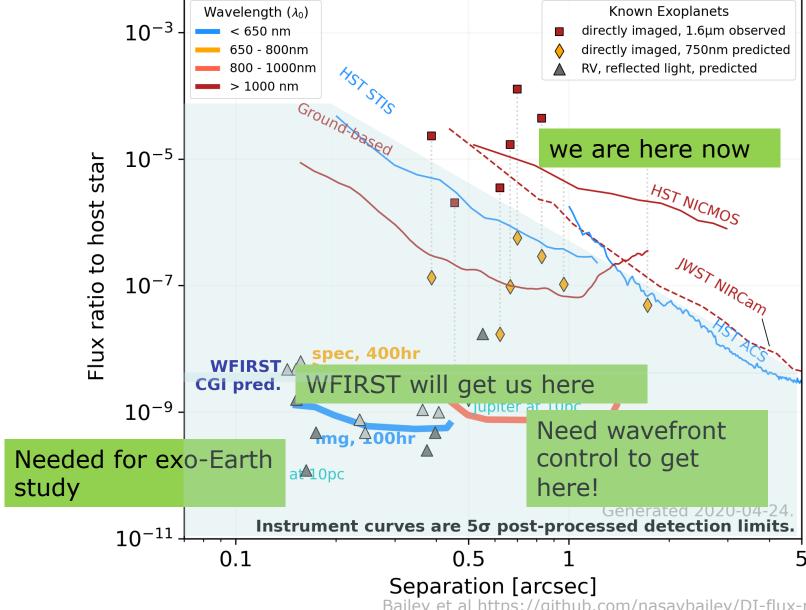
Deputy Program Chief Technologist, NASA Exoplanet Exploration Program (Jet Propulsion Laboratory / California Institute of Technology)

Today's Workshop

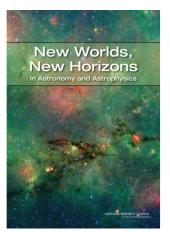


Agenda

- 09:00 Pacific time 10 min Brendan Crill (NASA ExEP) Wavefront Sensing and NASA's Goals for Exoplanet Direct Imaging
- 09:10 20 min Laurent Pueyo (STScI) Wavefront Sensing in a space-based coronagraph instrument
- 09:30 20 min Mamadou N'Diaye (Cote D'Azur) ZELDA results on VLT/SPHERE
- 09:50 20 min John Steeves (JPL) picometer sensitivity demo
- 10:10 20 min Garreth Ruane (JPL) Decadal Survey Testbed demonstration of a Zernike WFS
- 10:30 20 min David Doelman (Leiden Observatory) vector Zernike WFS
- 10:50 10 min break
- 11:00 20 min Kent Wallace (JPL) Vector Zernike WFS progress at JPL: liquid crystal and metasurface devices and applications
- 11:20 20 min Emiel Por (Leiden Observatory) Simultaneous wavefront sensing demonstration at Paris Observatory
- 11:40 20 min Jeff Jewell (JPL) New concepts in wavefront sensing for high contrast imaging
- 12:00 50 min Q&A, open discussion
- 12:50 10 minute wrapup: actions, next steps

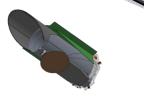

Searching for Life in the Universe – reflected light spectroscopy of terrestrial exoplanets

Extreme Starlight Suppression with a Coronagraph requires Wavefront Control



NASA Exoplanet Exploration Program's Focus on Exoplanet Direct Imaging from Space

2010 Decadal Survey

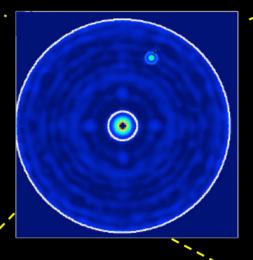

TABLE ES.4 Space: Recommended Activities—Medium-Scale (Priority Order)		
Recommendation	Science	Appraisal of Costs ^a
1. New Worlds Technology Development Program	Preparation for a planet-imaging mission beyond 2020, including precursor science activities	\$100M to \$200M
2. Inflation Probe Technology Development Program	Cosmic microwave background (CMB)/ inflation technology development and preparation for a possible mission beyond 2020	\$60M to \$200M

2018 Exoplanet Science Strategy

Recommendation: NASA should lead a large strategic direct imaging mission capable of measuring the reflected-light spectra of temperate terrestrial planets orbiting Sun-like stars.

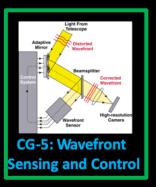

V-NIR Coronagraph/Telescope Technology Gaps

Contrast (ExEP Technology Gap List)



CG-3: Deformable Mirrors

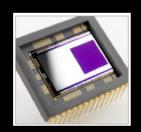
CG-4: Data Post-Processing

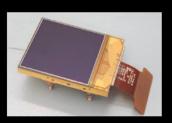


Angular Resolution

CG-1: Segmented Mirrors

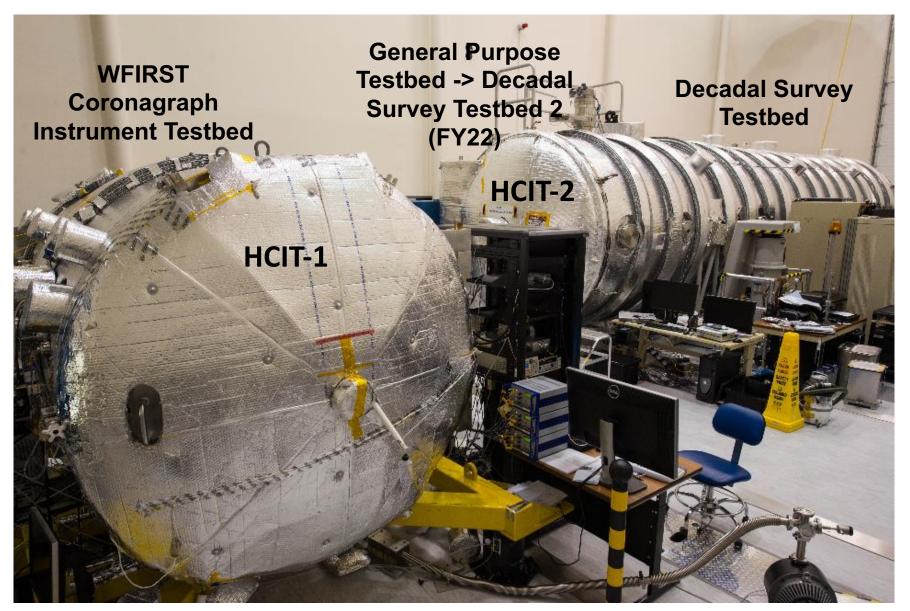
Contrast Stability





CG-7: Telescope Vibration
Sensing and Control or Reduction

Detection Sensitivity


Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

CG-6: Mirror Segment Phasing

https://exoplanets.nasa.gov/exep/technology/gap-lists/

ExEP's High Contrast Imaging Testbed

Decadal Survey Testbed

- Available to investigations funded by Strategic Astrophysics Technology grants
- Commissioned using a Lyot coronagraph $3.8x10^{-10}$ contrast, working angles 3-9 λ/D , 9% bandwidth (Seo et al 2019)
- A new Zernike Wavefront Sensor has been installed and demonstrated (Garreth's talk)
- Decadal Survey Testbed roadmap here:
 https://exoplanets.nasa.gov/internal_resources/1170/
- Aim is to commission a testbed capable of demonstrating < 10⁻⁹ contrast with a simulated dynamic environment

Today's Workshop

Agenda

- 09:00 Pacific time 10 min Brendan Crill (NASA ExEP) Wavefront Sensing and NASA's Goals for Exoplanet Direct Imaging
- 09:10 20 min Laurent Pueyo (STScI) Wavefront Sensing in a space-based coronagraph instrument
- 09:30 20 min Mamadou N'Diaye (Cote D'Azur) ZELDA results on VLT/SPHERE
- 09:50 20 min John Steeves (JPL) picometer sensitivity demo
- 10:10 20 min Garreth Ruane (JPL) Decadal Survey Testbed demonstration of a Zernike WFS
- 10:30 20 min David Doelman (Leiden Observatory) vector Zernike WFS
- 10:50 10 min break
- 11:00 20 min Kent Wallace (JPL) Vector Zernike WFS progress at JPL: liquid crystal and metasurface devices and applications
- 11:20 20 min Emiel Por (Leiden Observatory) Simultaneous wavefront sensing demonstration at Paris Observatory
- 11:40 20 min Jeff Jewell (JPL) New concepts in wavefront sensing for high contrast imaging
- 12:00 50 min Q&A, open discussion
- 12:50 10 minute wrapup: actions, next steps
- Type questions into WebEx chat (I'll monitor that)
- Remember to keep your mic muted
- Keep video feed off (except for the presenter)

10-MINUTE BREAK RESTARTING AT 11:10 PACIFIC TIME

Q&A / Discussion

- If you ask a question, please identify yourself and state to whom you are directing your question
- Remember to go on mute if you're not talking