Method for deriving optical telescope stability specifications for Earth-detecting coronagraphs

Bijan Nemati

Center for Applied Optics – University of Alabama in Huntsville

Also: Philip Stahl (MSFC), Mark Stahl (MSFC), Leah Sheldon (UAH), Garreth Ruane (JPL)

NASA ExEP Technology Colloquium

3/31/2020

What does it take to see an exo-Earth?

- The flux ratio of the earth, relative to the sun, is $\sim 2.1 \times 10^{-10}$
- If we could look at our solar system
 - in the visible band
 - from 10 pc away
 - using a 4-meter telescope
 - without suppressing starlight,
 - the Earth would be buried under an airy ring of the sun, by a factor of >5 million
- Need to divert diffracted starlight
 - We can do this with a coronagraph

Coronagraphs for Exoplanet Detection

detector plane (dark hole)

Lyot mask

OWA

IWA ~3 \/D

Dark Hole with Speckle

Architectures Studied – HabEx-Relevant

B. Nemati - ExEP Colloquium - Earth Detecting Coronagraph Specs

Key Coronagraph Attributes

- Starlight Suppression
 - Contrast
 - ratio of throughput from (0,0) to throughput from (u, v)

$$C(u,v) \equiv \frac{\tau(0,0)}{\tau(u,v)}$$

- Suppression Stability
 - Residual Speckle
 - measured as the spatial standard deviation of temporal difference of mean speckle
- Planet Light Acceptance
 - Core Throughput
 - fraction of planet light reaching focal plane & in core

u.v

Comparison of Core throughput

• The separation for an Exo-Earth at 10 pc (100 mas) is indicated with the vertical line

Note: 6m aperture has approximately 2X more collecting area than 4m aperture. Thus 'comparative' throughput @ 100 mas would be ~10%.

Setting Up An Error Budget

... to track Flux Ratio Noise

Flux Ratio Noise

- In direct imaging
 - We are detecting a signal, against some background
 - We set up the observation and integrate
 - This integration leads to a signal S
 - The signal is accompanied with noise δS
 - So the measurement yields: $S \pm \delta S$
- The signal is proportional to flux ratio:
- The conversion from signal to flux ratio is:
- Noise that accompanies the signal becomes noise in the flux ratio measurement:

measurement counts, *e*⁻

3/31/2020

B. Nemati - ExEP Colloquium - Earth Detecting Coronagraph Specs

flux ratio

noise

٠

- Generally, there are two types of error:
 - Random noise from shot noise and detector noise
 - goes down with integration time
 - Confusion due to the speckled nature of the background
 - may not go down with integration time
- The speckle background can be suppressed via differential imaging:
 - Calibrate/model the speckle and subtract it
- For example, WFIRST incorporates two types:
 - Reference Differential Imaging (RDI)
 - Obtain a reference speckle pattern from another star, and subtract
 - Angular Differential Imaging (ADI)
 - Roll the telescope about the line of site, and demodulate planet vs. speckle
 - Speckle, to first order, will be stationary on the focal plane

These methods require speckle stability

simulated noisy image before post processing

Error Budget Structure

SNR and time-to-SNR

- The signal to noise ratio for detection is given by:
 - where:
 - r_{pl} is the count rate for the planet
 - r_n is the count rate of the noise
 - $r_{\Delta I}$ is the residual speckle rate
- Inverting this equation gives the integration time to get to a needed SNR:
 - Note: time goes to ∞ as the residual speckle rate approaches r_{pl}/SNR
- Time is a scarce resource for a space mission
 - Allocations need to be made for engineering, dark hole, etc.
 - Net result, typically < 3000 hrs per year of actual integration time
- For a given desired SNR, the larger the residual speckle, the longer we need to integrate

Balancing the Errors – Random vs. Systematic

- Start with the exo-Earth flux ratio (210 ppt)
- Settle on desired SNR (e.g. 7)
- The allowable maximum flux ratio noise is 210 ppt / 7 = 30 ppt
- Choose an integration time that makes the random errors small fraction of 30 ppt
 - Small in rss sense is good enough
- Allocate the remainder to:
 - residual speckle
 - reserve

Exo-Earth Direct Imaging – Basic Error Budget

- Post processing using ancillary data can be used to predict the changes in speckle within differential imaging
- This information can be used to further reduce the residual speckle, alleviating the requirements on speckle stability
- A factor of 2X (additional) is reasonable to assume
 - This process leads to a top level allocation of 40 ppt (4×10^{-11}) total to **speckle instability**
 - Disturbances and sensitivities must add up to less than this quantity

Sensitivities to Contrast Instability

Wavefront Instability and Raw Contrast

• How does the error affect the speckle pattern?

$$C \propto |E + \Delta E|^2 = |E|^2 + |\Delta E|^2 + 2 \mathcal{R} \{ E^* \Delta E \}$$

existing field p (static field) (i

perturbation Cross term (instability)

\rightarrow The sensitivity to wavefront change depends on the initial raw contrast

3/31/2020

Contrast vis Effective Surface Error

40

60

80

spatial frequency (cyc/ap)

100

120

140

160

20

10-21

 $m^{2}/(cyc/ab)$

10⁻²⁴

0

the WFE or DM surface shape

the high-contrast solution near

this part of the DM phase space

100

200

300

400

500

600

700

800

900

1000

200

DM relative surface error

surface error = 120 pm rms

(pm)

500

400

300

200

100

-100

-200

-300

400

500

800

1000

assumed by the design

the practical limit of DM surface fidelity to ideal

equivalent relative error with same dark hole E field

azimuthally integrated PSD

Modeling Contrast Sensitivity

- Start with some initial field and add the perturbing field
 - The initial field sets the initial speckle in the dark hole
 - The perturbed field causes the changed contrast.
 - Subtracting the perturbation-added speckle map from the original speckle map gives the residual speckle map
- We are interested in the structure of the residual contrast map as quantified by its spatial standard deviation within the dark hole
 - We are specifically interested in
 - the spatial standard deviation of
 - the difference of
 - temporally averaged contrast maps
 - We do this for each annular slice
- The sensitivity is the ratio of this quantity over strength of the perturbation.

How residual speckle depends on radial slice

- The PSF, and the residual speckle, fall off as we get farther from the star.
- On Left we see the residual speckle in the case of 5 pm (PV) of trefoil added to the wavefront error between the reference and target star observations (VVC-6 case).
- In this example, the pink-shaded region exceeds an allocation of 1e-11 to the residual contrast standard deviation over the radial slice.

trefoil mode error introduced between reference and target star observations

CG = VVC6

B. Nemati - ExEP Colloquium - Earth Detecting Coronagraph Specs

An algorithm for distributing errors

- 1. Start with
 - 1. an assumed initial contrast (requirement)
 - 2. the total allowed FRN for contrast instability
- 2. Compute **sensitivities** from annular standard deviations:
- 3. Create weights for allocations such that
 - 1. are proportional to the sensitivities
 - 2. have a limited dynamic range
- Use the total allocation and the weights to determine individual allocations
 - Normalize the weights to RSS to 1.0
- 5. From the sensitivities and allocations, get the **tolerances**:

 $C_0 = 1 \times 10^{-10}$ $\epsilon_{tot} = 40 \text{ ppt}$ $S_i = \frac{\sigma_{\Delta C}}{\Delta w_i} \equiv \frac{\partial \epsilon}{\partial x_i}$

 $w_i = \max(S_i, 1\% \cdot \max(S_i))$

$$\epsilon_i = w_i \cdot \left(\frac{\epsilon_{tot}}{\sqrt{\sum_i w_i^2}}\right)$$

 $\delta x_i = \frac{\epsilon_i}{s_i}$ allocations tolerances sensitivities

sensitivities are usually the challenging step!

3/31/2020

Sensitivities to 5 pm rms ΔWFE – for VVC4

Sensitivities to 5 pm rms $\Delta WFE - for VVC6$

Sensitivities to 5 pm rms ΔWFE – for HLC

$\frac{1}{3}$ Sensitivities to 5 pm rms $\Delta WFE - For Off-Axis Segm.$

6-m Off-axi	s Segmente	d with VVC	6
Perturbation Mode	Sensitivity	Allocations (auto)	Tolerance
Global	ppt/pm	40.00	pm
Bend	3.21	5.6	1.75
Defocus	4.64	8.1	1.75
Spherical	4.51	7.9	1.75
Coma	5.19	<mark>9</mark> .1	1.75
Trefoil	5.82	10 <mark>.</mark> 2	1.75
Hexafoil	10.61	18.5	1.75
Segmented			
Piston	8.84	15.4	1.64
Tip/Tilt	9.09	15.9	1.64
Power	3.68	6.4	1.64
Astigmatism	9.33	16.3	1.64
Trefoil	6.16	10. <mark>8</mark>	1.64
Hexafoil	0.74	1.3	1.64

Initial Raw Contrast

Sensitivities to 5 pm rms ΔWFE – for On-Axis Segmented THE UNIVERSITY OF

6-m On-axis Segmented with APLC												
Perturbation Mode	Sensitivity	Allocations (auto)	Tolerance									
Global	ppt/pm	40.00	pm									
Bend	1.65	2.7	1.65									
Defocus	1.96	3.2	1.65									
Spherical	1.26	2.1	1.65									
Coma	3.31	5.5	1.65									
Trefoil	4.66	7.7	1.65									
Hexafoil	1.95	3.2	1.65									
Segmented												
Piston	6.74	11.1	1.64									
Tip/Tilt	11.12	18.4	1.64									
Power	3.71	6.1	1.64									
Astigmatism	18.33	30.3	1.64									
Trefoil	4.55	7.5	1.64									
Hexafoil	1.48	2.4	1.64									

Tolerances for Error Modes Studied

4-m Off-Axis Monolithic with VVC-4

		tiptilt	defocus	astigmatism	coma	trefoil	spherical	secAstig	tetrafoil	secComa	secTrefoil	pentafoil
く	Sensitivities (ppt/pm)	0.00088	0.0010	4.08	5.44	3.92	6.17	3.93	5.09	6.72	4.80	5.83
	Allocations (ppt)	0.17	0.17	10.5	14.0	10.1	15.8	10.1	13.1	17.2	12.3	14.9
	Tolerances (pm)	195.7	167.4	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6

4-m Off-Axis Monolithic with VVC-6

Mono – VVC 6

Mono – VVC 4

Mono	—	HLC

Segm – APLC

Segm – WVC 6

	tiptilt	defocus	astigmatism	coma	trefoil	spherical	secAstig	tetrafoil	secComa	secTrefoil	pentafo
Sensitivities (ppt/pm)	0.000909	0.001102	0.000775	0.000924	6.06	0.00137	4.82	4.44	5.62	4.34	7.21
Allocations (ppt)	0.214	0.214	0.214	0.214	18.0	0.214	14.3	13.2	16.7	12.9	21.4
Tolerances (pm)	235	194	276	231	2.96	156	2.96	2.96	2.96	2.96	2.96

4-m Off-Axis Monolithic with Hybrid Lyot

	tiptilt	defocus	astigmatism	coma	trefoil	spherical	secAstig	tetrafoil	secComa	secTrefoil	pentafoil
Sensitivities (ppt/pm)	0.0393	1.53	0.23	6.11	0.45	12.78	6.83	0.82	8.18	7.60	1.11
Allocations (ppt)	0.26	3.16	0.47	12.6	0.9	26.3	14.1	1.7	16.9	15.7	2.3
Tolerances (pm)	6.69	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06

6-m On-axis Segmented with APLC

	g_bend	g_powerS	g_sphericS	g_comaZ	g_trefZ	g_hexfZ	s_piston	s_tiptilt	s_powerS	s_astigZ	s_trefZ	s_hexfZ
Sensitivities (ppt/pm)	1.65	1.96	1.26	3.31	4.66	1.95	6.74	11.12	3.71	18.33	4.55	1.48
Allocations (ppt)	2.72	3.25	2.08	5.47	7.70	3.23	11.1	18.4	6.13	30.3	7.52	2.44
Tolerances (pm)	1.65	1.65	1.65	1.65	1.65	1.65	1.64	1.64	1.64	1.64	1.64	1.64

6-m Off-axis Segmented with VVC6

	g_bend	g_powerS	g_sphericS	g_comaZ	g_trefZ	g_hexfZ	s_piston	s_tiptilt	s_powerS	s_astigZ	s_trefZ	s_hexfZ
Sensitivities (ppt/pm)	3.21	4.64	4.51	5.19	5.82	10.6	8.84	9.09	3.68	9.33	6.16	0.74
Allocations (ppt)	5.60	8.10	7.86	9.05	10.2	18.5	15.4	15.9	6.43	16.3	10.8	1.30
Tolerances (pm)	1.75	1.75	1.75	1.75	1.75	1.75	1.64	1.64	1.64	1.64	1.64	1.64

3/31/2020

Summary – Wavefront stability is very important

- When it comes to instability, the number that is important is flux ratio / SNR
- For an Exo-Earth detection with SNR of 7, the total allowable error is $3 \cdot 10^{-11}$ (30 ppt)
 - This is the number that limits the allocations
- Of particular note are segment piston and tip tilt in the segmented case
 - Here is a different visualization of the challenge:

B. Nemati - ExEP Colloquium - Earth Detecting Coronagraph Specs

Paving the Way – The WFIRST Coronagraph Instrument

The Coronagraph

Bernard Lyot, 1939 French Astronomer Inventor of the Coronagraph

