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Addressing Key Technology Gaps

• Deployment Accuracy and 
Shape Stability
o Combined test/analysis approach 

o Targeting estimates on Starshade
Petal dimensional stability

o Petal dimensional stability driven by 
material dimensional stability

* From Starshade to TRL5 (S5) TDP
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Error Budget Reduction

• Opterus work addresses 
Petal Shape

 KPP 5 (≤ ± 40 µm)

 KPP 6 (≤ ± 20 µm)

• Pre-launch/on-orbit shape 
stability are relevant
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* From Starshade to TRL5 (S5) TDP



Work Scope – Guiding Material Selection
• Opterus tasked with evaluating different materials relative to their 

impact on Petal dimensional stability

• Combined test/analysis approach includes:
1. Preliminary, comparative Petal edge analyses
2. Coupon-level material testing (CFRP resin)
3. Full Petal analyses using test validated resin properties

• Since the last Face to Face
1. Preliminary, comparative petal edge analyses completed
2. Coupon-level resin test design/test plan completed
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Preliminary Analyses:  SPIE Prototype Geometry
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Global Geometry

Local Geometry



SPIE Prototype Geometry in Abaqus 
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*P1/P3 stack-up not shown

Laminate Stack-Up Approach
• Accounts for material orientation & thickness

• CFRP plies
• Epoxy (EA9394) bond lines
• Amorphous metal optical edge

Vertically Unchanging Material “Stack-Ups”



Modeling Approach:  Abaqus/MultiMechanics (MM)

• Global geometry 
o 3D deformable shell 

• BCs & Loads
o Petal fully constrained at root 
o Bending moment applied at 

Petal tip (from SPIE paper)

• Material properties 
o Combined Abaqus/MM
o MM RVE allows CFRP 

viscoelasticity
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Translation/rotation 
constrained at root

Bending moment 
applied at tip



Modeling Approach:  Petal Edge Stowage
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Petal Edge:  Unloaded

Petal Edge:  Load Applied

Petal Edge:  Load Held for Time



Preliminary Analyses:  Results & Key Outcomes

1. Time-dependent deformations (viscoelastic) small compared to elastic deformations

2. Time-dependent deformations minimally influenced by changing CFRP resin

3. Time-dependent deformations dominated by epoxy bond lines (EA9394)
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#
Resin 

Identifier
Resin 

Description
Tip Displacement (m) Edge Elastic Strain (µε) Edge Creep Strain (µε) CFRP Visco. 

1 F7C Neat epoxy 0.121 286.4 0.274 On

2 F7 Epoxy w/ T 0.121 286.4 0.274 On

3 F3GHT Epoxy w/ NS 0.120 284.6 0.273 On

4 F7 10%
Epoxy w/ T and 

NS
0.122 289.7 0.277 On

5 F6
Neat cyanate 

ester
0.120 284.3 0.272 On

6 F7 Epoxy w/ T 0.122 283.8 0.274 Off

*T = toughener, NS = nanosilicates, all reported values correspond to 5 minute stow (i.e. load still applied)



Moving Forward:  Experimental Approach

• Next steps - Opterus focused on generating material test data

• Time-dependent deformations go beyond viscoelastic response to 
loading
o Physical aging
o Hygroscopic stability (moisture absorption)
o Thermal stability 

• Test design targets an understanding of both isolated and coupled 
environment driven material deformation
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Test Design: Bi-material Strip & Photogrammetry
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• Cantilevered “Bi-material” strip coupons

• Coupon deflection driven by changes in 
time/temp/humidity

• Cantilever tip deflection tied to curvature

• Cantilever curvature tied to strain mismatch



Coupon Fabrication
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Resin thickness controllable down to 0.002”
Resin cured between shimmed caul plates   

Coupon thickness is defined here!

Coupon Dimensions

• Steel thickness – 0.002”

• Resin thickness – 0.020”

• Unsupported strip length – 2”

• Strip width – 0.125” (width does not drive measurement accuracy)

Measurement accuracy of 
~ 1 microstrain



Test Cases
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Case Time (minutes) Temp (°C) Humidity (RH%) Notes

1 43200 Ambient Ambient One-month, ambient, physical aging

2 1440 55 Ambient 24 hours, elevated temp, temp stability

3 1440 Ambient 99 24 hours, high humidity, hygroscopic

4 1440 55 99 24 hours, combined temp & humidity

• Time scale encompasses hours to weeks

• Temperature scale encompasses both room temperature 
stowage & deployment

• Humidity scale encompasses worst-case scenario



Moving Forward:  Full-Scale Petal Simulation

• Full-scale petal simulation 
incorporates all CFRP structural 
elements & bonded joints

• Petal-edge modeling approach will 
scale to full petal

• Tailored material models 
incorporating test generated data 
should provide prediction on shape 
stability
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Summary
• Key Technology Gaps

• Error Budget Reduction

• Work Scope

• Preliminary Analyses

• Material Test Data Generation

• Next Steps
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Deployment Accuracy & Shape Stability

KPP 5 & KPP 6

Coupled analysis/test approach

Time-dependent deformations small, bond lines drive

Test design complete, prelim. coupon geo and test cases

Preliminary analysis methods and test data extended to 
full-scale petal simulation
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Opterus R&D Overview Slide Deck

• Contact Thomas Murphey with questions
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Deployable Spacecraft Structures

1U CubeSat
(10cm cube)

100 cm Diffractive Telescope (AFRL/USAFA FalconSat/DARPA Moire Co-Program)
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Core Technology Areas
Booms and Hinges

TRL 5-9 
Flight Heritage
100% Success

Multiple patents in process

Solar Array Structures

TRL 4-5 
Key partnerships established

Antennas, Phased 
Arrays and Reflectors

TRL 2-4
Key features demonstrated

Not OPTERUS Tech

Not OPTERUS Tech
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Core Material Innovation: HSC (high strain composites)

2x stronger

8x stiffer

5x lighter weight

20x more stable

Industry leading source for 
HSC technologies

Panel Hinges

CTM Boom
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Capabilities

• Composite design, manufacturing and testing 
capabilities

o Specialize in High Strain Composite manufacturing methods

• Deployable spacecraft structures and mechanical 
systems

o Conception > Design > Analysis/Simulation > Fabrication

• Simulation and Analysis
o Deployment simulations

o Finite Element Analysis

o Structural architecture development 
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Facilities
• In-house composites 

fabrication

o 30 ft modular oven

o 2x 30ft modular lay-up tables
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• Loveland, CO 
(1 hour north of Denver)

o 9,000 ft2 for fabrication 
and testing
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