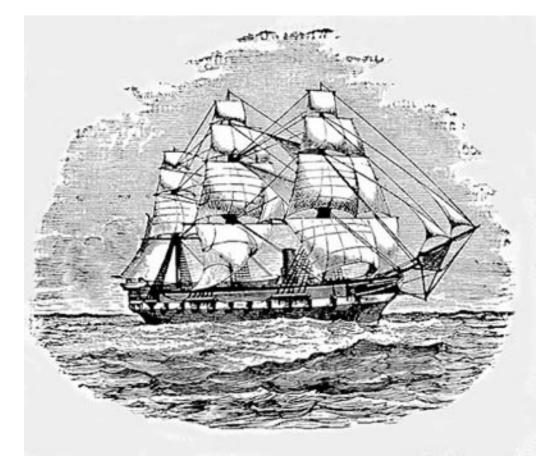
What Science Can Improve the Design of a Flagship Exo-Planet Mission: NG Perspective

Search for Life Workshop 30 March 2016

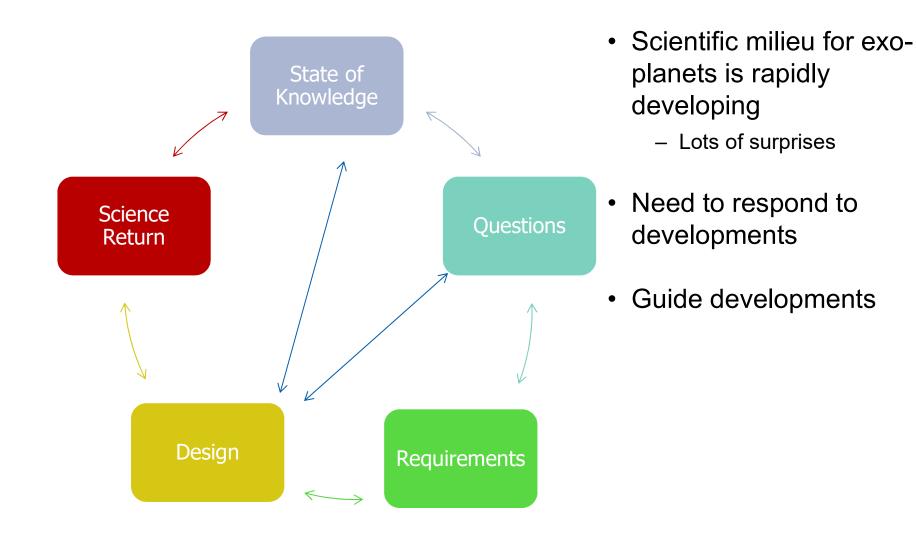
Presented to Starshade TSWG 7 Feb 2020


Jon Arenberg

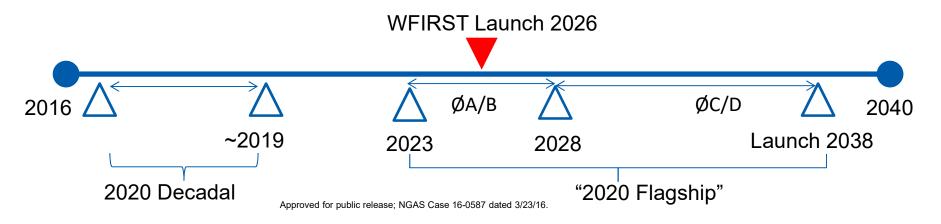
Chief Engineer Space Science Missions

THE VALUE OF PERFORMANCE.

HMS Challenger


How do we prepare for our voyage of discovery?

• No feedback

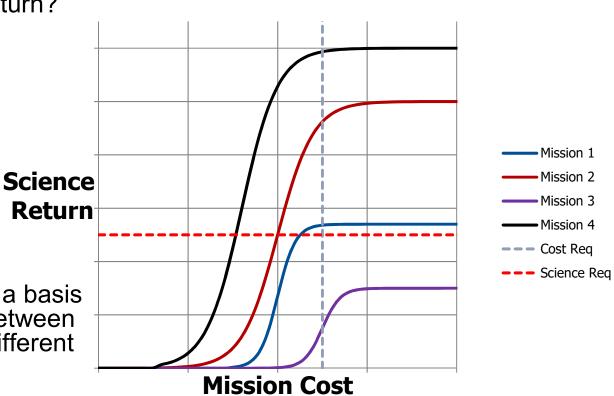

NORTHROP GRUMMAN

First Step to Answer a Big Question

- What scientific knowledge is most influential in the design of a flagship class exo-planet mission for the 2030's
 - What should be done between now and 2038-2040 to maximize the science return for this Flagship?
 - Mission after next (N+2)
- Influential information for both science and engineering
- What are the right questions?
 - What drives mission architecture and design into a "corner"?
- Is there a phasing to this work?
- Is some information more valuable?

"Fish in a Barrel" or "Shot in the Dark"?

- What is goal of talk?
 - Establish the link between knowledge of exo-planet targets and missions design
 - Establish collaboration to advance highest effect science
 - Architecture agnostic
 - Ultimate goal is a maximally productive and affordable Flagship mission
 - Don't do in space what can be done from the ground
 - Science is not static
 - Using the current state of knowledge in a rapidly evolving field and locking in an mission architecture too early is a poor strategy
- Why do this? Can it be done?
 - Example of an increased productivity architecture
- How will the goal be accomplished?
 - Review of literature
 - First order physics
 - Creativity
 - Collaboration

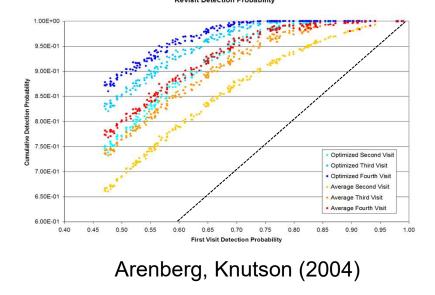


What is Scientific Productivity

- What exactly is science return?
 - Census
 - Habitable zone denizens or systems?
 - Terrestrial or all?
 - Orbits
 - Spectrum
 - Time domain
- Objective function(s) for optimization and provides a basis of understanding the tie between how designs respond to different science objectives

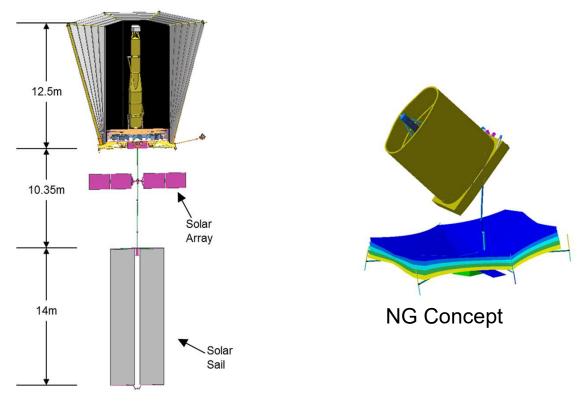
Sensitivity study

Forget the Cost for a Moment: What is the Question?


- Just tell me what you want, "if you don't ask, I can tell you what you will get"
- Are we just counting dots?
 - One kind of dots
 - Do systems matter?
- Orbits?
 - How well should they be known?
- Characterization
 - Spectrum
 - Polarization
 - Time dependence
- How important is confidence (statistical)
 - Orbits
 - Completeness
 - Are fewer better determined systems (planets) better than many that are more uncertain?

The right answer needs the right question.

Lesson Learned from a Mission Design from Long Long Ago

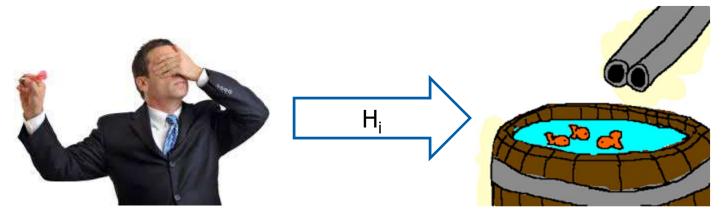

- While studying TPF-C Mission (circa 2004) the question of revisit interval arose
 - Mission requirements were 90% completeness for ~150 targets
- No good answer, so analyzed the problem
 - Found an optimal time to revisit
- 2 optimized visits=4 randomly timed visits

Understanding Revisit Problem Led to Revise Architecture

 3π sr Field of Regard- enabled optimal revisits and access to more sky (targets)

NORTHROP GRUMMAN

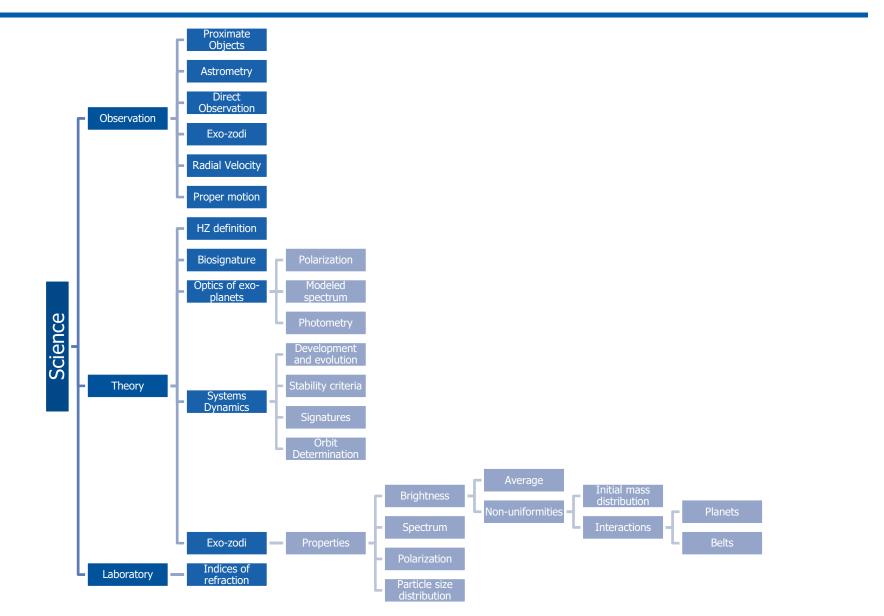
TPF-C Baseline


Understanding the science makes for better designs

Maximizing Science Return

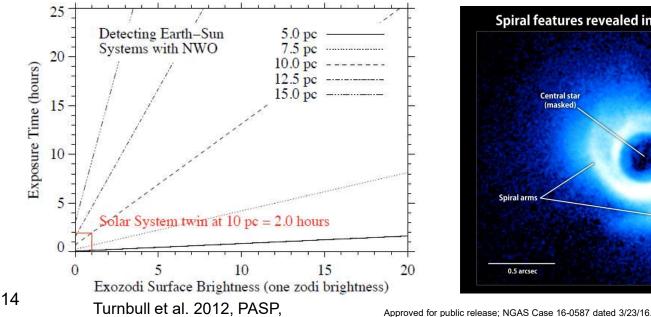
- Spend time on known good targets
 - Don't spend time in space sorting them out
 - How can good targets be identified *a priori*?
 - How do we use the time on target most efficiently?
- Can write the science return, R for the cases of no prior history, Ø, and history for the ith target, T_i, H_i

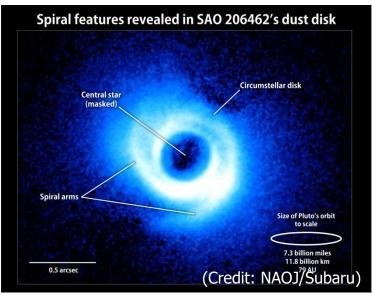
$$R_{\varnothing} = \sum_{i=1}^{N_{\varnothing}} \Pr(\eta_i | \varnothing) T_i \qquad \qquad R_H = \sum_{i=1}^{N_H} \Pr(\eta_i | H_i) T_i$$


Approved for public release; NGAS Case 16-0587 dated 3/23/16.

- Want to find the H_i that most rapidly increase $Pr(\eta_i | H_i)$
 - Identify the H_i that imply η_i =0
 - Systems with NO planets (signatures of planets)
 - Systems with planets by are dynamically forbidden from having a terrestrial planet in the HZ
 - Massive planet in the HZ
 - So much noise or background that a target cannot be detected
 - Review the literature
 - What are the assumptions and parameters that affect scientific yield from current studies
 - Think about the physics
 - Brainstorm

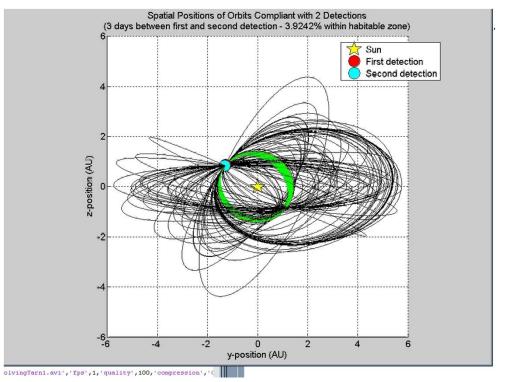
Knowledge Taxonomy Chart





Exozodiacal Dust & Terrestrial Planet Direct Detection

- The Seeking New Worlds mission hopes to directly image Earth-size planets in the Habitable Zone of nearby stars
- Dust in these extra-solar systems is potentially the largest source of: ٠
 - Astronomical background light, which would increase the exposure time needed for these 1) observations
 - Confusion, due to unresolved structures in the dust disks (Kuchner and Noecker 2010) 2)
- From New Worlds, New Horizons in Astronomy and Astrophysics: "In the first part of the decade NASA should... accelerate measurements of exozodiacal light levels that will determine the size and complexity of [a next-decade planet imager]."



Completeness and Orbit Determination

- Additional information about systems will make completeness searches and orbit determination more efficient
 - Inclination, rotation, eccentricity
- What data can be gleaned from observation of the outer system?

Arenberg and Schuman (2007)

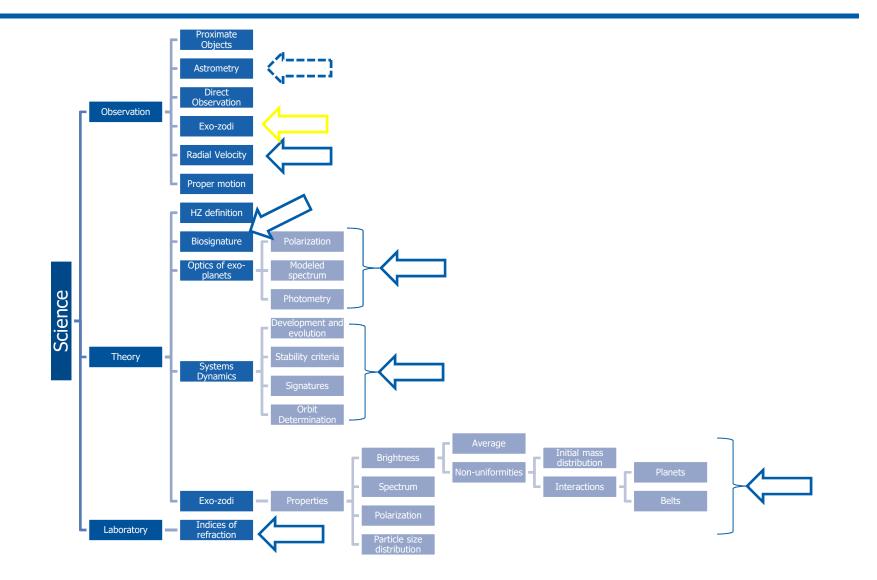
- Does a (potential target) system exhibit and signature of planets of any size?
 - Astrometric wobble
 - RV signature
 - Transiting planet
- Are there no contra-indications of possible habitable zone planets
 - Nothing too massive (and in the wrong orbit) to prevent a stable HZ orbit

- Are there general rules of thumb for systems?
- Can an observation of outer planet(s) make orbit determination/completeness searches more efficient
- Are there dynamic prohibitions on systems?
 - Does a large planet in or near the HZ prohibit a terrestrial planet?

Optical Modeling and Analysis

- Polarization and photometric data are powerful probes of the planet atmosphere and geology
- Can signal from exo-zodi be used in anyway?
- Understanding the science return can guide selection of system

Handbook of Dawning and Physics, 77 Handbook (1998 – 1997), sp. 4 door Made of 306, folded the magarap ast such as to pro the Solong for the S 000	Index for water in the value large is about 13. I will adjust the angles y participate about 30. I water a strategy of the st
	with the hermstrie one. $\begin{array}{c} w_{0} \mbox{ for } \\ w_{0} \mbox{ for }$


TRW IOC Livingston to Arenberg (2004)

- Need a good source of comprehensive indices of refraction
 - Solid, liquids, gases at various conditions of temperature and pressure
 - Both on target planets, but for a system and its contaminants as well
- Extensive literature search
- Laboratory measurements

Summary of First Look Most Interesting H_i

- Better understanding of the science aspects of an exo-planet mission will improve the system and mission design
- This is a highly iterative process involving science and engineering
- This discussion was the first step on the road to a comprehensive view of the interrelationships and the link to mission performance

Collaboration is key in maximizing science return from our "Challenger" Mission

THE VALUE OF PERFORMANCE.

