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Executive Summary

We report the results of Milestone 3 experiments for the Exoplanet Exploration Program
Starshade Technology Activity (S5). The goal of this milestone is to demonstrate through
experiment and analysis that solar glint from optical edge segments having undergone ther-
mal and deployment cycles remains fainter than visual magnitude V=25 for the WFIRST
Starshade Rendezvous Mission (SRM) and HabEx starshade missions.

Prototype optical edge segments were assembled from 500 mm long, chemically-etched
amorphous metal strips bonded to carbon fiber composite substrates. The working edge
is sharp with a radius of curvature of ∼150 nm. Segments are shaped with a curvature
approximating an SRM petal.

A custom scatterometer was built to measure the scatter at a fixed angle along the length
of the edge segments. Data from the scatterometer were combined with data from a separate
multi-angle scatterometer that measures the full angular scatter profile from 50 mm long edge
coupons.

Together, these instruments when combined with a starshade imaging analysis toolkit,
show that after thermal and deployment cycles, the average level of scatter from the segments
at the inner working angle is fainter than V=25 at the 95% confidence level, except for sun
angles > 78◦ in the SRM band 615-800 nm. The optical performance was not adversely
affected by thermal and deployment cycles. Methods to decrease the solar glint brightness
by a factor of 10 are discussed.

1



1 Introduction

This report presents the S5 efforts to verify solar glint performance (KPP3) and is intended
to close technology Milestone 3, which reads:

Optical edge segments demonstrate scatter performance consistent with solar glint lobes
fainter than visual magnitude 25 after relevant thermal and deploy cycles.

This specification applies over the full range of wavelengths and star-sun angles for the
WFIRST Starshade Rendezvous Mission (SRM) and the HabEx Mission (Table 1).

Solar glint lobes are regions of mostly specular reflections and diffraction from optical
edges (OE) oriented normal to the Sun-Starshade-Telescope plane. The lobes appear in
marginally resolved spots mostly contained within the inner working angle (IWA) defined
as the angle from the center to the tips of the starshade as seen from the telescope. The
impact of these lobes on detection performance is not straightforward to evaluate. Since we
do not know the planet position a priori, and since most of the light in the glint lobes does
not impact planet detection, the relevant lobe brightness metric is the azimuthally averaged
brightness at and beyond the IWA. Here we report on the solar glint performance as the
95% confidence interval of the azimuthal average of the brightness at the IWA. Our results
are based on experimental measurements of scatter from prototype optical edge segment
assemblies that have undergone extensive thermal and deployment cycles.

Table 1: Starshade Missions

Mission Bandpass Starshade Diam. Distance Star-Sun Angle
SRM (‘blue’) 425-552 nm 26 m 37.2 Mm 54◦ - 83◦

SRM (‘green’) 615-800 nm 26 m 25.7 Mm 54◦ - 83◦

HabEx 300-1000 nm 52 m 76 Mm 40◦ - 83◦

Section 2 describes the appearance of the glint lobes and the physics behind them.
Section 3 details two custom scatterometers and how they are used to measure edge

segment optical performance and to predict flight performance. One is a multi-angle scat-
terometer (MAS) used to measure the scatter properties of 50 mm long edge coupons over a
3 mm wide spot-size. The other is a single-angle scatterometer (SAS) used to measure the
scatter along 500 mm long edge segments and 50 mm long coupons over their full lengths.
The segment-to-coupon scatter ratio is computed and used in conjunction with the MAS
data in the analysis of glint lobe brightness.

Section 4 describes the flight OE design with approximately 1,000 mm long edge segments
that consist of a photochemically etched amorphous metal (AM) working edge bonded to
a carbon fiber reinforced polymer (CFRP) substrate. The etching process creates a sharp
terminal edge that both limits solar glint and defines the precise in-plane shape. In-plane
shape is not a metric for this milestone, but is a petal level requirement that has been
characterized (see Appendix A).

Section 4 also describes the OE prototypes used as MS3 test articles. A preliminary
AM-CFRP bonding process resulted in sub-optimal adhesion and allowed excess epoxy to
flow onto the terminal edge. There are noticeable local increases to OE segment scatter that
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are hypothesized to be either residual cured epoxy or damage from removing uncured epoxy
during assembly. An ongoing effort is developing an improved OE bonding process that will
ultimately be verified as part of MS 5b.

Section 5 presents the relevant environments, test levels and margins. TRL-5 is defined
at the OE segment level with relevant environments of thermal and deploy cycles (Section
2.1.7 of the S5 Technology Plan1). OE segments will be electrically grounded to the petal
assembly and spacecraft to preclude discharge events. The TRL-6 relevant environments
will expand to include dust, space charging and launch vibration. There are no anticipated
problems with performance in all operational environments.

Optical test data for both coupons and segments are reported in Section 6. Section
7 presents the detailed error analysis and derives the model uncertainty factor (MUF) for
95% confidence. Milestone compliance is addressed by estimating glint lobe magnitudes for
the relevant wavelength bands and solar angles. Overall performance is within milestone
specification for all bands and solar angles with 95% confidence, with the exception of the
solar angle range of 78◦-83◦ in the SRM green band, where the average lobe magnitude is
slightly brighter than V=25. This is followed by a discussion of the implications to mission
performance at these levels of solar glint. The section also includes a discussion of glint
lobe brightness mitigation approaches. Conclusions are presented in Section 8. Finally,
Appendices A-E provide details on in plane shape testing, stowed testing, a table of the
segment test sequences, and plots of segment and coupon scatter test results generated by
the SAS.

2 Solar Glint

2.1 Glint on the Starshade

A small fraction of sunlight will glint from the edge of the starshade into the telescope. Even
with the vast distance of tens of thousands of kilometers, glint from the razor-sharp edges
is the brightest source of instrument background. The observational geometry is shown in
Figure 1. The sun is behind (on the target side of) the starshade so as not to illuminate the
telescope-facing surface. While some of the starshade’s edges can be shaded from the sun
using structures on the target-facing side, any part of the edge whose normal is in the plane
of the sun-starshade-telescope triangle and within 90◦ of the sun and telescope will scatter
some light in the telescope’s direction. For the WFIRST starshade, roughly 130 m of edge
contributes to the glint, of which ∼10 m has a strong specular component.

Previous testing showed that small-radius edges exhibit superior performance to larger
radius edges, including those with commercial ultra-black coatings.2,3 The terminal edges
are sub micron in radius and tend to be quite specular. With specular edges, those edges
in the correct orientation ’broadside to the sun’ will contribute most of the observed glint.
While this localized glint is much brighter than one would observe with diffuse edges, it
is also concentrated inward of the starshade’s tips, as shown in Figure 2. In this example,
which is based upon the measured scatter from amorphous metal edges, the sun is at φ = 63◦

(27◦ behind the plane of the page). Those parts of the starshade edge that are horizontal in
the picture contribute most of the glint. The result is a two-lobed pattern, with each lobe
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only partially resolved at the resolution of the telescope.

Figure 1: Orientation of the sun, starshade, telescope, and a segment of optical edge that is
glinting. The edge orientation angle is θ, and the sun angle is φ.

All of the sources of glint are internal to the nominal Inner Working Angle (IWA), defined
as the angle to the outermost tip of the starshade. The wings of the telescope point spread
function (PSF) are responsible for all of the glint at angles larger than the IWA. The total
flux of each lobe, including the wings, is equivalent to a V=24-25 magnitude star depending
on the starshade’s distance and the wavelength, and of course the quality of the optical
edges. In the WFIRST Starshade Rendezvous band of 615-800 nm, when the starshade is at
a distance of 26 Mm, the integrated light of the lobes is about 2 magnitudes brighter than
in the bluer band, 425-552 nm, where the separation is greater.

Planets are typically detected at the IWA and larger angles, in the wings of the glint
lobes. About 40% of the glint light appears beyond the IWA. The process of detecting a
planet requires analysis with a photometric aperture, e.g., a simple circular aperture or a
matched filter, and at the IWA this aperture will integrate light at angles centered on the
IWA.

In the right panel of Figure 2 we show the equivalent magnitude within a photometric
aperture with diameter λ/D where λ is the central wavelength in the bandpass and D is the
telescope diameter (D=2.37 m for WFIRST). This image is the convolution of the starshade
image on the left with a uniform circular aperture of diameter λ/D. The brightest point at
the IWA is about 1 magnitude fainter than the integrated light of the glint, and the average
light at the IWA within the photometric aperture is ≈ 0.8 magnitudes fainter than the peak.
We will return to these points in the discussion of the results, Section 7.2. Note that the
Johnson System of magnitudes is used throughout this document.

2.2 Glint Physics

We have developed and validated models to understand the nature of the scatter and guide
the selection of edge shape, material, and radius. The first models we explored are described
by McKeithen et al5 and include: an analytical description of the field diffracted and reflected
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Figure 2: Left: Solar glint lobes are shown for the 26 m diameter WFIRST Rendezous
starshade mission at a distance of 25.7 Mm, with bandpass 615-800 nm, and the sun 63◦

from the starshade normal (27◦ behind the plane of the page). For reference, a V=25 A0V
star is also shown to the lower right; brightness scale is relative to the peak brightness of
the star. The starshade is shown superimposed on the glint lobes. Right: the image has
been convolved with an aperture 65 mas wide, equal to a photometric aperture of diameter
λ/D at λ = 710 nm. This image shows the magnitude of the glint centered at any point,
and integrated over the photometric aperture. The circle around the starshade is the IWA.
This simulation was performed with the Starshade Imaging Simulation Tookit for Exoplanet
Reconnaissance (SISTER) imaging package4 using scatter data from an amorphous metal
edge coupon.
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by a cylinder-tipped half plane (a lollipop model); a finite-difference time domain (FDTD)
model called Meep that solves Maxwell’s equations in small temporal and spatial steps; and
a combined diffraction and micro-facet reflection model (Modified Sommerfeld microfacet
model, or MSµF) we developed to allow us to explore different radii, materials, and coat-
ings. Recently, we have been using the commercial FDTD software Lumerical to model the
performance of multi-layer coated edges (Section 7.2.2). Figure 3 shows a comparison of our
models with a chemically etched amorphous metal edge coupon. The model predictions are
in family with the measured data. Through the range of 40◦ − 60◦ the Lumerical prediction
for amorphous metal underpredicts the measurements by 20-25%. The difference may be
entirely attributable to the estimation error of the effective edge radius. The MSµF model is
a better predictor, but it is not useful for the general case of a coated surface. The bottom-
most curve shows the prediction for a 150 nm amorphous metal edge coated with a thin
multi-layer hybrid interferometric/absorptive coating. This coating, which greatly reduces
the scatter, even below the ideal diffraction limit, became available late in our study. We
have additional discussion on this coating in Section 7.2.2.

The models explain the general φ dependence of the measured data which is nearly flat
over the WFIRST operational range 54◦ < φ < 83◦, and steeply increases at small angles
where diffraction (the dashed black curve of Figure 3b) is dominant.

Figure 3: Model predictions vs. lab data for an amorphous metal edge. These data are for
the dominant ’S’ polarization which is parallel to the optical edge. The plot is scaled to show
the fractional scatter in a collimated beam at a distance of 40 microns from the scattering
edge. For a collimated beam, the fractional intensity for scatter from a straight edge scales
linearly with distance.

Based upon these models, current and previous6 measurements, and a host of mechanical
factors, we adopted sharp, uncoated, amorphous metal edges as our baseline. These edges,

6



when etched to a radius of 100-200 nm, will scatter light to within a factor of 2 of the
theoretical limit set by diffraction for a perfect conductor. In future work we will study the
performance with a hybrid anti-reflection coating.

3 Measuring Glint in the Laboratory

We have built two instruments to measure the scatter function from optical edges. The first,
the Multi-Angle Scatterometer, was built several years ago and measures the full 2-D scatter
function2 of ∼50 mm long coupons. The second, the Single-Angle Scatterometer,7 was built
in 2018-2019 for Milestone 3 and measures over a fixed full-cone angle of ∼30◦ along the
500 mm length of curved optical edge assemblies. In this section we briefly describe both
instruments.

3.1 Multi-Angle Scatterometer

The MAS was designed to measure scatter performance of coupon scale (roughly 25 mm x 50
mm, Figure 4) components over the full range of possible sun angles. This measurement can

Figure 4: A 500 mm long optical edge segment. The amorphous metal edge is sandwiched
between graphite composite substrates. Inset: an amorphous metal coupon mounted in its
holder.

be used to test manufacturing methods or coatings before moving to larger components. The
instrument has been more completely described elsewhere.2 A general schematic and image
is shown in Figure 5. To summarize, a collimated, calibrated 633 nm laser illuminates the
terminal radius of an optical edge coupon that scatters light into a detector. The coupon and
laser light can be rotated about two degrees of freedom to simulate the sun moving to different
positions relative to the starshade. In both the MAS and Single-Angle Scatterometer (SAS),
the source and detector are, for convenience of implementation, in the opposite sense to the
sun and the telescope. This arrangement does not affect the range of angles explored.

The output of the MAS is effectively a heat map (Figure 6) that shows how an edge
scatters light over any given angle. Information from the heat map can then be extracted
to understand the scattered light characteristics of an entire starshade. Every pixel in the
heatmap corresponds to a angle of the sun (vertical axis) and a position angle of the optical
edge relative to the sun and telescope (horizontal axis), with specular reflection at 0◦. The
data from this map is the input to the scatter calculations in the SISTER simulations.

The long-term repeatability of the MAS (over several months) is the largest contributor
to the Milestone 3 error budget. Measurements of the scatter of an amorphous metal coupon
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between February and October 2019 had a standard deviation of 10%. It is possible that
some of this is due to changes in both the position of the measurement along the edge, as well
as changes in the edge itself (e.g. more or less clean). However, we are not able to separate
those effects from the instrument itself and therefore use the measured repeatability of 10%
in our estimation the MAS precision.

Collimated Laser Light

Edge Coupon

Scattered Light

Detector

(a)
(b)

Figure 5: (a) Simplified schematic of the Multi-Angle Scatterometer and (b) image of as-
sembled instrument

3.2 Single-Angle Scatterometer

The SAS measures scatter along the length of an entire edge up to 1 m long, but only over
a fixed cone angle. Because the SAS has no means of measuring the unscattered beam, it
has no absolute scatter calibration; it is used to determine the ratio of one scattering edge
relative to another, e.g., etched coupons relative to razor blades, and edge segments relative
to coupons.

The optics of the instrument are composed of a 633 nm laser launcher, an alignment
detector, and a camera tube. A test article is rigidly mounted while the instrument is fixed
to two translation stages and one rotational stage, such that the camera can follow the edge
and orient itself perpendicular to it. A final vertical stage is attached to the camera itself
for focusing. Similarly to the MAS, a laser illuminates the terminal radius and scatters light
into the camera. The camera images the scattered light, and the sum of pixel brightnesses is
converted to a relevant scattered light measurement. A schematic of the major components
as well as a picture of the device are shown in Figure 7. Example images taken with the
camera are shown in Figure 8. All detectors and the camera have narrow bandpass filters
to remove the majority of room light. More detail on each component and the operation of
the instrument follows.

A laser beam enters the system horizontally through a single mode optical fiber and laser
collimator which expands the beam into a roughly 10 mm diameter circle. The beam is
linearly polarized such that equal power is measured in both S- and P- polarizations at the
output. The polarized beam passes through a 10:90 (R:T) non-polarizing beamsplitter. The
reflected light is then measured with a silicon detector to monitor power fluctuations. The
majority of the light passes through and is reflected up toward the test article with a folding
mirror, illuminating the terminal edge from below.
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Figure 6: Fractional intensity heatmap from an amorphous metal sample, with sun orienta-
tion on the horizontal axis and angle to the starshade normal on the vertical axis.

Test Article

Measurement

Camera

Rotational Stage
Translation Stage

(Left ↔ Right)

Translation Stage
(Into Page)

Vertical

Stage

Alignment

Detector

Laser

(a) (b)

Figure 7: (a) Schematic diagram of Fixed Angle Scatterometer setup and (b) image of
assembled instrument
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Figure 8: Two images of scattered light from an optical edge segment taken through the
microscope objective. Axis units are in camera pixels. The field of view is approximately
1mm.

An alignment detector is positioned above the sample and consists of a collecting lens,
an ND filter, a bandpass filter, and a silicon detector. The alignment detector monitors the
position of the instrument relative to the terminal edge and is used to ensure that the laser
is centered on the edge.

The camera tube consists of a long working distance 10x microscope objective with an
acceptance angle of ∼30◦, a focusing lens, linear polarizer, bandpass filter, and a high-
resolution CMOS monochrome camera. The scattered light from the terminal edge enters
the objective and is focused through the filters onto the camera. The camera is able to image
roughly 1 mm of edge at a time. At each measurement location, light is gathered over a 1
mm length of edge at sun angles between 45◦ and 75◦ of normal.

The translational stages consist of a 1 m longitudinal stage, a perpendicular 200 mm
stage for lateral movement, a rotation stage, and a small 15 mm vertical stage. The optics
are held to the rotation stage with an aluminum bracket. The vertical stage is also mounted
to this bracket and holds only the camera tube, as the other optics do not need a vertical
range of motion.

The instrument is aligned to a test article by manually finding the corners of the terminal
edge using a reticle on the camera output. Using this process, the instrument can be repeat-
ably positioned within 50 µm. The position of the edge is then interpolated by the software
using user defined parameters. As the SAS moves, it re-centers and refocuses itself on the
terminal edge at each measurement location. At each measurement point, the instrument
converts quantity of light collected by the camera to an effective brightness at the telescope.

A sample set of SAS output data is given in Figure 9. Each data point on the plot corre-
sponds to a separate SAS measurement at 1 mm spacing along the edge. Each measurement
is the integral of the light across the camera, examples of which are shown in Figure 8. The
y axis units are the fractional scatter at a distance of 1 m, for a 1 m length of edge, at
a wavelength of 633 nm. The scatter scales inversely with distance squared, and linearly
with segment length. The diffraction component scales linearly with wavelength, and the
reflection component scales with the material reflectivity properties.

The fractional intensity scale in Figure 9 was determined by comparing the SAS segment
scatter to the mean SAS scatter from a set of coupons. The coupons were also measured
on the MAS where their absolute scatter characteristics were determined. The process of
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linking the SAS and MAS measurements is described in the following section.

Figure 9: Sample data taken with the SAS instrument

To verify SAS repeatability, a single edge coupon was measured over the central 90%
of its length on six separate occasions during the six week course of the milestone data
collection. The resulting repeatability of the mean scatter had a standard deviation of 0.9%.
In practice, reference coupons are measured regularly to ensure that the instrument is not
drifting.

3.3 Relating the SAS to the MAS

The pattern of solar glint lobes on the starshade shown in Figure 2 is computed from the
local (θ, φ) values of the MAS coupon heat map (Figure 6). Edges oriented near the specular
angle θ = 0◦ are bright; the glint lobes are concentrated in these regions of the starshade.
The angle of an illuminated starshade petal edge can take on any value −90 < θ ≤ 90 (the
other half is purposely blocked from direct solar illumination by the geometry of the edge
structure). Part of this range (−45 < θ ≤ 45) is represented on the horizontal axes of Figure
10 and by the rectangle spanning the width of the MAS heatmap.

The MAS measures only optical edge coupons while the SAS measures both the coupons
and the optical edge segment assemblies, but only over a subset of the MAS range of angles,
albeit at the angles most relevant to the operational range of the starshade. The SAS
acceptance cone is represented by a circle with a 15◦ radius overlaid onto the heatmap as
shown in the right side of Figure 10. The SAS measures the integrated scatter within the
circle; it does not return the local scatter information separating the specular and diffuse
components.

For a given coupon edge, the ratio of the light within the SAS acceptance cone to the
light within the full MAS rectangle is termed the selection ratio, ρ. A perfectly specular
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Figure 10: Heat map plots indicating the difference between a new, highly specular razor
blade and a more diffuse amorphous metal edge between the two scatterometer testbeds.
The circle represents the SAS acceptance cone.

edge will only reflect light at θ = 0◦, leading to a selection ratio of unity. Razor blades are
highly specular reflectors and we find ρ = 0.95. Amorphous metal blades are more diffuse
and the selection ratio drops to ρ ≈ 0.6. Measurement data supporting this result will be
discussed in Section 6.

The link between the SAS and the MAS is the circular region of the heatmap. This is the
region of (φ, θ) space that is sampled by both instruments. In Section 6 we will show that
there is good consistency in the value of ρ over a wide range of coupon scattering quality.

3.4 Optical Experiment and Glint Calculation Process

Now that we have introduced the nature of the glint from the starshade optical edges, the
instrumentation used to measure edge scatter, and the link between the two instruments, we
discuss the process of calculating the starshade glint from scatter measurements of optical
edge segments. This process is depicted graphically in Figure 11. Later, in Section 7.1, we
provide a detailed error budget for the glint calculation process.

First, edge segments and coupons are measured with the SAS. The ratio of the average
scattered energies is the Segment to Coupon Scatter Ratio (SCSR). The same coupons are
measured on the MAS, and from that an average heatmap is computed. It is then multiplied
by the SCSR. The SISTER software reads in the scaled heatmap and computes the solar
glint pattern.

The overall analysis flow, including comparison to analytical models, computation of
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Figure 11: Flowchart of measurements and analysis. Solar glint is computed from the average
coupon scatter heatmap multiplied by SCSR.

average heatmaps, and consistency checks between the instrument is shown in Figure 12.
We start with 500 mm long optical edge segments, and 50 mm long optical edge coupons, as
shown in Figure 4. The parts are measured before (when possible) and after environmental
testing which was performed on all segments and a subset of coupons (coupons A14, A21,
and A23). The SAS measures the scatter along the length of the segments and coupons,
returning a single value, the relative amount of scatter, at each position. This value has an
arbitrary, but stable instrument scale factor. The scale factor is of no consequence (if stable)
because we will always compare the ratio of segment scatter to coupon scatter, the SCSR.

The MAS measures only coupons. A MAS measurement consists of the detection of
scattered light at various source and edge orientations (φ, θ), relative to the detection of the
source shining directly into the detector. The output product is a heatmap of the fractional
scatter (Figures 6 and 10). The heatmap is scaled to represent the fractional scatter per
meter of edge, at a distance of 1 m from the edge, taking into account the angular size of
the sun.

Unlike the SAS, in the MAS, calibration of the ratio of scattered to direct beams is
critical. Fortunately, most parameters of the MAS are common to both measurements,
including beam power, aperture size, integration time, polarization state, and the detector.
An intensity monitor is used to measure and calibrate the small (∼ 1%) fluctuations of the
beam power during the experiment. However, there is one significant difference between the
scatter and direct measurements: a neutral density filter with OD∼ 7.2 is used to attenuate
the direct beam. Calibration errors of this filter directly scale the heatmap, and with it the
predicted flux of the glint lobes. We have calibrated the filter, which actually consists of
two cascaded filters with ND=2.5 and ND=4.7 filter, to a precision of 5% and cross-checked
with two independent power meters.

We form an average heatmap from the set of coupons. We multiply the heatmap by
the SCSR resulting in a scatter function whose amplitude is consistent with the segments,
and whose angular dependence is measured on coupons. Plots of SAS coupon and segment
data show that they behave similarly along their lengths. The resulting heatmap is read
by SISTER which computes the glint pattern by identifying the angle relative to the sun
and telescope of the locus of points forming the starshade edge. The angular components of
the edge orientation correspond to the scatter ratio at a point in the heatmap. These are
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Figure 12: Overall experiment implementation. Orange boxes are data. Blue boxes are
hardware. Green boxes are software and analysis tools.

identified and convolved with the telescope point spread function to form the image of the
glint pattern.

Finally, we analyze the total equivalent magnitude of the glint lobes, the total energy
outside the IWA, the brightest point outside the IWA, the average brightness at the IWA,
and the fraction of pixels at the IWA that are fainter than V=25.

4 Optical Edge Mechanical Design

4.1 Design Overview

The optical edge precisely defines the perimeter of the starshade, and more specifically each
petal. It is not continuous, but is made up of segments approximately one meter long that
are bonded to the structural edge of the petal, as depicted in Figure 13. The structural edge
is a continuous piece of CFRP defining the perimeter of the petal primary structure.

A cross section of an optical edge bonded to the petal is given in Figure 14a. The
substrate CFRP layup matches that of the structural edge. It provides structural support
to a 38 micron thin amorphous metal foil. The edge of the foil defines the terminal edge
of the segment and therefore the petal. The components are bonded together with EA9394
epoxy, chosen for its relatively high strength across a broad and relevant temperature range,
creep resistance, long pot life, and history of use in flight programs. Two bond operations
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Figure 13: Petal mechanical structure with placement of optical edge shown.

are necessary to assemble an optical edge: first the amorphous metal is bonded to the CFRP
substrate to produce a segment, then that segment is bonded to the structural edge. The
substrate is bonded to within 0.64 mm of the terminal edge to support the thin foil, while the
structural edge is offset approximately 12 mm inboard to prevent sunlight from illuminating
the telescope side of the starshade. All bond line thicknesses are controlled using 0.005”
diameter glass beads. A detail of the terminal edge is provided in Figure 14b.

Amorphous Metal

Epoxy Bondline

1.5”

0.005” Thick

0.0015” Thick

0.045” Thick

1.0”

0.025”Substrate

Structural Edge

0.045” Thick

Terminal Edge

(a)

Sunlight

Scattered Light

Telescope

Amorphous

Metal

(b)

Figure 14: (a) Cross section of optical edge flight and prototype designs, see Section A-A in
Figure 15 and (b) detail of terminal edge.

Amorphous metal is chosen to form the terminal edge due to the results of a previously
performed trade study.3 The grains in traditional metals create large, irregular etched fea-
ture sizes, resulting in more scattered light reaching the telescope. In contrast, the glassy
molecular structure of amorphous metals results in a relatively smooth and thus sharp bevel
well suited for this application. The specific alloy used is known by the trade name MBF23
and is manufactured by Metglas Inc. The alloy constituents include 60.5% Fe and 30% Ni by
mass percent, along with small amounts of Cr, B, and Si. Previous work6 also investigated
applying commercial black coatings to the amorphous metal in an effort to reduce reflectiv-
ity, and therefore the scattered light. However, these coatings increased the terminal radius
enough to cause a net increase in scattered light.
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4.2 Test Articles

Two sets of test articles were fabricated: assembled 500 mm segments and standalone 50
mm amorphous metal coupons. The segments incorporate etched amorphous metal bonded
between two pieces of carbon fiber as depicted in Figure 14a. The segments are too large to
be measured in the MAS. Therefore, coupons manufactured in the same lot as the segments
were used to characterize the performance of bare amorphous metal over all potential sun
angles as well as to establish a calibration constant between the MAS and the SAS, as
described in Section 3.3.

4.2.1 Segments

A total of six prototype segments were constructed as part of the MS3 effort. The segments
are full scale in cross section, and at 500mm long, are approximately half scale in length as
compared to the flight design. This section describes the design and manufacturing process
for segments in detail.

4.2.1.1 Segment Design

The design of the segment test articles is derived directly from the flight design described in
Section 4.1. The cross section is identical to that shown in Figure 14a, however the in-plane
shape of the segment is a 500 mm long sinusoid with a peak-to-peak amplitude of 20 mm,
as shown in Figure 15. This shape was chosen because it is consistent with the expected
curvature of the petal and enables easy detection of in-plane shape changes with traditional
data analysis tools. Although the length is about half that of full scale, all other dimensions
(e.g. thickness and width) are full scale to preserve critical dimensions for manufacture and
test. Additionally, all components are flight grade materials. The structural edge is included
in the assembly and extends 25 mm beyond the ends of the substrate to mimic the continuous
nature of the petal structure.

500mm

10mm

Terminal Edge

25mm
A

A

Figure 15: Layout of an as-built optical edge segment. The cross section A-A is given in
Figure 14a.

The purpose of constructing these segments was to demonstrate scatter performance
before and after environmental tests as defined in MS3, and separately to verify in-plane
shape performance (see Appendix A). Note that the tip segments which are manufactured
through the same process, as well as the integration of segments onto a petal, are addressed
by Milestone 5b.
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4.2.1.2 Segment Manufacturing

Construction of the optical edge segments is a multi-step process. The amorphous metal
was etched using a commercial process to form the precision edge while the CFRP structural
components were routed from fabricated panels. The edge components were then bonded
together with a multiple step bonding process to ensure the in-plane shape of the foil was
preserved and the terminal edge not damaged.

4.2.1.2.1 Etching The amorphous metal parts were photochemically etched from a 190
mm wide sheet of raw material. The cutout pattern is shown in Figure 16. Note a sinusoidal
slot that defines the terminal edge, a hole and slot that engage tooling pins during bonding,
and a pattern of large holes used for mounting the sheet during transportation from the
vendor. More material than is needed to form the edge was designed into each sheet due to a
concern that the amorphous metal would distort prior to bonding without sufficient support
material. However, this was found not to be an issue, so the excess material was removed
with shears before bonding and has since been removed from the design.

600 mm

190 mm

Terminal Edge

Approximate Cut Line

Figure 16: Etch pattern for the amorphous metal sheet. Also shown is the approximate
location where the amorphous metal was sheared from the sheet.

4.2.1.2.2 Bond Preparation To promote adhesion, the amorphous metal surface was
cleaned first using acetone and then ethanol wipes. No other surface preparation was per-
formed. Abrasion was previously attempted on test samples but caused the thin foil to
deform out of plane and risks damaging the terminal radius, and therefore was not imple-
mented in these test articles. After cleaning, the amorphous metal was secured to a custom
vacuum table for bonding.

The vacuum table was used to restrain the foil and maintain in-plane shape tolerances
during bonding. The table features 0.25 mm diameter micro-holes spaced 4.75 mm apart
in a pattern that matches the curve of the edge. It incorporates two alignment pins that
engage a hole and slot in the prototype hardware. To preserve optical properties, the table
incorporates a cutout that matches the shape of the terminal edge ensuring the edge does
not contact the tooling. For bonding, the table was masked with a 0.003” thick Teflon sheet
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to prevent inadvertent adhesion of the AM to the vacuum table. Holes were poked in the
Teflon over all necessary vacuum holes. The alignment pins were coated with a thin layer of
bond release to prevent adhesion of the pin to the edge. An amorphous metal component
secured to the vacuum table is shown in Figure 17a.

The bonding surfaces of the CFRP were cleaned with isopropyl alcohol (IPA), abraded
with ultra-fine 7447 Scotch-Brite, and cleaned again with IPA until no residue remained.
Care was taken to not break any fibers and to ensure abrasion was evenly applied. Bonding
was completed within four hours of all surface preparation steps.

4.2.1.2.3 Bond Operations The first of two bond operations was to adhere the amor-
phous metal to the CFRP substrate. This step only occurred after all surface prep was
complete and the amorphous metal was secured to the vacuum table. Epoxy was applied to
the CFRP using a screeding process. Two rails matching the shape of the substrate were
shimmed to be a known height above the component. After epoxy was initially deposited
onto this surface, a flat bar was run across the rails such that a controlled thickness of epoxy
was left on the carbon fiber. The desired bond line thickness was 0.005,” so 0.008” of epoxy
was screeded onto the carbon fiber to ensure that there was enough to account for variability
and produce some squeeze out. Glass beads were used to control the bondline thickness
and were added to the epoxy while mixing. The screeding step was completed on a second
vacuum table to secure the substrate.

Before moving on, the thickness of the epoxy layer was verified with a wet film thickness
gauge. Typically, a thickness within 0.001” of the desired value was achieved. If not, adjust-
ments could be made and the process repeated. After an acceptable thickness was achieved,
an additional screed was done to remove the gauge indicator markings in the epoxy. Figure
17b shows an edge in the screeding fixture after epoxy application. The carbon fiber was
then removed from the table and the perimeter cleaned of excess epoxy.

The substrate with epoxy was then placed face down on top of the amorphous metal,
and a pressure of 4 psi applied using weights. The load was distributed using 19 mm thick
aluminum bars with a thin layer of rubber for compliance, and stabilized using tubing placed
perpendicular to the edge. Figure 17c shows the loading fixture in use. By design, epoxy
squeezed out of the joint until the assembly rested on the glass beads. Excess epoxy was
cleaned up with Q-tips.

The second bonding operation involved adhering the structural edge to the substrate/AM
assembly. In a flight case, the structural edge would be part of the petal and the sub-
strate/amorphous metal assembly bonded to it. However, for this prototype build, the
substrate/amorphous metal assembly was placed on a flat plate with the amorphous metal
facing up. The plate had two pins which engaged the alignment features. Epoxy was screeded
onto the structural edge, the structural edge placed on top of the substrate/amorphous metal
assembly, 4 psi of pressure applied, and squeeze out cleaned up much in the same way as
described in the previous paragraphs. The load was removed after 24 hrs, and the completed
optical edge assembly left to fully cure for five days per the manufacturer cure schedule.

Figure 17d shows the front and back sides of two of the completed edges. Optical per-
formance of the segments is discussed in Section 6.
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Amorphous Metal

Slot

Alignment Pin

Teflon Covered

Vacuum Table

(a)
(b)

(c)

(d)

Figure 17: The assembly process includes (a) placement of the amorphous metal onto a
vacuum table, (b) screeding fixture with epoxy applied to a component, (c) application of
pressure to a bond line and (d) the top and bottom sides of two completed optical edge
segments.
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4.2.2 Coupons

The coupons were etched in the same lot as the segment amorphous metal and are 25 mm
wide x 50 mm long rectangles with straight edges (i.e. they do not have the curvature of
the petal). Since the coupons were etched at the same time as the segments, they have the
same precise beveled edge and sharp terminal radius. Importantly they are small enough
to be measured by the MAS. The performance of the coupons was checked before assembly
of the segments to establish confidence that the segments would meet scatter requirements.
Special handling processes were established to ensure that the terminal edge was not damaged
before testing. Each coupon was placed in a two-part aluminum container that protected the
terminal edge, but also allowed for scatter testing and SEM imaging. An image of a coupon
in its aluminum holder is shown in Figure 18. Note that the coupon is simply clamped in
the holder and not held with epoxy. These coupons are of the same design previously used
in trade studies to test variables in the manufacturing process and coatings.

Amorphous Metal Coupon

Aluminum Container

Figure 18: Image of an amorphous metal coupon mounted in a custom aluminum bracket
for protection.

5 Experiment

The scattered light performance of the segments was characterized before and after “rele-
vant thermal and deploy cycles,” per the MS3 definition. This section describes the tests
performed to meet the milestone along with thermal models used to determine the expected
flight temperatures and actual prototype test temperatures and sequences. Performance
results are discussed in Section 6.

5.1 Relevant Tests

The relevant criterion in defining the stressing environments for the optical edge was whether
or not the environment could have a detrimental effect on the scatter performance of the
terminal edge. In other words, the most critical environments are those that could change the
physical attributes of the sharp terminal edge which scatters sunlight. Two environmental
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tests were deemed to fit this criterion: (1) stow and release cycles at ambient temperature
and pressure and (2) thermal cycles in the deployed configuration.

Stow and release cycles will be performed at various points throughout a flight test
campaign. Although the strain in the amorphous metal will be small due to its proximity to
the neutral axis, there is an unknown and difficult-to-model potential for the furling strain
to manifest itself as physical change of the very thin and sharp terminal edge. This test
captures the actual furling strain environment that the edges will see during the flight test
campaign, and therefore any any change in scatter performance as well.

Thermal cycling in the deployed configuration serves two purposes. First, it will demon-
strate whether or not exposure to the expected flight temperature extremes could result
in sub micron level changes to the very thin and sharp terminal edge of the amorphous
metal that affect scattered light performance. Second, because the AM is bonded to low
coefficient of thermal expansion (CTE) CFRP, there is thermal strain between the AM and
CFRP that could manifest itself in small mechanical perturbations of the terminal edge (i.e.
micro-buckling); this test will demonstrate the extent to which the thermal strain affects
solar scatter performance.

Stowed thermal cycles are important for determining the mechanical limits of the bond
between the amorphous metal and CFRP structure in the space environment; therefore,
thermal cycling in the stowed configuration was performed on edge assemblies at various
temperature limits. Scatter performance was measured after the stowed thermal cycle en-
vironment to confirm the milestone assumption that it was not a stressing environment. A
summary of the stowed thermal cycle testing is provided in Appendix B and the test history
for each segment is in Appendix C.

An explanation of the stow and release cycles and deployed thermal environment follows.

5.1.1 Stow and Deploy Cycles

To stow a starshade, each petal is wrapped in a spiral pattern around the 2.25m diameter
folded perimeter truss, although the spirally wrapped petal takes a slightly larger curvature.
To conservatively bound the worst bending case, the test articles were stowed to a 2.25 m
diameter. Although a starshade is only deployed once in space, the flight system is expected
to go through a series of on the ground test deployments. For the purposes of this study, 10
cycles was determined to encompass the likely number of ground deployments a petal would
experience.

The desired radius of curvature was achieved with a fixed displacement four-point bend-
ing fixture. The design of the fixture was driven by the desire to use the same fixture for
stowed thermal testing, requiring it to fit inside an oven and to be easily transportable. The
fixture was assembled using T-slotted aluminum framing and other off the shelf components.
The top half of the fixture was constrained on two 19 mm diameter bushings. Displacement,
and therefore curvature, was set by using three fine pitched 1/4-80 set screws on the ends
of the fixture. The displacement-driven configuration is more representative of the bound-
ary conditions of the flight hardware system and is more deterministic than a load driven
configuration. This in turn improves the overall ability to correlate our test configuration to
the our model.

The inner pins were set to be a distance of L/4 from the outer pins, where L is the
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distance between the two outer pins. This configuration was chosen because it provides a
sufficiently long region (250 mm) in the middle of the test article where theoretically constant
curvature and zero shear are applied, while also avoiding excessive shear in the outer regions
as compared to the expected flight values. A schematic and image of the bending fixture are
shown in Figure 19.

Test Article

Top Plate

Bottom Plate

Hardstops

Bushing + Shaft Rollers

L/4
L

(a)

(b)

Figure 19: (a) Schematic diagram of the four point bending fixture and (b) fixture in use
including loading weights, micrometers, and an installed edge (white)

The vertical displacement was set to achieve the desired radius of curvature of 1.125 m.
Simple textbook equations and estimated bulk material properties were used to calculate
the bending moment and shear in the test specimens under four-point bending,

Mmax = F · x Vmax = F, (1)

where F is the load applied to each pin and x = L
4
. This estimation showed that the test

articles should experience a bending moment of about 33.7 in·lbs between the two inner
pins, and a shear load of 7.3 lbs in the outer regions. To verify that these loads are similar
to what would be seen in a flight system, a petal-level finite element model of the stowed
configuration, depicted in Figure 20, was analyzed. Shear and moment loads were checked
throughout the deployment sequence in addition to the fully stowed state. The model showed
a maximum shear load of 2.5 lbs and maximum bending moment of 31.5 in·lb in the optical
edge, the maximum value being defined as the maximum average stress across the cross
section of the edge. The test article conditions are considered to be representative and
conservative for the flight petal.

After a test article was placed in the fixture, the raising and lowering rate was controlled
with two motorized micrometers operating in tandem and programmed to move at a veloc-
ity of 0.5 mm/s, a sufficiently slow rate to simulate expected ground handling and flight
deployment speeds.

Importantly, the starshade petals can be bent in one of two orientations depending on
where they are attached on the truss. Since the neutral axis of the optical edge assembly
is slightly offset to the substrate side, the metal foil can be put into either compression or
tension depending on the bending direction. Therefore, half of the assemblies were tested
with the amorphous metal in compression, and the other half in tension.
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(a)
(b)

Figure 20: (a) Image of the fully stowed FEA model (colors coordinate with separate com-
ponents) and (b) load distribution on the segments with maximum bending moment and
maximum shear.

5.1.2 Deployed Thermal Cycle

The stressing condition for an optical edge in the deployed configuration is thermal loading
resulting from the mismatch in CTE between the amorphous metal and CFRP components.
The CFRP has a near-zero CTE while the amorphous metal has a measured value of 8.4
ppm/◦C.

Deployed thermal cycling occurred in a nitrogen purged chamber at JPL. The edges were
placed on a flat plate in an unconstrained state. A starshade system level thermal analysis
was used to determine test temperatures. The FEM is detailed and incorporates all major
components of the starshade including petal structure, optical shield, and other blanketing.
It assumes all CFRP surfaces, except the optical edges, are covered in single layer insulation
on the sun side, and a 3-layer optical shield on the telescope side. The sun-facing layer
consists of a single layer of Kapton, doped with silicon on the sun side, and aluminized on
the anti-sun side for favorable thermal properties. The two remaining layers are composed
of Black Kapton XC for its low light transmissivity property.

The analysis assumed that the starshade would spin at 1/3 RPM. Because the spinning of
the starshade equalizes the temperature of all like components on the starshade, the primary
variable in determining the maximum and minimum temperature of the optical edge is the
angle of the sun relative to the starshade. During science operations, the sun will fall between
approximately 40◦ and 83◦ relative to starshade normal. In addition, the starshade must also
be able to survive a sun angle of 0◦ as the starshade re-orients and maneuvers into position
at next target star.
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The maximum temperature of 80◦C occurred when the sun is perpendicular to the star-
shade, sun angle of 0◦, (Figure 21, note that only two petals are shown, and non-edge related
petal components are hidden for clarity). The minimum temperature of -96◦C occurred at
a sun angle of 83◦ (Figure 22). The final test temperatures were +105◦C to -125◦C. This
provided 25◦C margin on the hot side, and 29◦C on the cold side. As a general reference,
JPL flight hardware qualification programs require 20◦C margin on the worst case hot and
15◦C margin on worst case cold. Note that a sun angle of 180◦ (sun shining on the telescope
side of the starshade), while not a mission design case, was also analyzed and found to have
nearly identical results to the 0◦ case.

The number of thermal cycles in the deployed configuration for the Starshade Rendezvous
Mission (SRM), the reference mission for the S5 technology development, is estimated to be
under 40. This is based on the number of target star re-orientations, a maneuver which
results in the starshade changing orientation with respect to the sun, and thus cycling the
temperature of the starshade. For this test a minimum of 25 cycles was performed on all
edges, and 50 cycles on one edge assembly, as well as on the edge coupons.

Figure 21: Detail of starshade model showing maximum temperatures along the optical edge
of 80◦C when sun is perpendicular to the starshade. Only two petals are shown and petal
details are omitted for clarity.
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Figure 22: Detail of starshade model showing minimum temperature of -96◦C when the sun
is at at angle of 83◦.

5.2 Test History

Of the six prototype segments that were assembled, four of the segments went through the
complete set of environmental tests. Table 2 tabulates test history for each of these four
segments and includes number of cycles for each test, whether the segment was bent into a
direction that put the amorphous metal in compression or tension, and test temperature. The
table includes tests considered directly relevant for MS3, however, each edge went through
various additional test cycles during development. A full accounting of test conditions for
each of the six segments is given in Appendix C.

Information is also provided for three amorphous metal coupons that went through ther-
mal cycling. The coupons were not tested in bending due to their short length and because
they were not mounted to CFRP, making the bending fixture impractical.

6 Test Results

6.1 MAS and SAS Coupon Scatter Measurements

A set of 13 coupons were measured on both the MAS and SAS (Table 3). Measurement
dates indicate the MAS measurement. SAS measurements are all between October 18-22,
2019. The values in the “MAS cone” and “MAS full” columns are 106 times the average
fractional energy over the cone and rectangle, respectively, per meter of edge, at a distance
of 1 m from the edge. MAS measurements are correlated with the date, corresponding to
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Table 2: Listing of relevant test history for test articles that completed relevant environmen-
tal tests.

Bend and Release Deployed Thermal Cycles
# Cycles Bend Direction # Cycles Temperature (C)

SN05 10 Tension 25

+105/-125
SN06 10 Compression 50
SN07 10 Compression 25
SN08 10 Tension 25

Coupons N/A N/A 50

the 10% drift (1-sigma) observed with calibration coupons. The next column, MAS ρ, the
selection ratio, is the ratio of the cone and full columns. Figure 23a shows that the selection
ratio is uncorrelated with the level of coupon scatter. The mean value of ρ is the average
fraction of the full scatter function that is captured in the 30◦ cone. The error on this value
(Standard Error of the Mean (SEM) = 4.8%) represents the limitation on our ability to map
the cone into the full scatter function. We use the SEM because the observed starshade
solar glint pattern has contributions from many edge segments spanning tens of meters, thus
the mean behavior of many edges will be observed. The spread of ρ values is smaller than
the spread of MAS full and cone measurements, indicating that the selection ratio is largely
independent of both the scatter properties of the edges and the long-term drifts of the MAS.

Table 3: Selection ratio for amorphous metal edge coupons

Coupon MAS full MAS cone MAS ρ SAS MAS cone / SAS
A14 10/07/2019 6.8 4.6 0.67 4.3 1.05
A21 10/07/2019 7.3 5.0 0.68 4.6 1.08
A23 10/07/2019 8.8 5.2 0.60 4.8 1.09
A26 10/18/2019 7.3 3.1 0.42 3.6 0.86
A58 04/29/2019 8.4 4.7 0.56 3.9 1.19
B02 05/08/2019 6.6 4.1 0.62 3.4 1.20
B03 10/18/2019 5.5 2.6 0.48 3.0 0.87
B27 10/22/2019 4.9 3.4 0.69 3.6 0.92
B28 10/19/2019 3.6 1.6 0.45 2.1 0.77
B29 10/19/2019 4.6 3.1 0.66 3.4 0.90
B30 08/08/2019 4.1 2.4 0.57 2.5 0.95
B31 08/07/2019 5.3 3.8 0.71 3.9 0.96
B32 08/07/2019 6.0 4.2 0.70 4.3 0.98
MEAN±SEM 6.08±0.46 3.66±0.31 0.60±0.03 3.66±0.23 0.98±0.04

FRAC 7.6% 8.6% 4.8% 6.3% 3.8%

The table has a column of SAS coupon measurements as well. The SAS measured the
same region of the coupon (3 mm wide, in three adjacent 1 mm measurements) as the MAS.
Since the SAS has no absolute calibration, the measurements have been normalized to equal
the mean of the MAS cone measurements. The MAS cone and SAS measurements are
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(a) (b)

Figure 23: (a) MAS coupon selection ratio vs. integrated scatter (Scatter values are mul-
tiplied by 10−6) (b) SAS integrated scatter vs MAS circular zone scatter. Error bars are
estimated from short-term repeatability of the MAS and SAS measurements.

plotted in Figure 23b. If the SAS and MAS behaved identically, and if the MAS did not
drift, then the last column, MAS cone / SAS would have values of unity. This is not the case,
and we find that the SEM of the average ratio is 3.8%. This column is the key to linking
the MAS and SAS measurements, and it shows that we can do so with a 1 sigma error of
3.8%. The inconsistency of the MAS Cone / SAS ratio is about half that of the MAS cone
measurements. This is important because it indicates: 1) a significant part of the MAS full
variations are not simply instrument drift; and, 2) differences between the two instruments
are largely independent of the scatter properties of the edges.

6.2 Segment and Full Coupon Measurements

The main data product from the SAS is the SCSR. Table 4 lists the mean and median scatter
measurements for the segments and the coupons, and the derived value of SCSR from the
respective ratios. The segment measurements each represent the mean and median scatter
over the central 400 mm of the 500 mm edge, after all environmental testing was completed.
The last 50 mm on each end were measured (see Appendix D) but not included in the
analysis due to thermal cycle-induced debonds between the amorphous metal and epoxy
which complicated the alignment of the instrument. The coupon measurements represent
the average of the coupons over their central 45 mm (out of 50 mm). Some of the corners
suffered slight damage during separation and handling, so they were not measured. Mean
results include all scattering sources over the analyzed regions, while the median is insensitive
to the several peaks which may be due in part to assembly and handling issues. The median
SCSR is 1.35, compared to 1.41 for the mean, demonstrating that the peaks contribute to
only about 20% of the difference between segments and coupons.

Three of the segments, SN 6, 7, and 8, were measured in the SAS before environmental
testing began. Table 5 shows the mean and median scatter values before and after environ-
mental testing. A key result of this study is that environental testing resulted in no significant
change in scatter perfromance. The before- and after- environmental testing scatter data is

27



shown in Appendix E.
Data for all of the coupons and segments appear in Appendix D. In the data plots there

are a handful of locations where the data clearly spikes well above the mean. It is likely that
these spikes can be attributed to particulate contamination or potential damage to the edge
from epoxy removal. It possible that a very thin (e.g. 1 micron) layer of epoxy remains. This
would be difficult to see in a microscope but would greatly increase the scatter compared to
the 150 nm radius edge. If that is the case, then these spikes can be eliminated with better
process controls in place.

We have also studied the potential contribution of the segment mounting to the overall
scatter by comparing the mounted segments to unmounted segments (Appendix F). We
found that the mounting may be contributing up to about half of the SCSR. Additionally,
we looked for the possibility that the coupon mounts were contributing to the measured
scatter (Appendix G). We found that at most the mounts contributed 5̃% to the scatter.
The measurement was limited by MAS repeatability.

We have highlighted in bold font the three error values in Table 3 that appear in the
experiment error budget. They are:

• MAS full: this is the measure of the total energy scattered by the coupons. The mean
value is our best estimate of the performance of coupons. The estimate is limited by
our sample size to a fractional error of 7.6% (1 sigma).

• MAS ρ: this is the measure of the mean energy in the cone relative to the full energy,
and is measured with a precision of 4.8%. The cone is the link between the SAS and
the MAS.

• The MAS to SAS ratio (Column 6). This shows the variations between the two in-
struments when measuring the same part of the same coupon. The 3.8% error is
the limitation on the precision of the SAS normalization. It can be improved with
measurements of additional coupons.

7 Milestone Analysis

7.1 Error Budget

We estimate that the calculated glint lobe brightness is accurate to ±18% 1-sigma. This
is based on measurements of the instrument repeatability and accuracy, small sample size
limitations of the coupons and segments, and the accuracy of the imaging code. These
quantities are identified in Table 6. All values are listed in the table and in the discussion
below are 1-sigma assuming a normal distribution.

7.1.1 Instruments

The MAS provides the heatmaps that are used to calculate the glint lobes. As noted in
Section 3.1, the long-term (month-to-month) repeatability of the MAS heatmap level, based
on measurements of a razor blade we use as a reference coupon, is 10%. The short term
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Table 4: SAS Coupon and Segment Measurements

Coupon Name Date Mean Scatter Median Scatter
A14 2019-10-22 6.2 6.0
A21 2019-10-22 6.9 6.3
A23 2019-10-22 7.2 7.0
A26 2019-10-21 5.4 5.2
A58 2019-10-18 6.0 5.9
B02 2019-10-21 5.1 5.1
B03 2019-10-18 9.0 5.6
B27 2019-10-22 5.6 5.7
B28 2019-10-22 3.8 3.8
B29 2019-10-22 5.1 5.1
B30 2019-10-22 4.3 4.0
B31 2019-10-22 7.3 6.5
B32 2019-10-22 6.9 6.8

MEAN±SEM (SEM%) 6.1±0.4(6.7%) 5.6±2.9(5.1%)

Segment Name
SN05 2019-10-21 9.3 7.9
SN06 2019-10-07 8.8 6.9
SN07 2019-10-23 7.6 7.4
SN08 2019-10-23 8.4 8.1

MEAN±SEM (SEM%) 8.6±0.4 (4.2%) 7.6±0.3 (3.7%)
SCSR 1.41 ±0.11 (7.9%) 1.35 ±0.09 (6.3%)

Table 5: Segment scatter performance pre- and post-environmental testing

PRE-ENV. TESTING
Segment Name Mean Median

SN06 7.7 6.7
SN07 8.8 8.5
SN08 9.1 8.7

POST-ENV. TESTING
Segment Name Mean Median

SN06 8.8 6.9
SN07 7.6 7.4
SN08 8.4 8.1

RATIO (Post/Pre) 0.98 ± 0.15 0.94 ± 0.07
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repeatability over the course of this experiment is much better (of order 2-3%) but ultimately
the long-term stability limits our knowledge of the absolute scatter from the edges.

Table 6: Sources of Error in Estimating Solar Glint Lobe Brightness

Parameter error (1-σ) Notes
INSTRUMENT
MAS repeatability 10 % std. dev. of Instrument repeatability

on a coupon (3 mm spot)
MAS scatter calibration 5 % Knowledge of open beam ND filter OD
MAS length scale 2 % Accuracy of distance from coupon edge

to aperture (300 mm)
SAS Repeatability 0.9 % std. dev. of instrument repeatability

on a coupon (3 mm lengths)
COUPONS
Mean coupon scatter (MAS) 7.6 % SEM of coupon-to-coupon variability

integrated over full range of angles
Mean coupon selection ratio ρ
(MAS)

4.8 % SEM of the ratio of coupon cone scatter
to coupon full scatter

Mean coupon scatter (SAS) 6.7 % SEM of coupon-to-coupon integrated
scatter

Mean MAS to SAS ratio 3.8 % SEM of relative cone scatter of same 3
mm spot measured on each instrument

SEGMENTS
Mean segment scatter (SAS) 4.2% SEM of segment-to-segment average

scatter
ANALYSIS
Imaging Code (SISTER) MUF 5 % Consistency between analytical model

and SISTER glint lobe
TOTAL
Root Sum Square Error 17.6 % Estimated 1 σ error on glint lobe

brightness
Delta Mag 95% confidence -0.28 1.65 σ

The MAS measures the ratio of the scatter at a range of angles to the unscattered beam
shining directly into the detector. The optics, apertures, and detectors in these measurements
are all common mode, except for a neutral density filter (actually a cascaded pair of ND
filters) placed in the direct beam. An error in the measurement of the optical density of
these filters directly translates to an error in the scatter ratio. We have measured the filters
(OD=2.5 and OD = 4.68) and determined that the total optical density is 7.18. We measured
the OD as a function of filter orientation (tilts, rotations, within reason for the experiment),
and on two independent calibrated optical photometers. We found that the measurements
repeated to a photometric precision of 5%.

The measured ratio is a function of the distance from the coupon edge to the detector.
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Detection at longer distances will capture a smaller fraction of the light. The nominal
distance in the MAS is 300 mm. With the defining detector aperture in a holder with a
recessed edge, we conservatively estimate our distance measurement error is 3 mm (1%).
The scatter ratio in the experiment depends on the distance squared; thus we report a 2%
error on the length scale in Table 6.

The SAS reports a scatter value with an arbitrary (not absolute) scale. As noted in Sec-
tion 3.2, the stability of the measurements over the course of the experiments was determined
to be 0.9%.

7.1.2 Coupons

The manufacturing process produces coupons with varying scatter characteristics (Table 4).
Our ability to measure the expected level of scatter and the selection ratio is limited by the
finite set (13) of coupons. Here we report on the mean coupon behavior, and the standard
error of the mean. This represents our limited ability to estimate the true mean level of
scatter.

The MAS measures the scatter over the full range of solar angles and edge orientations.
The mean value over the set of coupons has a standard error of the mean (SEM) of 7.6%.
The MAS also allows us to measure the light within the angular cone sampled by the SAS.
The measure of the cone on the MAS is what ties the MAS and SAS measurements together.
The ratio of the MAS measured cone to the full angular measurements is what ties the cones
to the expected on-sky performance. The MAS measured ratio between the light in the cone
and the light over the full heat map (the ’selection ratio,’ ρ) has a standard error of the
mean of 4.8% (Table 3).

The SAS measures the coupons – this is the link between the MAS and the full length
segments. From Table 4, the SEM of the mean coupon scatter measured on the SAS is 6.4%.
Conservatively, we carry this error separately from the coupon variability observed in the
MAS because at least part of the variability is due to the difference in the way that the
instruments measure the scatter.

SAS coupon measurements are normalized to the mean of the MAS measurements. There
are a number of reasons that the two instruments could measure different levels of scatter:
they could be sampling slightly different regions along the edge; the central angle and diam-
eter of the defining cone could be in error; and the SAS could apodize the received scatter
(e.g., field-dependent vignetting). The finite sample size of the coupon sample limits our abil-
ity to measure the sample normalization relative to the true normalization. The variability
of this ratio (column 6 of Table 3) has an SEM of 3.8%.

7.1.3 Segments

We ran the full suite of environmental tests on four full segments (Table 4). While these
segments had more widely varying scattering characteristics than the coupons, they were
also 10 x longer, and their mean scatter had an SEM of 4.5%.
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7.1.4 Analysis

The JPL-developed Starshade Imaging Simulation Toolkit for Exoplanet Reconnaissance
(SISTER) is used to compute the solar glint lobes. SISTER reads the S- and P-polarization
heatmaps generated by the MAS. It also reads in the locus of points constituting the outline
of the starshade. Given the position of the sun relative to the starshade and telescope, it
calculates the normals of the edges and determines where on the (θ, φ) heatmap to sample
the scatter. The edges are categorized as ‘leading’ and ‘trailing’: leading edges are defined as
having the sun-starshade-telescope angle less than 180◦. The light can reflect (and diffract)
into the telescope. Trailing edges require the light to diffract toward the telescope, with no
possibility of reflection. The code assumes that these edges are shadowed using the structure
of the edge assembly (Figure 14a) and do not contribute to the glint. The code also assumes
that the inner parts of the petal gaps, out to a radius of 7.5 m for the WFIRST Rendezvous
starshade, are shadowed using small structures on the sun-facing side, and do not contribute
to the glint. The contributions of all remaining edge segments convolved with the telescope
point spread function at each wavelength being simulated.

To validate the accuracy of the SISTER calculations, we generated a test starshade with
a triangular shape having a 1 m long edge oriented for specular reflection of sunlight. We
assumed that the edge had a negligible terminal radius of curvature so that only diffraction
was present. We applied the Sommerfeld diffraction equations for the ’S’ (parallel) polar-
ization and generated a heatmap for a specular edge. This heatmap was substituted for the
experimental measurements. With the sun positioned at φ = 80◦ (10◦ behind the plane of
the starshade) SISTER then calculated a glint lobe.

We calibrated the magnitude of the glint lobe by modeling a planet of known magnitude.
We used SISTER to generate a planet well to the side of the starshade (so as not to be
attenuated by the starshade). We chose the host star to be the sun at a distance of 10 pc
(V=4.83) and chose the planet to have a flux ratio of 8.55 x 10−9 (delta mag = 20.17). This
created planet with a visual magnitude V=25. Comparing the planet the glint lobes, we
found that the integrated light of the glint lobe was V=24.65.

We then compared this to the analytical calculation for a 1 m edge at the distance of
the starshade (simply carried out on a spreadsheet), and assuming only that the Sun had a
visual magnitude of -26.7, obtained the predicted glint result of V=24.70. We thus conclude
that errors in the SISTER glint code are 0.05 mag, or 5%.

7.1.5 Final Experimental Accuracy

We assume that all of the aformentioned errors are independent and uncorrelated. Two of
the parameters, the MAS and SAS mean coupon scatter, are partially correlated, but they
are used independently to set limits on the instrument performance due to finite sized data
sets, and the overall performance is only weakly sensitive to them (e.g., removing the SAS
mean coupon scatter would reduce our total error from 17.6% to 17% 1-σ).

Assuming a normal distribution, the 95% confidence level is 1.65σ, or 0.28 magnitudes.
In the analysis to follow, we will report on the 95% confidence level by subtracting 0.28
magnitudes from the mean experimental result. Further refinement of this value will require
1) improved MAS stability, and 2) a larger sample size for both coupons and segments.
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7.2 Magnitude of Solar Glint Lobes

7.2.1 Milestone 3 Compliance

The visual magnitude of the solar glint lobes is summarized in Tables 7, 8, and 9. The
evaluation regions for the lobes are shown in Figure 24. The magnitude of the integrated
light in a lobe (column 2 of the tables) is computed by integrating the glint over half the
plane, as shown in Figure 24a. Much of this light is at radii smaller than the IWA. Column
3 is the magnitude of the integrated light at and beyond the IWA (Fig 24b) and is a full
magnitude fainter. To identify a planet, a photometric aperture or matched filter would
be used. In columns 4 and 5, and Figs. 24c and d, we have convolved the image with a
photometric aperture whose diameter is equal to λ/D, with D=2.4 m for SRM and 4 m
for HabEx, at the middle of each band (488.5 nm and 710 nm for the SRM shorter and
longer bands, respectively, and 650 nm for HabEx). These images represent the signal that
is measured in the photometric aperture at any point in the image plane. Column 4 and Fig.
24c are the magnitude of the brightest photometric pixel for radii ≥ IWA. Column 5 is the
magnitude of the mean brightness calculated at the IWA along the path shown in Fig. 24d.
This value represents the average signature of the glint lobes on the detection of planets at
the IWA and is typically the value used in evaluations of starshade performance. In column
6, we include a MUF of 1.65σ by subtracting 0.28 magnitudes from the values in column 5
(see Table 6). The listed value is the 95% confidence level on the upper limit to the glint
lobe brightness at the IWA. We submit this column, highlighted in bold font, as the data
supporting compliance with the milestone requirement for lobe brightness fainter than V=25.
Finally, in the last column, we show the fraction of photometric pixels at the IWA whose
values are compliant with V>25 with 95% confidence. All pixels are compliant at the IWA
for the WFIRST band 425-550 nm, and for HabEx as well. For the WFIRST band 615-100
nm, the fractional number of pixels fainter than V=25 ranges between 40% and 71%.

Figure 24: Evaluation of glint lobe magnitude.(a) The lobe magnitude is evaluated by in-
tegrating over half the plane. (b) The lobe magnitude is evaluated only for radii > IWA.
(c) The image has been convolved to the resolution of λ/D. The brightest pixel at the IWA
is evaluated. (d) In the same image as (c), the average value of the scatter at the IWA is
evaluated.

We also show how the magnitude of the mean photometric pixel changes with working
angle for the SRM (Figure 25). A vertical line marks the IWA radius: 72 mas for the 425-
552 nm band, and 104 mas for the 615-820 nm band. The curves show that the glint effect
diminishes with increasing distance from the starshade. At a distance of λ/D beyond the
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Table 7: Estimated Glint Lobe Magnitude in WFIRST Rendezvous 425-552 nm Band

Lobe r>IWA IWA Phot. IWA Phot. IWA Phot. IWA, V>25
φ maga magb min. magc Avg. magd 95% conf.e Compliance
53 25.8 26.8 26.7 27.6 27.3 100%
63 25.9 26.9 26.9 27.7 27.5 100%
73 25.7 26.7 26.7 27.5 27.3 100%
83 25.2 26.2 26.2 27.0 26.7 100%

aIntegrated magnitude of each lobe. See Figure 24 panel (a).
bIntegrated magnitude of each lobe at angles > IWA. See Figure 24 panel (b).
cBrightest photometric pixel at the IWA. See Figure 24 panel (c).
dMagnitude corresponding to the average flux in photometric apertures at the IWA. See Figure 24 panel
(d).
eSame as column (d) with the magnitude adjusted by -0.28 to account for experimental uncertainty (Table
6) at the 95% confidence contour.

Table 8: Estimated Glint Lobe Magnitude in WFIRST Rendezvous 615-800 nm Band

Lobe r>IWA IWA Phot. IWA Phot. IWA Phot. IWA, V>25
φ mag mag min. mag Avg. mag 95% conf. Compliance
53 23.7 24.7 24.6 25.5 25.2 67%
63 23.8 24.9 24.8 25.6 25.4 71%
73 23.6 24.7 24.6 25.4 25.2 64%
83 23.1 24.1 24.1 24.9 24.6 40%

Table 9: Estimated Glint Lobe Magnitude for HabEx 300-1000 nm band

Lobe r>IWA IWA Phot. IWA Phot. IWA Phot. IWA, V>25
φ mag mag min. mag Avg. mag 95% conf. Compliance
35 25.0 26.4 26.4 27.5 27.2 100%
45 25.6 27.0 27.1 28.1 27.8 100%
55 25.9 27.3 27.4 28.4 28.1 100%
65 26.0 27.4 27.5 28.4 28.2 100%
75 25.8 27.1 27.3 28.2 27.9 100%
85 25.2 26.6 26.7 27.6 27.3 100%
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IWA of (112 mas in the 425-552 and, 166 mas in the 615-820 band), the average brightness
has dropped by more than 2 magnitudes.

Figure 25: Magnitude of the WFIRST average level of illumination per lobe within a pho-
tometric aperture as described in Figures 2 and 24. Values at the IWA are in column 5 of
Tables 7 and 8.

In summary, the results of Tables 7-9 show that at the 95% confidence level, over the
range of wavelengths and angles relevant to WFIRST and HabEx, the average solar glint
lobe effect at the IWA is no brighter than V=25 except at the extreme of solar angle in
the ‘green’ band (615-800 nm). At that angle, 40% of the photometric pixels are fainter
than V=25 after accounting for the 95% confidence uncertainty factor (0.28 magnitudes)
These results are for the 500 mm long optical edge segments that scatter 41% more light
(∆mag=0.37) on average than coupons, a result that is attributable to the assembly process.

7.2.2 Mission Performance Assessment

At the time of the Key Performance Parameter (KPP) and Milestone Reviews (July-August
2018), the milestone specification of solar glint lobes no brighter than V=25 was thought to
be consistent with adding no more than 25% to the integration times driven by exozodiacal
light. This is not the current assessment. The exozodiacal light level is currently specified at
the median expected level of 4 zodis, or 20.5 mag arcsec−2, where 1 zodi is 22 mags arcsec−2.
For the SRM band of 615-800 nm with a center wavelength of 708 nm and aperture of 2.4 m
diameter, this translates to 26.84 mags per resolution element of π(λ/D)2/4 area. Therefore,
the specified solar glint is actually 1.84 mags or 5.5 times brighter than exozodiacal light,
at the IWA and 1 AU solar equivalent distance from the star. This will significantly impact
integration times for a planet appearing near the IWA. Solar glint rolls off with increasing
angular distance from the starshade, as does the exozodi but at a slower rate. The SRM’s
focus on the closest stars, which gives ample habitable zone access, mitigates the impact
to mission performance. This assessment will be reported in the future. Nonetheless, it is
desired to significantly reduce solar glint.

Fortunately, there is much of room for improvement. In addition to the potential to
produce segments that are close in performance to coupons, the bare metallic edges can be
coated with a hybrid interferometric/absorptive coating presently under development. A
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preliminary test in the SAS indicates a glint reduction by a factor of 14 over bare amorphous
metal. Modeling with the Lumerical FDTD code verifies this factor (see Figure 3). This
coating approach differs from our earlier attempts using relatively thick (< 5 µm) ultra-
black commercial coatings that only increased the overall scatter,6 presumably because of
the greatly increased edge radius. The coatings also appeared to be fragile and were likely not
compatible with many cleaning processes. The new design is a thin, robust, specular coating
that reduces glint to levels well below even diffraction-limited razor blades. Further testing
is underway, along with improvements to our instrumentation which lacks the sensitivity
and wavelength diversity to fully test the parts. Additionally, a modeling effort is needed
to understand how the coatings are reducing the diffraction component of the scatter. S5
is considering a plan to develop this coating along with improved testing and modeling
capabilities with the possibility to repeat the OE segment tests presented herein for deploy
and thermal cycles.

A second mitigating approach is to employ ”stealth edges” which is a term we use to
describe serrated edges placed where the specular reflection is greatest.6 The serration
removes the specular component for all but the tips and valleys of the edges and has been
shown through MAS measurements to reduce scatter by up to an order of magnitude. The
∼ mm serration period has no effect on the starlight shadow. However, the stealth edges are
not compatible with the baseline approach of spinning the starshade about its axis during an
observation. This could lead to increased thermal deformation which in turn would degrade
the starlight shadow. S5 is considering a trade study to determine if stealth edges with a
non-spinning starshade are a superior solution.

8 Conclusion

This report details the S5 efforts to address Technology Milestone 3 regarding solar glint.
It presents the optical edge design, custom scatterometer test equipment, relevant environ-
ments, the test plan, an analysis of error sources and an overall MUF, test results, and a
path forward for improved performance. The demonstrated performance is fully milestone
compliant at the 95% confidence level for the HabEx case and the SRM case at 425-552 nm.
The SRM case at 615-800 nm is non-compliant over 60% of the IWA arc at the maximum
sun angle of 83◦. The results show that there was no degradation of performance due to
thermal and deploy cycling.

Even at the milestone level, solar glint is the brightest source of background light and
will significantly increase integration times for targets at the IWA. The mitigation plan here
is to develop an improved edge segment bonding process of at least medium fidelity, and
to explore the promising thin-film hybrid coating whose preliminary assessment indicated
an order of magnitude reduction in glint. Because the coated edges show significantly less
scatter than uncoated edges, it is imperative that we also improve the segment and coupon
mounts so that they are not contributing to the measured signal.
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Appendix A: In-plane Shape Study

An individual edge segment must meet an in-plane shape requirement of±20 µm, over spatial
scales >5 cm. The edge shape was characterized at various stages of the manufacturing and
test process and the results showed that the segments meet this requirement as manufactured
and after environmental testing.

A.1 Metrology System

A MicroVu Excel 1051 metrology system was utilized to measure the in-plane shape of the
test articles. The machine pairs a precision x-y gantry system with a microscope head and
edge finding algorithms. The measurement bed is 1050 mm x 1050 mm. An image of the
system in use is given in Figure 26.

Figure 26: The MicroVu 1051 measurement system during measurement of an assembled
edge segment.

The manufacturer specification of the machine is ±4.2+L/200 µm, where L is is specified
in millimeters and is the length scale over which measurements are taken. The width of a
petal is its primary dimension, and therefore the optical edge is mainly concerned with
deviations in the y (i.e. perpendicular to its length) direction. Since the test edge is a
sinusoid with a peak-to-peak magnitude of 20 mm, L is also defined as 20 mm. Therefore,
per the manufacturer, the accuracy of the machine is 4.3 µm. The prototype segments
were held flat with a vacuum table during measurement. This reduces error in the MicroVu
measurement by ensuring the entire length of edge is in focus. The combined repeatability
of the machine and mounting arrangement were verified by measuring each segment 14
times in sequence. The segment was removed from the vacuum table and re mounted after
the 5th, 8th, and 11th measurement. Therefore, the sequence included both repeatability
errors in the machine and repeatability in mounting the edges for measurement. The 14
measurements were compared by plotting each against their combined average, as shown for
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Table 10: Total number and percentage of data points that lie outside of 4.3 µm away from
a mean value of 14 measurements of each segment.

SN04 SN05 SN06 SN07 SN08 SN09
# of Data Points 97 48 30 39 49 33
% of Data Points 0.07% 0.04% 0.02% 0.03% 0.04% 0.02%

SN04 in Figure 27. A measure if the machine is repeatable within the manufacturer limits
can be found by determining the percentage of data points that lie further than 4.3 µm away
from the average. This information is presented in Table 10. Of all cases, the worst was
SN04 for which only 0.07% of all data points fell outside the tolerance range of the MicroVu.
Each of the 14 measurements in a sequence contained 9,580 data points; therefore, there are
134,120 total data points considered for each segment (excepting SN04 which contains only
13 measurements due to a data collection error).

Figure 27: Repeatability measurement for SN09. The plot overlays a set of 14 measures
taken to assess repeatability. The x axis is the average of all 14 data sets.

A.2 In-Plane Shape Results

The MicroVu is capable of measuring any arbitrarily shaped edge and returning an array of
data points as a product. To verify in-plane shape, the collected data points were uploaded
to MATLAB and compared to the design shape. A median filter was applied to reduce noise
and a spline interpolator used to convert the data to a common grid with a data point every
50 µm. Lastly, an iterative RMS best fitting algorithm was applied to fit the measured
data to the design without reference to other datums. Other errors such as a rotation of
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amorphous metal relative to the CFRP can be adjusted when an edge segment is bonded to
a petal.

Processed data for the six assembled edges can be found in Figure 28, while data that
has been heavily filtered to remove features on spatial scales of <50 mm are shown in Figure
29. The plots show the measured deviation from the design across the entire 500 mm length
of edge. As such, a perfectly formed edge would result in a line at x=0. Deviations are
measured in microns along the y axis, which in this case has been defined as the direction
perpendicular to a line formed by connecting the centers of an alignment hole and slot.

Qualitatively, each edge has a similar amount of high frequency noise with occasional high
amplitude spikes; these spikes are thought to be contamination on the edge. The exception
is SN04, which is noisier than the others because the amorphous metal used for SN04 was
etched for a shorter amount of time as part of an experiment in etch timing, which left
the terminal edge rougher. Table 11 lists statistical parameters of each part including the
average absolute value, |µ|, RMS of the deviation, and difference between as manufactured
and post environmental test measurements. The maximum deviation between before and
after measurements is only 0.7 µm, building confidence that in plane shape will remain
consistent in the space environment. The data in Table 11 was generated from the plots
shown in Figure 28.

All components met the in-plane shape requirement of ±20 µm both before and after
thermal cycling, excepting a few millimeters of length of SN05 and SN08 which strayed out of
bounds. Note that the data presented here was collected after bend/release cycling, stowed
thermal cycling, and deployed thermal cycling to +40/-100◦C, but before deployed cycling
to +105/-120◦. Therefore, this data does not definitively show that edge shape is unaffected
across all possible flight temperatures, but does build confidence that this is feasible.

Table 11: Average absolute value and RMS of all edges before and after environmental
testing as compared to the design shape.

SN 04 05 06 07 08 09

As Manufactured
|µ| 4.7 9.6 2.4 3.5 7.6 4.7

RMS 6.0 11.1 3.1 4.3 9.5 5.9

Post Environmental Testing
|µ| 4.7 9.3 2.5 3.3 7.6 5.4

RMS 6.0 10.7 3.1 4.2 9.4 6.6

Difference
|µ| 0.0 0.3 0.1 0.2 0.0 0.7

RMS 0.0 0.4 0.0 0.1 0.1 0.7
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Figure 28: In-plane shape measurements for all six assembled edges before and after envi-
ronmental testing.
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Figure 29: In-plane shape error measurements for all six assembled edges before and after
environmental testing. Data has been filtered to remove features smaller then 50 mm.
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Appendix B: Stowed Testing

The starshade is launched in the stowed configuration with the petals wrapped around
the stowed perimeter truss as depicted in Figure 30a. The optical edge assemblies must
mechanically survive the appropriate thermal ranges while furled to the stowed radius of
1.125 m. The same four point bending fixture described in Section 5.1.1 was used to define
the radius of curvature throughout thermal cycling. This test was performed to determine
mechanical limits of the bonded assembly and is not considered a driving case for scatter
performance, as the temperature range over which the deployed edge assemblies were thermal
cycled resulted in a delta temperature that was 50◦C hotter and 119◦C colder than the
predicted on-orbit stowed starshade will experience. This assumption that stowed thermal
cycle is not a scatter performance driver was verified by showing that the segments’ scatter
performance met the requirement after stowed thermal cycle testing. Scatter data for all
segments after completion of all environmental testing is presented in Appendix D.

A detailed thermal model of the stowed starshade was used to derive test tempera-
tures (Figure 30b). The model contained the Petal Launch Restraint and Unfurling System
(PLUS), discrete petals covered with the optical shield, and the exposed CFRP structural
edge. It was assumed that the stowed starshade spins at a minimum of 1 RPM to equalize
temperatures symmetrically around the structure. Various orientations of the stowed system
were studied across two relevant altitudes. The altitudes studied were 500 km, just after
launch fairing is released and Earth albedo is a significant source of heat, and far-Earth,
when Earth albedo is negligible.

The worst case mechanical test was that which resulted in failure of the bond line. Early
analysis results showed that the shear stresses were low in the bond line, however early testing
showed that non-ideal bond conditions could lead to foil buckling, and ultimately failure of
the bond line in peel. With this discovered, the worst case stowed thermal condition for
the bond was determined to be when the edge was hot, with the foil in compression, where
the thermal expansion of the already compressed metal foil can lead to a peel force causing
separation in the adhesive bond line.

The hot case occurred with the sun illuminating the side of the starshade (from the left
or right of Figure 30) at an altitude of 500 km and included Earth albedo effects. This
configuration resulted in a maximum temperature of 55◦C. The maximum test temperature
was 60◦C, for which small (roughly 12 mm scale) disbonds between the amorphous metal and
epoxy were discovered on edges in which the amorphous metal foil was in in compression.
Therefore, hotter temperatures were not tested, and a series of tests at lower temperatures
were performed. The same issue did not occur when segments were cooled, irrespective of
amorphous metal being in compression or tension.

Thermal surface treatments for the CFRP were investigated to reduce the hottest tem-
perature the edge would experience while stowed. For the same spacecraft orientation with
respect to the sun, but at a far Earth altitude, this resulted in a cold temperature of -46◦C.
The coldest test temperature was -56◦C to establish a ten degree margin on the prediction.
More work is required to understand the coldest temperature a stowed edge would see be-
tween launch and the petal deployment at L2, the answer to this being dependent on specific
mission parameters including the Earth to L2 trajectory with respect to incident sun angle
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on the starshade. However, as it was not the driving case for mechanical design, the worst
case cold was not exhaustively explored. The analysis performed conservatively covered the
hottest case, which drives the mechanical design.

Although all six assembled segments experienced stowed thermal cycle testing, the test
temperatures and number of cycles varied based on previous results. The complete testing
history of each segment is given in Appendix C. The stowed testing showed that the adhesion
issues required a dedicated study. The effort is ongoing and much insight has been gained
already on how to improve the bond line adhesion to the amorphous metal. This effort is
scheduled for completion by the end of fiscal year 2020. Ultimately the requirement will be
verified as a part of milestone 5b.

(a) (b)

Figure 30: (a) CAD rendering of the stowed starshade along with (b) the analogous thermal
model.

Appendix C: Complete Test History

The testing history of each segment is somewhat complex due to mechanical stability chal-
lenges encountered along the way and potential solutions. Table 12 provides a listing of the
number of thermal cycles and test temperature for each of the six segments. Note that each
line indicates a seperate test. For example SN05 performed 10 deployed thermal cycles from
+40/-100◦C and 50 cycles from +105/-125◦C
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Table 12: History of test sequences for all segments. All test temperatures are in ◦C

Bend and
Release Cycles

Deployed Thermal Cycles
Tmax / Tmin / #

Stowed Thermal Cycles
Tmax / Tmin / #

SN04 10 40 / -100 / 10
50 / -40 / 5
60 / 23 / 1

SN05 10
40 / -100 / 10
105 / -125 / 25

50 / -40 / 5
60 / 23 / 1
30 / -56 / 5

SN06 10
40 / -100 / 5

105 / -125 / 50
34 / 23 / 5
34 / -56 / 2

SN07 10
40 / -100 / 5

105 / -125 / 25
34 / 23 / 5
34 / -56 / 2

SN08 10
40 / -100 / 5

105 / -125 / 25
34 / 23 / 5
34 / -56 / 2

SN09 10 40 / -100 / 5 50 / -40 / 5
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Appendix D: Edge Scatter Measurements

The following plots show the SAS measurements of scattered light for all assembled edge
segments and reference coupons. Segments 4-9 are shown after environmental testing.

46



47



48



Appendix E: Pre- and Post-Environmental Testing Scat-

ter Measurements

Segments 6, 7, and 8 were measured before any environmental testing and after all testing
had completed. The data shown here were used to reach the conclusion that thermal and
deployment cycles did not adversely affect the edge scattering properties. Each edge was
measured 3 times prior to environmental testing; here we plot the average of the measur-
ments. The segments were measured once after environmental testing.
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Appendix F: Unmounted Segment Data

It is possible that the mounted segment geometry (Figure 14a) increases edge scatter relative
to the terminal edge, independent of any possible damage or contamination of the edge
during the mounting process. To test this, we compare the SAS scatter measurements of
three mounted segments (SN06, 07, 08, prior to environmental testing) to three unmounted
segments. Scatter plots for the mounted segments are shown in Appendix E, while the data
for the three unmounted segments, 0419A, B, and C, are shown below.The average scatter
ratio (mounted / unmounted) is 1.17, while the average ratio of the median scatter (which
should be insensitive to the large peaks) is 1.14. We conclude that mounts may indeed be
contributing to the scatter. Recall that from Table 4 that we found the mounted segments
to be roughly 40% brighter than the coupons, while here we find that the mounted segments
are about 14-17% brighter than unmounted segments. Thus, it is possible that the mounting
geometry is itself accounting for almost half of the additional scatter relative to the coupons.
This does not mean that the same additional scatter will be seen on orbit – it could simply
be a matter of our overall instrument geometry. It is also possible that the unmounted
segments were of slightly better overall quality than the mounted ones. We will investigate
in more detail in future work.
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Appendix G: Estimates of Scatter from Coupon and

Segment Mounts

We address the contributions of coupon holders to the measured scatter. The coupons are
mounted in their holders (Figure 18) with the working edge 7 mm proud of their two-piece
shells. To study the sensitivity to the edge/shell separation, we adjusted a coupon in its
mount, increasing the edge-to-shell separation up to 12 mm. We captured the specular
scatter by measured the scatter in the MAS over a range of −10◦ < θ < 10◦ and for the
range of observational Sun angles 40◦ < φ < 85◦. We also made repeated measurements
of a mounted coupon over the course of two days (Figure 31). The shell separation test
(Figure 32) showed no clear trend indicating sensitivity to the edge offset from the shell. We
conclude from this test that the coupon holder contribution to the scattered light level is at
most a few percent.
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Figure 31: MAS coupon stability measurements. The coupon was place in the MAS for 24
and measured 5 times. THe coupon was neither moved nor touched during this time.

Figure 32: The coupon was adjusted in its mount to increase the distance between the
working edge and the mount shell from the 7 mm nominal separation to 12 mm over a 24
hours period.

55


	Executive Summary
	Introduction
	Solar Glint
	Glint on the Starshade
	Glint Physics

	Measuring Glint in the Laboratory
	Multi-Angle Scatterometer
	Single-Angle Scatterometer
	Relating the SAS to the MAS
	Optical Experiment and Glint Calculation Process

	Optical Edge Mechanical Design
	Design Overview
	Test Articles

	Experiment
	Relevant Tests
	Test History

	Test Results
	MAS and SAS Coupon Scatter Measurements
	Segment and Full Coupon Measurements

	Milestone Analysis
	Error Budget
	Magnitude of Solar Glint Lobes

	Conclusion
	References
	Appendix A: In-plane Shape Study
	Metrology System
	In-Plane Shape Results

	Appendix B: Stowed Testing
	Appendix C: Complete Test History
	Appendix D: Edge Scatter Measurements
	Appendix E: Pre- and Post-Environmental Testing Scatter Measurements
	Appendix F: Unmounted Segment Data 
	Appendix G: Estimates of Scatter from Coupon and Segment Mounts 

