

Jet Propulsion Laboratory California Institute of Technology

## EXOPLANET EXPLORATION PROGRAM Science Gap List 2020

Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist

CL#20-1234 JPL Document No: 1717112

Cover Art Credit: NASA/JPL-Caltech. Artist conception of the K2-138 exoplanetary system, the first multi-planet system ever discovered by citizen scientists<sup>1</sup>. K2-138 is an orangish (K1) main sequence star about 200 parsecs away, with five known planets all between the size of Earth and Neptune orbiting in a very compact architecture. The planet's orbits form an unbroken chain of 3:2 resonances, with orbital periods ranging from 2.3 and 12.8 days, orbiting the star between 0.03 and 0.10 AU. The limb of the hot sub-Neptunian world K2-138 f looms in the foreground at the bottom, with close neighbor K2-138 e visible (center) and the innermost planet K2-138 b transiting its star. The discovery study of the K2-138 system was led by Jessie Christiansen and collaborators (2018, Astronomical Journal, Volume 155, article 57).

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This document has been cleared for public release (CL#19-0790).

© 2019 California Institute of Technology. Government sponsorship acknowledged.

<sup>&</sup>lt;sup>1</sup> https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22088

## Approved by:

Dr. Gary Blackwood Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory

Date

Dr. Douglas Hudgins Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters

Created by:

Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology

Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology

Date

Date

Date

## The 2020 Exoplanet Exploration Program (ExEP) Science Gap List

Compiled and maintained by: Dr. Karl Stapelfeldt, Program Chief Scientist Dr. Eric Mamajek, Deputy Program Chief Scientist NASA Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute of Technology

The Exoplanet Exploration Program (ExEP) is chartered by the Astrophysics Division (APD) of NASA's Science Mission Directorate (SMD) to carry out science, research, and technology tasks that advance NASA's science goal to "*Discover and study planets around other stars, and explore whether they could harbor life.*" ExEP's three aims are:

- *discovering planets around other stars,*
- characterizing their properties, and
- *identifying candidates that could harbor life*

ExEP serves NASA and the community by acting as a focal point for exoplanet science and technology, managing research and technology initiatives, facilitating access to scientific data, and integrating the results of previous and current missions into a cohesive strategy to enable future discoveries. ExEP serves the critical function of developing the concepts and technologies for exoplanet missions, in addition to facilitating science investigations derived from those missions. ExEP manages development of mission concepts, including key technologies, as directed by NASA HQ, from their early conceptual phases into pre-Phase A.

The goal of the *ExEP Science Plan*<sup>2</sup> is to show how the Agency can focus its science efforts on the work most needed to realize the goal of finding and characterizing habitable exoplanets, within the context of community priorities. The *ExEP Science Plan* consists of three documents, which will be updated periodically, which respond directly to the ExEP Program Plan [4]:

- ExEP Science Development Plan (SDP)
- ExEP Science Gap List (SGL) (this document)
- ExEP Science Plan Appendix (SPA)

The long-term online home of the science plan documents will be <u>https://exoplanets.nasa.gov/exep/science-overview/</u>.

<sup>&</sup>lt;sup>2</sup> Much of this preamble text is drawn from the longer introduction to the ExEP Science Plan Appendix (SPA), which provides further context for the ExEP Science Plan.

The ExEP *Science Development Plan* (SDP) reviews the program's objectives, the role of scientific investigations in ExEP, important documentation, and the programmatic framework for ExEP science.

This document, the ExEP *Science Gap List (SGL)*, tabulates program "science gaps", which are defined as either:

- the difference between knowledge needed to define requirements for specified future NASA exoplanet missions and the current state of the art, or
- knowledge which is needed to enhance the science return of current and future NASA exoplanet missions.

Making the gap list public signals to the broader community where focused science investigations are needed over the next 3-5 years in support of ExEP goals. The ExEP Science Gap List represents activities and investigations that will advance the goals of NASA's Exoplanet Exploration Program, and provides brief summaries in a convenient tabular format. All ExEP approaches, activities, and decisions are guided by science priorities, and those priorities are presented and summarized in the ExEP Science Gap List.

The *Science Plan Appendix* (SPA), lays out the *scientific* challenges that must be addressed to advance the goals of NASA's Exoplanet Exploration Program. While the Program Science Development Plan is expected to remain stable over many years, the Science Gap List will be updated annually, and this Science Plan Appendix will be updated as needed approximately every two years. Entries in the *Science Gap List* will map to sections of the *Science Plan Appendix*.

The most recent community report relevant to the NASA ExEP is the National Academies' *Exoplanet Science Strategy* (ESS) released in September 2018 [3]. The ESS report provides a broad-based community assessment of the state of the field of exoplanet science and recommendations for future investments. The National Academies also released the report *An Astrobiology Strategy for the Search for Life in the Universe* in October 2018. NASA HQ is considering responses to the *Exoplanet Science Strategy* and *Astrobiology Strategy* reports. One response has been the chartering of the "Extreme Precision Radial Velocity Working Group" (EPRV-WG), which will develop a blueprint for a strategic EPRV initiative to NASA and NSF in early 2020. The Astro2020 Decadal Survey is expected to strongly consider the recommendations of the ESS report, and their direction to NASA will guide priorities for the Astrophysics Division and Exoplanet Exploration Program.

The 2018 Exoplanet Science Strategy report provided "two overarching goals in exoplanet science":

• to understand the formation and evolution of planetary systems as products of the process of star formation, and characterize and explain the diversity of planetary system architectures, planetary compositions, and planetary environments produced by these processes, and • to learn enough about the properties of exoplanets to identify potentially habitable environments and their frequency, and connect these environments to the planetary systems in which they reside. Furthermore, scientists need to distinguish between the signatures of life and those of nonbiological processes, and search for signatures of life on worlds orbiting other stars

The ESS also provided seven recommendations and thirty five findings. The ESS goals, recommendations, and findings are summarized in Appendix B of the *ExEP Science Plan Appendix*.

The ExEP science gaps do not appear in a particular order, and by being recognized on this list are deemed important. Currently the gap list is used as a measuring stick when evaluating possible new program activities: if a proposed activity could close a gap, it would be considered for greater priority for Program resources. The ExEP Science Gap List is *not* meant to provide strategic community guidance on par with a National Academies report (e.g. Decadal Survey, Exoplanet Science Strategy, etc.), but to provide program-level tactical guidance for program management within the evershifting landscape of NASA missions and mission studies. Funding sources outside NASA ExEP are free to make their own judgements as to whether or not to align the work they support with NASA's Exoplanet Exploration goals. Science gaps directly related to specific missions in phase A-E are relegated to those missions and are not tracked in the ExEP SGL. However, science gaps that facilitate science investigations derived from those missions, or support pre-phase A studies, may appear in the SGL.

©2020 California Institute of Technology. Government sponsorship acknowledged.

| ID         | Title                                                                                                                          | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capability Today                                                                                                                                                                                                                                                                                                                                                                             | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                              | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SCI-<br>01 | Spectral<br>characterization of<br>atmospheres of<br>small exoplanets<br>See SPA section<br>6 (atmospheres &<br>biosignatures) | The study of planetary<br>atmospheres advances our<br>knowledge of planetary<br>formation and evolution,<br>and can provide chemical<br>evidence for biological<br>processes. There are few<br>extant spectroscopic<br>detections of atmospheres<br>for exoplanets smaller than<br>Neptune, even though they<br>dominate the exoplanet<br>population. The first<br>constraints are being<br>obtained for the atmospheric<br>composition of small<br>temperate planets (i.e. sub-<br>Neptunes), but detection of<br>definitive spectral features<br>for temperate rocky planets<br>is beyond the current<br>capability. In order to<br>remotely assess the<br>frequency of habitable<br>planets and life in the<br>galaxy, new observations<br>and facilities must be<br>developed. | Spectroscopy of small<br>exoplanets across a diverse<br>range of planet sizes and<br>compositions, stellar types,<br>and radiation<br>environments e.g. transit<br>spectroscopy of small<br>planets transiting cool<br>dwarf stars, high-contrast<br>spectroscopy of small<br>exoplanets orbiting solar-<br>type (FGK-type) stars.<br>Temperate examples are of<br>particular interest. Need<br>targets that provide the<br>most photons (orbiting<br>nearby, brightest stars for<br>their class).<br>Related gaps: limits to<br>precision on extracting<br>spectra (gap SCI-03), need<br>for accurate ephemerides<br>for scheduling<br>spectroscopic observations<br>(gap SCI-09),<br>need for precursor surveys<br>to find direct imaging<br>targets (gap SCI-10). | A handful of small<br>exoplanets suitable for<br>spectroscopy have been<br>identified by RV and<br>transit surveys. HST<br>transit spectra of these<br>have marginal sensitivity<br>and would only be able<br>to detect cloud-free H-<br>dominated atmospheres,<br>which are not expected<br>for this class of objects.<br>So far there are no<br>imaging detections of<br>small exoplanets. | Current and future JWST<br>proposals to spectrally<br>characterize small<br>transiting planets. Small<br>transiting exoplanets<br>discovered with K2,<br>TESS, and ground-based<br>transit surveys, can be<br>observed with JWST.<br>WFIRST/CGI may be<br>able to spectrally<br>characterize atmospheres<br>of small planets orbiting<br>the very nearest stars.<br>Mission concept studies<br>for Astro2020 have<br>defined capabilities for<br>next generation of<br>observatories to study<br>atmospheres of small<br>exoplanets via transit<br>spectroscopy (e.g.<br>Origins, LUVOIR,<br>HabEx) or direct imaging<br>(e.g. LUVOIR, HabEx). |

| ID               | Title                                                                                    | Summary                                                                                                                                                                                                                                | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID<br>SCI-<br>02 | Title   Modeling exoplanet atmospheres   See SPA section 6 (atmospheres & biosignatures) | Summary<br>Spectral modeling is<br>essential for inferring the<br>properties of exoplanet<br>atmospheres, identifying<br>their most crucial<br>diagnostics, and defining the<br>design goals for future<br>telescopes and instruments. | Ability to model the<br>physical and chemical<br>structure of exoplanet<br>atmospheres and their<br>emergent spectra, as a<br>function of the total<br>pressure; chemical<br>composition; presence of<br>condensates, clouds &<br>hazes; observer phase<br>angle; and the radiative<br>and energetic particle<br>fluxes incident from the<br>host star. Understand how<br>the exchange of matter and<br>energy with exospheres,<br>lithospheres, hydrospheres,<br>and potentially biospheres<br>affect the observed<br>properties of the<br>atmosphere. Challenges<br>include determining<br>composition and properties<br>of aerosols, understanding<br>chemistry (e.g. reaction<br>rates, photochemistry,<br>mixing, etc.), radiative<br>transfer modeling<br>(including scattering<br>prescriptions), 3D<br>atmosphere dynamics (e.g. | Capability Today<br>Modeling of gas giant<br>atmospheres accounting<br>for varying formation<br>mechanisms,<br>protoplanetary disk<br>chemistry, and<br>migration. 3D<br>circulation models of hot<br>giant planets, modeling<br>the impact of<br>nonuniform cloud cover,<br>modeling atmospheric<br>chemistry and escape<br>due to stellar XUV<br>emission and predicted<br>to spectral observations<br>(e.g. HST, JWST, future<br>missions, etc.). Series of<br>papers on biosignatures<br>papers in June 2018<br>issue of Astrobiology.<br>Modeling of individual<br>target systems (e.g.<br>TRAPPIST-1 planets,<br>Proxima Cen b). | Mitigation in<br>Progress<br>Ongoing research by the<br>community. ExoPAG<br>SAG-10 (Cowan et al.<br>2015, PASP, 127, 311)<br>quantified the needs and<br>expected results from<br>transit spectroscopy.<br>NASA ROSES programs<br>in the Planetary Sciences<br>Division support<br>fundamental research on<br>planetary atmospheres,<br>including their origin,<br>evolution, and<br>characterization. NASA<br>Astrobiology Program is<br>now the Interdisciplinary<br>Consortia for<br>Astrobiology Research<br>(ICAR) including the<br>NExSS research<br>coordination network,<br>designed to foster<br>interdisciplinary research<br>on aspects of exoplanet<br>atmospheres and climate<br>relevant to life and<br>biosignatures. |
|                  |                                                                                          |                                                                                                                                                                                                                                        | general circulation<br>models). and high-fidelity<br>simulations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| ID         | Title                                                                                    | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                               | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mitigation in<br>Progress                                                                                                                                                                                                                                                    |
|------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | instrumental effects on the<br>observed spectra.<br>Laboratory measurements<br>of key molecular and<br>aerosol opacities in<br>relevant physical<br>conditions.                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                              |
| SCI-<br>03 | Spectral signature<br>retrieval<br>See SPA section<br>6 (atmospheres &<br>biosignatures) | Systematic instrumental and<br>stellar effects in timeseries<br>photometry and high<br>contrast images limit the<br>ability to extract reliable<br>spectra from residual stellar<br>signals. Key physical<br>parameters such as spectral<br>slopes and molecular<br>abundances can be<br>uncertain, and achieved<br>spectral sensitivity may be<br>worse than the photon noise<br>limit. Early spectral<br>detections have not<br>withstood reanalysis (e.g.<br>Deming & Seager 2017,<br>JGRP, 122, 53). | Ability to reliably extract<br>physical parameters, such<br>as atmospheric pressure-<br>temperature profile and<br>abundances. Thorough<br>understanding of the limits<br>of the data, including<br>effects of correlated and<br>systematic noise<br>sources. Strategies for<br>data taking, calibration,<br>processing to mitigate<br>these issues for each<br>individual<br>instrument/observatory<br>and lessons learned for<br>future work. | Community analyses of<br>HST transit spectra and<br>of imaging spectra from<br>e.g., GPI & SPHERE.<br>Simple noise models<br>predict JWST transit<br>spectra and<br>coronagraphic<br>spectra. Development of<br>best practices over time<br>to acquire exoplanet<br>spectra with HST and<br>JWST. Studies of<br>contamination by stellar<br>photospheric<br>heterogeneities as<br>limitation to extraction<br>of transiting exoplanet<br>spectra (e.g. Rackham et<br>al. 2018, ApJ, 122, 853),<br>and stellar speckles as a<br>limitation to extraction<br>of direct imaging spectra<br>of exoplanets (e.g. Rizzo<br>et al. 2018, SPIE,<br>10698). | WFIRST SITs<br>performing retrieval<br>experiments for CGI<br>imaging spectra and<br>community data<br>challenges. ExoPAG<br>SAG 19 Exoplanet<br>Imaging Data Challenge<br>for ground-based<br>coronagraphy. Data<br>challenges planned by<br>JWST ERS team for<br>transits. |

| ID         | Title                                                                                                                                                                                                             | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SCI-<br>04 | Planetary system<br>architectures:<br>occurrence rates for<br>exoplanets of all<br>sizes<br>See SPA sections:<br>2 (exoplanet<br>popluations),<br>3 (exoplanet<br>dynamics),<br>5 (properties of<br>target stars) | Measurements of<br>distribution of planetary<br>parameters (e.g. masses,<br>radii, orbital elements) from<br>various techniques are<br>important both for<br>constraining planet<br>formation and evolution<br>models, and for predicting<br>yields of future missions.<br>The lack of integrated<br>exoplanet population studies<br>limits our understanding of<br>exoplanet demographics<br>over a wide range of masses<br>and radii. Extrapolations to<br>HZ demographics need to be<br>on best basis (see SCI-05). | Integrated exoplanet<br>demographic results from<br>transit, direct imaging,<br>RV, and microlensing<br>surveys. Include effects of<br>Kepler DR25, the low<br>yield of direct imaging<br>detections of self-luminous<br>planets, and microlensing<br>results from recent<br>campaigns. Update<br>periodically to include new<br>surveys such as TESS, and<br>to correct the host star<br>properties used in prior<br>surveys. The effect of<br>measurement uncertain-<br>ties on the results must be<br>quantified. There is a need<br>for planet formation<br>models which account for<br>the observed<br>demographics. | Ongoing microlensing,<br>RV, transit, and direct<br>imaging projects<br>continue to build<br>statistics. Examples:<br>Clanton & Gaudi (2016,<br>ApJ, 819, 125) for<br>demographics of<br>exoplanets on wide<br>separation orbits (>2<br>AU) for M dwarfs.<br>Pascucci et al. (2018)<br>study of distribution of<br>mass-ratios of planets<br>and their stars between<br>microlensing and transit<br>methods. Meyer et al.<br>(2018, A&A, 612, L3)<br>combined data from RV,<br>microlensing, and<br>imaging surveys to<br>produce surface density<br>distribution of gas giants<br>in 1-10 MJ mass range<br>for M dwarfs over 0.07-<br>400 au. Exoplanet<br>Population Observation<br>Simulator (EPOS)<br>compares synthetic<br>planet population<br>models to observations<br>(e.g. Mulders et al. 2019,<br>arXiv:1905.08804). | Ongoing community<br>efforts for assessing<br>occurrence rates for<br>close-in planets with<br>Kepler and K2 data,<br>reconciling results from<br>different discovery<br>methods (e.g. transit,<br>radial velocity,<br>microlensing, direct<br>imaging), and factoring<br>in Gaia stellar data.<br>Exoplanet Standard<br>Definitions and<br>Evaluation Team<br>(ExSDET) investigating<br>reconciliation of Kepler<br>transit results (e.g.<br>ExoPAG13) with radial<br>velocity survey results.<br>There is a large<br>community effort to<br>validate TESS exoplanet<br>candidates. ExoPAG SIG<br>2 is synthesizing<br>available data on<br>exoplanet occurrence<br>rates. WFIRST<br>microlensing survey is<br>designed to measure<br>occurrence rate of cold<br>planet population. |

| ID         | Title                                                                                                                                                                                              | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mitigation in<br>Progress                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCI-<br>05 | Occurrence rates<br>and uncertainties<br>for temperate<br>rocky planets<br>(eta-Earth $\eta_{\oplus}$ )<br>See SPA sections:<br>2 (exoplanet<br>popluations),<br>5 (properties of<br>target stars) | Subset of SCI-04 focusing<br>on occurrence rates for<br>Earth-sized planets in/near<br>habitable zones, which<br>remains considerably<br>uncertain. Critical to NASA<br>for designing a large direct<br>imaging mission for<br>detecting and characterizing<br>Earth analogs around nearby<br>stars. Reducing uncertainty<br>in $\eta_{\oplus}$ reduces uncertainty in<br>predicted yields for imaged<br>and spectrally characterized<br>temperate rocky planets. | Analysis of occurrence<br>rates taking into account<br>final Kepler data products<br>(DR25), including effects<br>of stellar multiplicity, and<br>improved stellar<br>parameters - such that the<br>remaining uncertainties are<br>dominated by intrinsic<br>Kepler systematics.<br>Mission studies for<br>Astro2020 adopted $\eta_{\oplus} =$<br>$0.24^{+0.46}$ -0.16 for yield<br>calculations, informed by<br>SAG 13 analysis (factor of<br>3× systematic<br>uncertainty). Analysis<br>work that reduces<br>uncertainty in $\eta_{\oplus}$ would<br>be beneficial to direct<br>imaging mission concepts. | Published analyses by<br>several authors,<br>including (e.g. Burke et<br>al. 2015, ApJ, 809, 8;<br>Traub 2016,<br>arXiv:1605.02255; Hsu<br>et al. 2019, AJ, 158, 109;<br>Pascucci et al. 2019,<br>ApJ, 883, L15; Bryson<br>et al. 2019, arxiv:<br>1906.03575). Gaia<br>results have improved<br>estimates of radii for all<br>transiting planets (e.g.<br>Fulton & Petigura 2018,<br>AJ, 156, 264; Berger et<br>al. 2018, ApJ, 866, 99).<br>ExoPAG SAG 13 final<br>report helped inform<br>mission concept studies. | This is an active research<br>area. The community is<br>working on planet<br>occurrence rate studies<br>that incorporate final<br>Kepler DR25 data and<br>Gaia.<br>Encourage observations<br>which can confirm<br>existence of candidate<br>temperate rocky planets<br>in Kepler data upon<br>which $\eta_{\oplus}$ critically<br>relies. |
| SCI-<br>06 | Yield estimation for<br>exoplanet direct<br>imaging missions<br>See SPA section:<br>2 (exoplanet<br>popluations)                                                                                   | Quantified, non-advocate<br>science yield comparisons<br>made on a common basis<br>between various mission<br>concepts, for both detections<br>and spectral<br>characterizations.<br>Community agreement on<br>key astrophysical input<br>assumptions.                                                                                                                                                                                                            | Capability within NASA<br>Exoplanet Program to<br>provide peer review of<br>yield estimates made by<br>individual mission studies,<br>using a transparent public<br>code implemented<br>independently, and<br>available for future<br>mission study trades.                                                                                                                                                                                                                                                                                                                                                 | Stark et al. (2019,<br>JATIS, 024009) show<br>yield as function of<br>aperture size and<br>astrophysical<br>assumptions, however a<br>number of idealized<br>assumptions were used.                                                                                                                                                                                                                                                                                                                                 | ExSDET completed its<br>final report in fall 2019<br>using ExoSIMS package<br>for exoplanet yield<br>calculations, in<br>coordination with<br>members of concept<br>study teams, and<br>proceeding with visibility<br>to stakeholders.                                                                                                    |

| ID         | Title                                                                                               | Summary                                                                                                                                                                                                                                                                                                                                                              | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                             | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                              | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SCI-<br>07 | Properties of known<br>exoplanet host stars<br>See SPA section<br>5 (properties of<br>target stars) | Improvement of<br>measurement of exoplanet<br>parameters needed for<br>interpreting spectra rely<br>directly on improvement of<br>fidelity of stellar parameters<br>based on photometry,<br>spectroscopy, astrometry,<br>etc., and subsequent<br>analysis.<br><i>Improvement of knowledge</i><br><i>of stellar radii is outlined</i><br><i>separately in SCI-12.</i> | Improved observational<br>constraints on exoplanet<br>and host star properties are<br>needed to help inform the<br>modeling of exoplanet<br>atmospheres and<br>interpretation of exoplanet<br>spectroscopy (SCI-02),<br>including: high energy<br>emission (e.g. UV, X-rays,<br>flare properties), ages,<br>precision stellar<br>abundances for elements<br>important to exoplanetary<br>structure/formation/<br>evolution and biology.<br>Accurate elemental<br>abundances and ages for<br>M dwarf host stars are<br>needed but have proved<br>challenging. Basic stellar<br>parameters (e.g. HRD<br>position, mass, metallicity,<br>etc.) are needed for non-<br>exoplanet hosts to enable<br>statistical studies.<br>Improved knowledge of<br>stellar, substellar, or<br>planetary companions is<br>helpful for interpretation<br>of exoplanet properties and<br>modeling (e.g. dynamics). | NExScI Exoplanet<br>Archive contains<br>compilation of<br>confirmed and candidate<br>exoplanets and their host<br>stars, which can inform<br>mission concept studies<br>focusing on studying<br>transits or transit<br>spectroscopy/photometry<br>of previously known<br>exoplanets, or direct<br>imaging of previously<br>known exoplanets. Gaia<br>DR2 data on exoplanet<br>host star properties<br>ingested into Archive. | NExScI Exoplanet<br>Archive is actively<br>compiling data on<br>exoplanets and their host<br>stars. ExEP plans to post<br>compiled target list<br>informed by direct<br>imaging mission studies<br>at NExScI in 2020.<br>Note: SCI-12 is for<br>improving knowledge of<br>exoplanet radii<br>(especially for<br>deblending the<br>contributions from stellar<br>companions, both<br>physical and unphysical),<br>whereas SCI-07 focusses<br>on improving knowledge<br>of other stellar<br>parameters to help<br>inform the interpretation<br>and modeling of<br>exoplanet data (e.g.<br>spectra). |

| ID               | Title                                                                                                                                                                            | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ID<br>SCI-<br>08 | TitleMitigating stellar<br>jitter as limitation<br>to sensitivity of<br>dynamical methods<br>to detect exoplanets<br>and measure their<br>masses and orbitsSee SPA sections:<br> | Summary<br>Measurements of masses<br>and orbits are crucial for<br>characterizing exoplanets,<br>and for modeling their<br>spectra and bulk<br>composition (see ESS report<br>p. 4-30). PRV is currently<br>the predominant means of<br>dynamically measuring<br>masses of exoplanets, and<br>stellar jitter dominates RV<br>uncertainty budget. Stellar<br>RV "jitter" in its various<br>forms (attenuation of<br>convective blueshift by<br>stellar magnetic activity,<br>granulation, non-radial<br>oscillations, etc.) is an ever-<br>present source of noise over<br>a variety of timescales for<br>both PRV and astrometric<br>methods. While PRV is<br>capable of reaching Earth- | <b>Capability Needed</b><br><b>PRV:</b> Earth orbiting at 1<br>AU around a G2V star has<br>RV amplitude of ~9 cm/s,<br>and Earth-mass planet in<br>corresponding HZ around<br>M2V star (~0.2 AU) has<br>RV amplitude of ~30 cm/s.<br>RV jitter intrinsic to star is<br>at ~m/s level, and higher<br>for active stars. Requires<br>precision below 10 cm/s<br>but accuracy at ~cm/s<br>level so that systematic<br>errors do not dominate.<br>Major commitments of<br>observing time on<br>telescopes with PRV<br>spectrographs needed.<br>Need new analysis<br>methods to correct for<br>stellar RV jitter using high<br>spectral resolution and<br>broad spectral coverage. | <b>Capability Today</b><br><b>PRV:</b> Smallest claimed<br>RV amplitudes detected<br>today are ~0.4 m/s for<br>Tau Ceti. Modern single<br>measurement precision<br>(SMP) among ongoing<br>RV surveys summarized<br>in Fischer et al. (2016,<br>PASP, 128, 066001):<br>HARPS and HARPS-N<br>leading the way with 0.8<br>m/s. NEID in<br>development (~0.3 m/s).<br>Instrument systematics<br>and stellar noise are not<br>well understood. SOA in<br>PRV capabilities were<br>presented at EPRV4<br>workshop (March 2019).<br><b>Astrometry:</b> Studies on<br>stellar astrometric jitter<br>of stars and the Sun from<br>2000s during | Mitigation in<br>Progress<br>Major NASA investment<br>in PRV instrument<br>(NEID) for WIYN<br>(northern hemisphere 4-<br>m class). NEID data for<br>RV standard stars will be<br>made public<br>immediately.<br>Investigating options for<br>archiving solar data with<br>PRV spectrographs.<br>SAG-8 (Plavchan,<br>Latham et al. 2015;<br>arXiv:1503.01770)<br>discussed effective use of<br>the resources needed for<br>confirming exoplanets.<br>Upon ESS<br>recommendation, NASA<br>and NSF chartered<br>Extreme Precision Radial<br>Velocity Initiative<br>Working Group in 2019 |
|                  |                                                                                                                                                                                  | capable of reaching Earth-<br>mass planets in HZs around<br>M dwarfs, it is not known<br>whether current limits to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | broad spectral coverage.<br>PRV datasets for the Sun<br>enable testing and<br>improvement of mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000s during<br>development phases for<br>SIM and Gaia. Existing<br>ground-based astrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Working Group in 2019<br>to provide community<br>blueprint for agency<br>support of EPRV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                                                                                                                                  | PRV can be overcome to<br>detect Earth-like planets<br>orbiting solar-type (FGK)<br>stars. If technological gap of<br>achieving sub- $\mu$ as-level<br>astrometry is achievable,<br>and astrometric jitter could<br>be understood/modeled at                                                                                                                                                                                                                                                                                                                                                                                                                                             | strategies. Reaching<br>requisite velocities for<br>characterizing temperate<br>rocky planets for stars<br>hotter than ~F7, and/or<br>with high vsin <i>i</i> ,<br>representing tens of % of<br>nearby direct imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (CHARA, NPOI, VLTI)<br>cannot reach accuracy<br>required. Gaia is<br>collecting data that<br>should lead to<br>astrometric detections of<br>giant exoplanets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | progress through 2020s<br>(report to be delivered<br>early 2020).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| ID                    | Title | Summary                                                                                                                                                                                                                                                                     | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capability Today | Mitigation in<br>Progress |
|-----------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
| SCI-<br>08<br>(cont.) |       | sub-µas-level, then<br>astrometry could provide an<br>alternative method which<br>could yield orbits and<br>masses for rocky planets<br>around nearby stars. Note:<br>technology needs for EPRV<br>and astrometry are tracked<br>separately in ExEP<br>Technology Gap List. | targets, is even more<br>challenging.<br>Astrometry: Exo-Earth<br>orbiting 1 M <sub>Sun</sub> star at 10<br>pc induces amplitude of<br>~0.3 $\mu$ as. Predicted<br>astrometric amplitudes for<br>1 M <sub>Earth</sub> planets at EEID<br>for large direct imaging<br>mission targets within 30<br>pc range are<br>predominantly between<br>0.1-1 $\mu$ as. For Sun-like<br>activity levels, astrometric<br>jitter would be ~0.05 $\mu$ as –<br>small, but not negligible<br>(but higher for more active<br>stars). Develop capability<br>to perform precision<br>astrometry on nearby<br>bright stars as precursor or<br>followup for large direct<br>imaging mission, as<br>backup to PRV for<br>detecting temperate rocky<br>planets and measuring<br>their masses and orbits. |                  |                           |

| ID         | Title                                                                                                                                                                                                                                                                         | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SCI-<br>09 | Dynamical<br>confirmation of<br>exoplanet<br>candidates and<br>determination of<br>their masses and<br>orbits<br>See SPA sections:<br>2 (exoplanet<br>populations),<br>3 (exoplanet<br>dynamics),<br>5 (properties of<br>target stars),<br>6 (atmospheres &<br>biosignatures) | Exoplanet candidates<br>detected via various<br>methods require<br>confirmation and<br>measurement of masses (the<br>majority discovered<br>presently and in near future<br>will be via transit method,<br>e.g. K2, TESS). Mass<br>constraints are crucial for<br>understanding atmospheric<br>spectra and planetary bulk<br>density / composition.<br>Ephemerides need to be<br>known precise enough to<br>support scheduling of transit<br>spectroscopy. | There are insufficient<br>precision RV resources<br>available to the community<br>to follow up all K2 and<br>TESS candidates that may<br>be relevant to JWST<br>spectroscopic study.<br>Follow up K2 and TESS<br>candidates with quick look<br>low-precision RV<br>screening for false<br>positives (e.g. eclipsing<br>binaries), then high<br>precision (~1-5 m/s) to<br>determined masses of the<br>best candidates. TESS<br>follow-up requires PRV<br>observing time in N and S<br>hemispheres. Overall,<br>TESS will generate ~15k<br>candidates of which<br>~1,250 should be detected<br>in the 2-min cadence data,<br>with ~250 smaller than 2<br>R <sub>Earth</sub> (Barclay et al. 2018,<br>Ap.J.S. 239 2). Modeling<br>of transit timing variations<br>(TTVs) can be used for<br>transiting multi-planet<br>systems; further<br>observations can improve<br>orbits and masses. Transit<br>epochs need to be known<br>to within a few hours. | Keck HIRES limitation<br>for Kepler/K2 exoplanet<br>confirmation is available<br>time, not instrument<br>precision. At 200 new<br>Kepler/K2 validations<br>per year, would need 4<br>years to achieve 50%.<br>For TESS, initial<br>screening of science<br>team targets is ongoing<br>with LCOGT, Euler,<br>OHP, Magellan/PFS,<br>HARPS and HARPS-N<br>for precise follow-up at<br>~1 m/s on the best ~100<br>candidates (expect<br>measured masses for<br>only 50). TTV: e.g.<br>analysis of Kepler multi-<br>planet systems; Spitzer<br>Space Telescope<br>campaign observing<br>transits in 7-planet<br>TRAPPIST-1 system. | The NEID instrument<br>has been delivered to<br>WIYN and is being<br>commissioned at time of<br>writing. Community<br>access is expected to start<br>in 2020A. NASA<br>community access to<br>Keck HIRES and<br>eventually the new Keck<br>KPF instrument.<br>Options for additional<br>southern hemisphere<br>community PRV access<br>are being explored. US<br>community is adding<br>new spectrograph<br>capabilities (e.g.<br>MAROON-X on<br>Gemini-N, etc.). |

| Title                                                                                                                                                                                    | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Precursor<br>observations of<br>direct imaging<br>targets<br>See SPA sections:<br>3 (exoplanet<br>dynamics),<br>5 (properties of<br>target stars),<br>6 (atmospheres &<br>biosignatures) | Advance screening of<br>targets can determine which<br>stars to prioritize for future<br>exoplanet spectral<br>characterizations. Refine<br>target lists (originally<br>created during concept<br>studies) and improve basic<br>stellar parameters for targets<br>for direct imaging missions<br>taking into account new<br>observations. PRV and/or<br>astrometric observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets for potential spectral<br>characterization, and (2)<br>detect stellar companions<br>which may limit efforts to<br>detect small planets using<br>high contrast imaging.<br>Increasing levels of stellar<br>characterization are needed<br>going from input target star<br>to known exoplanet host star<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanet<br>spectra. | For the most likely targets<br>of future direct imaging<br>missions, assess the<br>detection limits provided<br>by existing PRV<br>data. Improve these limits<br>through a precision RV<br>observing program in both<br>N and S hemispheres,<br>executed consistently over<br>> 5 years. ESA Gaia<br>mission astrometry (final<br>data release in early<br>2020s) may reveal<br>evidence of astrometric<br>perturbations by<br>exoplanets which could be<br>targets for direct imaging.<br>Constraints on stellar<br>multiplicity from high<br>resolution imaging needed<br>for assessing whether<br>given star is an adequate<br>target for direct imaging<br>(starlight suppression<br>performance is affected by<br>neighboring stars).                                                                                                                                                                             | Howard & Fulton (2016,<br>PASP, 128, 4401)<br>completed analysis for<br>2014 versions of<br>WFIRST, Exo-S, and<br>Exo-C target lists using<br>data from California<br>planet search. Southern<br>target stars are lacking.<br>There are published (and<br>unpublished) RV data<br>for many potential<br>WFIRST targets. Butler<br>et al. (2017, AJ, 153,<br>208) published 61k RVs<br>measured over 20 years<br>for stars in Lick-<br>Carnegie Exoplanet<br>Survey, including many<br>mission targets.<br>Facilities: Keck HIRES,<br>Lick APF, EXPRES,<br>HARPS-N, HARPS,<br>NEID coming online<br>soon. Precursor<br>catalogs: ExoCat-1<br>represents the most<br>complete publicly<br>available catalog, but is<br>incomplete and<br>becoming out of date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPRV Working Group<br>will recommend<br>precursor observations<br>and datasets which may<br>be added to NExScI<br>Exoplanet Archive.<br>ExEP chief scientists will<br>post new catalog of<br>NASA mission targets<br>(targets identified in<br>studies for direct imaging<br>large and probe mission<br>concepts) to motivate<br>community observations<br>and analysis of these<br>systems. NEID GTO<br>program on WIYN is<br>surveying ~20% of<br>NASA Mission Targets.<br>EXPRES GTO program<br>on DCT is surveying<br>~10-15% of NASA<br>Mission Targets. Priority<br>of precursor work on<br>WFIRST CGI targets is<br>unclear due to the<br>instrument's current tech<br>demo status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                          | Precursor<br>observations of<br>direct imaging<br>targets<br>See SPA sections:<br>3 (exoplanet<br>dynamics),<br>5 (properties of<br>target stars),<br>6 (atmospheres &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Precursor<br>observations of<br>direct imaging<br>targetsAdvance screening of<br>targets can determine which<br>stars to prioritize for future<br>exoplanet spectral<br>characterizations. Refine<br>target lists (originally<br>created during concept<br>studies) and improve basic<br>stellar parameters for targets<br>for direct imaging missions<br>taking into account new<br>observations. PRV and/or<br>astrometric observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets for potential spectral<br>characterization, and (2)<br>detect stellar companions<br>which may limit efforts to<br>detect small planets using<br>high contrast imaging.<br>Increasing levels of stellar<br>characterization are needed<br>going from input target star<br>to known exoplanet host star<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanet | Precursor<br>observations of<br>direct imaging<br>targetsAdvance screening of<br>targets can determine which<br>stars to prioritize for future<br>exoplanet spectral<br>characterizations. Refine<br>target lists (originally<br>created during concept<br>studies) and improve basic<br>stellar parameters for targets<br>for direct imaging missions<br>taking into account new<br>observations. PRV and/or<br>astrometric observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets for potential spectral<br>characterization, and (2)<br>detect stellar companions<br>which may limit efforts to<br>detect small planets using<br>high contrast imaging.<br>Increasing levels of stellar<br>characterization are needed<br>going from input target star<br>to known exoplanet host star<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanetFor the most likely targets<br>of future direct imaging<br>missions, assess the<br>detection limits provided<br>by existing PRV<br>data. Improve these limits<br>through a precision RV<br>observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets for potential spectral<br>characterization are needed<br>going from input target star<br>to known exoplanet host star<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanetFor the most likely targets<br>for future direct imaging<br>missions, assess the<br>detect on limits provided<br>by existing PRV<br>data. Improve these limits<br>through a precision RV<br>observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets target for direct imaging.<br>Constraints on stellar<br>multiplicity from high<br>resolution imaging needed<br>for assessing whether<br>given star is an adequate<br>target for direct imaging<br>(starlight suppression<br>performance is affected by<br>neighboring stars).< | Precursor<br>observations of<br>direct imaging<br>targets can determine which<br>direct imaging<br>targets can determine which<br>stats to prioritize for future<br>exoplanet spectral<br>characterizations. Refine<br>target lists (originally<br>created during concept<br>studies) and improve basic<br>stellar parameters for targets<br>for direct imaging missions<br>taking into account new<br>observations. PRV and/or<br>astrometric observations are<br>desired in order to (1) detect<br>(or constrain presence of)<br>planets for potential spectral<br>characterization are needed<br>going from input target stars<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanetFor the most likely targets<br>of three most likely targets<br>of three most likely targets<br>of three second initis provided<br>by existing PRV<br>data. Improve these limits<br>through a precision RV<br>observing program in both<br>N and S hemispheres,<br>executed consistently over<br>> 5 years. ESA Gaia<br>mission astrometry (final<br>data release in early<br>2020s) may reveal<br>evidence of astrometric<br>perturbations by<br>exoplanets which could be<br>targets for direct imaging.<br>Increasing levels of stellar<br>characterization are needed<br>going from input target star<br>to known exoplanet host star<br>(see SCI-07), in order to<br>prepare for analysis and<br>interpretation of exoplanetFor the most likely targets<br>for three most likely targets<br>for direct imaging.<br>Constraints on stellar<br>multiplicity from high<br>resolution imaging needed<br>for assessing whether<br>given star is an adequate<br>target for direct imaging<br>(starlight supression<br>performance is affected by<br>neighboring stars).Howard & Fulton (2016,<br>PASP, 128, 4401)<br>complete publicly<br>available catalog, but is |

| ID         | Title                                                                                                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                       | <i>2 y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCI-<br>11 | Understanding the<br>abundance and<br>distribution of<br>exozodiacal dust<br>See SPA section<br>11 (exozodiacal dust) | Exozodiacal dust is a noise<br>source that compromises<br>imaging and spectroscopy of<br>small planets in and around<br>the habitable zones of<br>nearby stars. Substructure<br>in the exozodi distribution<br>may mimic the presence<br>of an exoplanet and thus<br>confuse searches made with<br>smaller telescope<br>apertures. To date,<br>substructure in the<br>distribution of habitable<br>zone dust has been mapped<br>only for the case of our own<br>solar system. | Statistical knowledge of<br>the level of exozodiacal<br>dust relative to the level in<br>our solar system is needed<br>for nearby FGK stars that<br>will be the targets of future<br>exoplanet direct imaging<br>missions. Mission yield<br>simulations of how the<br>current best estimates of<br>exozodi dust levels affect<br>the integration times and<br>achievable signal-to-noise<br>ratios for detection and<br>characterization, as a<br>function of mission<br>architecture. Simulations<br>of scenes as viewed by<br>future imaging missions,<br>quantifying the<br>effectiveness of multi-<br>epoch observations to<br>discriminate exozodi<br>clumps from planets.<br>Directly observed images<br>of exozodi disks in the<br>habitable zone would be<br>very valuable, if they were<br>sensitive down to the ~5<br>zodi level and had the<br>resolution to show<br>substructures and validate<br>theoretical simulations. | Images are available<br>showing the substructure<br>of cold (Kuiper Belt)<br>debris disks as seen by<br>HST, ground adaptive<br>optics, Herschel, and<br>ALMA. There is a rich<br>literature of theoretical<br>models of debris disk<br>structure treating such<br>effects as dust radial<br>transport and planetary<br>perturbations on debris<br>disk structure. The<br>LBTI HOSTS survey<br>has measured the mid-IR<br>excess emission due to<br>warm exozodiacal dust<br>in the habitable zones of<br>38 stars (Ertel et al.<br>subm.), finding a median<br>exozodi level 4× that of<br>the solar system but with<br>a large 1 $\sigma$ uncertainty of<br>7 zodis. While the<br>yields of exoplanet<br>direct imaging missions<br>are a weak function of<br>the exozodi level (Stark<br>et al 2015, ApJ, 808<br>139), the quality of<br>spectra of Earth analogs<br>becomes problematic for<br>telescope apertures < 4 | Progress<br>The LBTI team is<br>assessing the cost and<br>science value of several<br>upgrades that would<br>increase the sensitivity of<br>their instrument.<br>WFIRST CGI scientists<br>are working to quantify<br>what sensitivity their<br>instrument might be able<br>to achieve to exozodiacal<br>dust in a survey of<br>nearby stars, should<br>NASA decide to re-<br>instate a science program<br>for that instrument. The<br>capabilities of current<br>near-IR interferometers<br>and upcoming ELTs to<br>constrain warm exozodi<br>levels need to be<br>assessed. |

| ID         | Title                                                                                                                                             | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capability Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mitigation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m if the exozodi level is<br>> +1 $\sigma$ from the LBTI<br>median result. Further<br>observational work that<br>reduced the uncertainty<br>in the median exozodi<br>level would reduce the<br>risk of marginal<br>spectroscopic science<br>return by future direct<br>imaging missions.                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SCI-<br>12 | Measurements of<br>accurate transiting<br>planet radii<br>See SPA sections:<br>2 (exoplanet<br>populations),<br>5 (properties of<br>target stars) | Measurements of accurate<br>exoplanet radii are<br>important for: classification<br>of planets, estimating their<br>densities, modeling<br>compositions, atmospheres,<br>and spectra, and discovering<br>trends important to<br>understanding planet<br>formation and evolution.<br>The accuracy of measured<br>exoplanet radii is limited by<br>the accuracy of measured<br>stellar radii, which can be<br>dominated by the effects of<br>blending of light by<br>companion stars (some of<br>which may be bound<br>companions). Detailed<br>observations are needed to<br>derive accurate stellar radii.<br>The large number of TESS | High resolution imaging in<br>bulk to validate K2 and<br>TESS candidates. Access<br>to observatories equipped<br>with AO or speckle<br>imaging cameras and<br>turnkey pipelines, is<br>needed in both N and S<br>hemispheres. TESS will<br>discover >15k exoplanet<br>candidates and would need<br>to measure >1k stars/yr to<br>complete the work within<br>a decade. Support work<br>that improves estimation<br>of stellar and exoplanet<br>parameters for discovered<br>exoplanet systems.<br>Supporting photometric<br>and spectroscopic stellar<br>data, along with<br>astrometric, photometric, | NESSI speckle camera<br>at WIYN offers ability to<br>screen a subset of targets<br>to very small<br>separations. SOAR<br>HRCam (speckle), and<br>ground-based AO<br>observations with e.g.,<br>Robo-AO, Keck/NIRC2,<br>VLT/NACO, etc. have<br>helped validate KOIs.<br>Gaia DR2 photometry &<br>astrometry resolves<br>bright multiples, and<br>provides parallaxes for<br>improving radii<br>estimates. High<br>resolution spectroscopy<br>can reveal spectroscopic<br>binaries, and injection<br>and recovery tests can<br>place further quantitative | Continued NASA<br>support for community<br>access to speckle<br>cameras on WIYN,<br>Gemini-N and Gemini-S.<br>Note: SCI-12 is for<br>improving knowledge of<br>exoplanet radii<br>(especially for<br>deblending the<br>contributions from stellar<br>companions, both<br>physical and unphysical),<br>whereas SCI-07 focusses<br>on improving knowledge<br>of other stellar<br>parameters to help<br>inform the interpretation<br>and modeling of<br>exoplanet data (e.g.<br>spectra). |

| ID | Title | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capability Needed                                                                                                                                                                                                                                                                                                                                   | Capability Today                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mitigation in<br>Progress |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|    |       | exoplanet candidates and<br>high expected contamination<br>rates (20" pixels) drives<br>requirement for large<br>community effort to<br>measure accurate stellar and<br>exoplanet radii and assess<br>multiplicity. Not accounting<br>for light contamination by<br>neighboring stars, or poor<br>stellar characterization, can<br>lead to exoplanet radii<br>systematically miscalculated<br>at the tens % level.<br>Complete vetting of TESS<br>targets with Kepler<br>approach could take<br>decades. TESS (including<br>FFIs) will generate 10×<br>more candidates than<br>Kepler, and AO and speckle<br>imaging validation of<br>Kepler prime mission<br>candidates took ~3 years.<br><i>Improvement in knowledge<br/>of other stellar parameters<br/>relevant to interpreting<br/>exoplanet data is outlined<br/>separately in SCI-07</i> . | and spectroscopic data<br>from latest Gaia data<br>releases, are critical for<br>accurately assessing stellar<br>parameters – and<br>exoplanet radii. For<br>occurrence rate studies,<br>accurate limiting radii for<br>planet detection for transit<br>survey stars for which<br>transiting planets were <i>not</i><br>detected is also important. | constraints on<br>companions. For<br>improving knowledge of<br>host star T <sub>eff</sub> , metallicity,<br>gravity: high-res.<br>spectroscopy surveys<br>(e.g. California-Kepler<br>survey), lower res.<br>Spectroscopy surveys<br>(e.g., APOGEE &<br>LAMOST), and<br>community access to<br>spectrographs for<br>extracting stellar spectra<br>(e.g. Keck HIRES,<br>NEID, CHIRON, etc.).<br>SOA reviewed at "Know<br>Thy Star – Know Thy<br>Planet" Conference in<br>2017. |                           |

## APPENDIX A: ACRONYM LIST

| ALMA    | Atacama Large Millimeter Array                                                          |
|---------|-----------------------------------------------------------------------------------------|
| APF     | Automated Planet Finder (robotic 2.4-m optical telescope at Lick Observatory)           |
| CGI     | Coronagraph Instrument (on WFIRST)                                                      |
| CHARA   | Center for High Angular Resolution Astronomy                                            |
| DR      | Data Release                                                                            |
| EC      | Executive Committee                                                                     |
| EEID    | Earth Equivalent Insolation Distance (EEID; $a_{EEID} = \sqrt{L}$ au where L is stellar |
|         | luminosity in solar units)                                                              |
| EPRV    | Extreme Precision Radial Velocity                                                       |
| ERS     | Early Release Science (JWST program)                                                    |
| ESS     | Exoplanet Science Strategy (2018) National Academies Report                             |
| ExEP    | Exoplanet Exploration Program                                                           |
| Exo-C   | Exo-Coronagraph (Probe Study)                                                           |
| Exo-S   | Exo-Starshade (Probe Study)                                                             |
| ExoPAG  | Exoplanet Program Analysis Group                                                        |
| ExoSIMS | Exoplanet Open-Source Imaging Mission Simulator                                         |
| ExSDET  | Exoplanet Standard Definitions and Evaluation Team                                      |
| FFI     | Full Frame Images                                                                       |
| GCM     | General Circulation Model                                                               |
| GI      | Guest Investigator                                                                      |
| GPI     | Gemini Planet Imager                                                                    |
| GTO     | Guaranteed Time Observations                                                            |
| HabEx   | Habitable Exoplanet Imaging Mission                                                     |
| HARPS   | High Accuracy Radial velocity Planet Searcher                                           |
| HARPS-N | High Accuracy Radial velocity Planet Searcher-North                                     |
| HATNet  | Hungarian-made Automated Telescope Network                                              |
| HIRES   | High Resolution Echelle Spectrometer                                                    |
| HOSTS   | Hunt for Observable Signatures of Terrestrial Planetary Systems                         |
| HST     | Hubble Space Telescope                                                                  |
| HZ      | Habitable Zone                                                                          |
| IRTF    | NASA Infrared Telescope Facility                                                        |
| JWST    | James Webb Space Telescope                                                              |
| KELT    | Kilodegree Extremely Little Telescope                                                   |
| KPF     | Keck Planet Finder                                                                      |
| JPL     | Jet Propulsion Laboratory                                                               |
| JWST    | James Webb Space Telescope                                                              |
| KOI     | Kepler Object of Interest                                                               |
| LBT     | Large Binocular Telescope                                                               |
| LBTI    | Large Binocular Telescope Interferometer                                                |
| LCOGT   | Las Cumbres Observatory Global Telescope Network                                        |
| LUVOIR  | Large UV/Optical/IR Surveyor                                                            |

| NASA   | National Aeronautics and Space Administration                 |
|--------|---------------------------------------------------------------|
| NEID   | NN-explore Exoplanet Investigations with Doppler spectroscopy |
| NESSI  | NASA Exoplanet Star (and) Speckle Imager                      |
| NExScI | NASA Exoplanet Science Institute                              |
| NPOI   | Navy Precision Optical Interferometer                         |
| PRV    | Precision Radial Velocity                                     |
| PTF    | Palomar Transient Factory                                     |
| RV     | Radial Velocity                                               |
| SAG    | Science Analysis Group                                        |
| SGL    | Science Gap List                                              |
| SMD    | Science Mission Directorate                                   |
| SMP    | Single Measurement Precision                                  |
| SIG    | Science Interest Group                                        |
| SIT    | Science Investigation Team                                    |
| STDT   | Science and Technology Definition Team                        |
| TBD    | To Be Determined                                              |
| TESS   | Transiting Exoplanet Survey Satellite                         |
| TPF    | Terrestrial Planet Finder                                     |
| VLTI   | Very Large Telescope Interferometer                           |
| WASP   | Wide Angle Search for Planets                                 |
| WIYN   | Wisconsin, Indiana, Yale, NOAO Observatory                    |
| WFIRST | Wide-Field Infrared Survey Telescope                          |