The search for another Earth using space telescopes with starshades: realistic image simulation and signal detection Mengya (Mia) Hu

Advisor: N. Jeremy Kasdin & Robert Vanderbei

OUTLINE

- Image Simulation
 - Simulation Process
 - Photon Counting Mode
- Image Processing
 - Generalized Likelihood Ratio Test (GLRT)
 - Sequential GLRT (SGLRT) for Photon Counting Images

Image Generation Photon Counting GLRT Simulation Input: Astronomical Scene

Original astronomical scene (Solar system) with the star 10¹⁰ times dimmer at 600nm wavelength (zoom-in for the scene)

Image Generation

Photon Counting

GLRT

SGLRT

Simulation Simplification

Simulated image for the perfect case with all wavelengths (600nm~1100nm)

Page 7

Errors On Starshade: Truncated Tip

Image Generation

Photon Counting

<u>GLRT</u>

Image Generation Photon Counting GLRT SGLRT **Image Simulation Process Perfect/Defective** Detector Photon rate on Astronomical Propagation **Propagation Final images** Starshade; Dynamics Model focal plane scene

- Quantum Efficiency
- Photon counting mode
- Dark current
- Clock-induced charge
- Read noise
- Photon counting bias

Ref. Hu, M. M., Harness, A. D., Kim, Y., Kasdin, N. J., Vanderbei, R., Rizzo, M. J., & Roberge, A. (2017, September). Simulation of realistic images for Starshade missions. In *Techniques and Instrumentation for Detection of Exoplanets VIII* (Vol. 10400, p. 104001S). International Society for Optics and Photonics.

02/06/2020

Page 13

GLRT

Generalized Likelihood Ratio Test

Maximurb/ Nikel 000001 Estimation

Model: Image x = Intensity PSF + Background + Noise

Photon Counting

Reject H_0 , if $L_G(\mathbf{x}) = \frac{\max_{\mathbf{\theta} P(\mathbf{x} | H_1)}}{\max_{\mathbf{\theta} P(\mathbf{x} | H_0)}} >$ Threshold

- Testing:
 - H_0 : Intensity = 0
 - H_1 : Intensity > 0

Decided by False Alarm Rate

Ref. Hu, M. M., Harness, A., & Kasdin, N. J. (2018, July). Image processing methods for exoplanets detection and characterization in starshade observations. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Vol. 10698, p. 106985K). International Society for Optics and Photonics.

Kay, S. M. Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. 1998.

02/06/2020

Page 15

Image Generation Photon Counting **GLRT Generalized Likelihood Ratio Test**

Assumption: Constant background;

Gaussian noise

Model:

$$\boldsymbol{x} = \underbrace{\begin{bmatrix} \boldsymbol{PSF}_{1} & 1\\ \vdots & \vdots\\ \boldsymbol{PSF}_{N} & 1 \end{bmatrix}}_{\boldsymbol{H}} \underbrace{\begin{bmatrix} \boldsymbol{I}\\ \boldsymbol{b} \end{bmatrix}}_{\boldsymbol{\theta}} + \boldsymbol{w}$$

Testing:

 $H_0: I = [\underbrace{1 \quad 0}_{A}] \boldsymbol{\theta} = 0, \sigma^2 > 0;$ $H_1: A\boldsymbol{\theta} > 0, \sigma^2 > 0$ Reject H_0 , if $T(\mathbf{x}) = (N-2)\left(L_G(\mathbf{x})^{\frac{2}{N}} - 1\right) = \frac{\hat{\theta}_1^T A^T [A(H^T H)^{-1} A^T]^{-1} A \widehat{\theta}_1}{\mathbf{x}^T (I_N - H(H^T H)^{-1} H^T)\mathbf{x}} > \gamma$ where $L_G(\mathbf{x}) = \frac{\max_{\theta} P(x \mid H_1)}{\max_{\theta} P(x \mid H_0)}$ and the *false positive rate* $P_{FA} = Q_{F_{1}N-2}(\gamma)$

02/06/2020

Page 16

Image Generation

Photon Counting

GLRT

Photon Counting Mode

One photon counting (PC) image with 1s integration time The probability of getting value one on the pixel for the PC image vs. the photon rate The derivative of probability of getting value one on the pixel for the PC image vs. the photon rate

Sequeral Colineralized in Regin Ratio Ratio Test

GLRT

Ph**Fesesho**ld

Binomial Each Pixe Gaussian

Assumption: Constant background; Bialossiah noise

Photon Counting

Not Enough or Too

Long Integration Time

- Model: F(Imagex) = F(x | Thtensity: F(SF) IntensityroBSdF + Novieleground)
- Testing:

Image Generation

- H_0 : Intensity = 0
- H_1 : Intensity > 0
- Reject H_0 , if $L_G(x) = \frac{max_0}{max_0}$

Ref. Hu, M. M., Sun, H., & Kasdin, N. J. (2019, September). Sequential generalized likelihood ratio test for planet detection with photon-counting mode. In Techniques and Instrumentation for Detection of Exoplanets IX (Vol. 11117, p. 111171K). International

Society for Optics and Photonics

02/06/2020

Sequential Generalized Likelihood Ratio Test

GLRT

Model:
$$x = \begin{bmatrix} PSF_1 & 1 \\ \vdots & \vdots \\ PSF_N & 1 \end{bmatrix} \begin{bmatrix} I \\ b \\ 0 \end{bmatrix}, \quad k_{1,j} = \sum_{i=1}^k y_{i,j}, where \ i \in [1,k], j \in [1,N]$$

 $p(\{y_i\}|I,b) = \prod_{j=1}^N \prod_{i=1}^k \{f(x_j)^{k_{1,j}} [1-f(x_j)]^{k-k_{1,j}}\}$

$$= \prod_{j=1}^{N} \{ f(l \cdot PSF_{j} + b)^{k_{1,j}} [1 - f(l \cdot PSF_{j} + b)]^{k-k_{1,j}} \}$$

• Testing: $H_{0}: I = [1 \ 0] \ \theta = 0, \sigma^{2} > 0;$
 $H_{1}: A\theta > 0, \sigma^{2} > 0$
• Reject H_{0} , if $L_{G}(x) = \frac{max_{\theta} P(\{x_{i}\} \mid H_{1})}{max_{\theta} P(\{x_{i}\} \mid H_{0})} > \text{Threshold}$
 $D_{2/06/2020}$

Photon Counting

Image Generation

Image Generation

Photon Counting

GLRT

SGLRT

Sequential Generalized Likelihood Ratio Test

Simulated Noiseless image for Starshade-WFIRST system. This is the Ground-truth for the detection problem. coadded image with 100 sequential PC images

False alarm rate of each pixel

Sequential Generalized Likelihood Ratio Test

GLRT

Photon Counting

Image Generation

02/06/2020

Image Generation

Photon Counting

GLRT

SGLRT

Sequential Generalized Likelihood Ratio Test

Sequential Generalized Likelihood Ratio Test

GLRT

Photon Counting

Image Generation

02/06/2020

Image Generation

Photon Counting

GLRT

SGLRT

Sequential Generalized Likelihood Ratio Test

log likelihood ratio of Venus, Earth and a background pixel (5th row, 5th column) with increasing number of observations

Page 25

Image Generation

Photon Counting

GLRT

SGLRT

Sequential Generalized Likelihood Ratio Test

SUMMARY

Generalized Likelihood Ratio Test	Sequential GLRT (SGLRT) for Photon
(GLRT)	Counting Images
 Assumptions: Constant background; Gaussian noise Simple & easy May miss a detection or waste observation for inappropriate integration time 	 Assumptions: Constant background; Binominal distribution for each pixel Can process sequential images on-line Maximizes the utilization of information in each observation

Thanks

Data challenge

Back up slides

Ways to Find an Exoplanet

Searching for Shadows
 Transit
 77.7% (3117 planets)

Light in a Gravity Lens
Gravitational Microlensing
2.1% (83 planets)

Watching for Wobble Radial Velocity 19.0% (764 planets)

Taking Pictures Direct Imaging 1.2%(47 planets)

Advantages of Direct Imaging

- More planets' properties revealed---Exoplanet spectra
- Biomarker--Life?
- Visual proof--"Seeing is believing"

Fresnel propagation

Approximation of Huygens-Fresnel Principle

U(x, y)

Starshade

Image Generation

Image Processing

Simulation Simplification

Simulated image for the perfect case with all wavelengths (600nm~1100nm)

Page 37

Starshade

Image Generation

Image Processing

Errors On Starshade: Truncated Tip

Starshade

Image Generation

Image Processing

System with Dust

Noisy solar system image (0.021arcsec/pixel) with perfect SS. Earth is hardly seen.

The detection result with GLRT. False alarm rate for Venus 1.6e-1; Earth 5.7e-1, smallest other 6.3e-1. We can't distinguish earth from the dust. 26% Intensity 02/06/2020 estimation error for Venus.

GLRT with Expectation–maximization (EM) Algorithm

GLRT with Expectation–maximization (EM) Algorithm

Final image after iteratively subtracting the estimation of the background.

The detection result with GLRT. IEE in each iteration. The We can detect both Venus with final IEE for Venus is -6.9% FAR of 7.2e-4 and earth with FAR and Earth -1.8%. of 1.9e-2. The subtraction caused FAR as small as 2.2e-1 in other area. 02/06/2020 Page 43

Fresnel propagation

Approximation of Huygens-Fresnel Principle

U(x, y)

Starshade

Image Generation

Image Processing

Sequential Generalized Likelihood Ratio Test

Sequential Generalized Likelihood Ratio Test

Image Generation

Image Processing

Starshade

Direct Imaging

