OPTERUS

Deployable Spacecraft Structures

SIP Forum #2 Presentation, 2/6/2020

Thomas Murphey, PhD tmurphey@opterusrd.com (505) 250-3006 Patrick Rodriguez patrick@opterusrd.com (505) 795-3896

Overview – Starshade to TRL5 (S5)

- Key Technology Gaps
- Error Budget Reduction
- Work Scope
- Preliminary Analyses
- Material Test Data Generation
- Next Steps
- Summary

Addressing Key Technology Gaps

- Deployment Accuracy and Shape Stability
 - Combined test/analysis approach
 - Targeting estimates on Starshade
 Petal dimensional stability
 - Petal dimensional stability driven by material dimensional stability

Error Budget Reduction

- Opterus work addresses Petal Shape
 - KPP 5 (≤ ± 40 µm)
 - KPP 6 (≤ ± 20 µm)
- Pre-launch/on-orbit shape stability are relevant

Work Scope – Guiding Material Selection

- Opterus tasked with evaluating different materials relative to their impact on Petal dimensional stability
- Combined test/analysis approach includes:
 - 1. Preliminary, comparative Petal edge analyses
 - 2. Coupon-level material testing (CFRP resin)
 - 3. Full Petal analyses using test validated resin properties
- Since the last Face to Face
 - 1. Preliminary, comparative petal edge analyses completed
 - 2. Coupon-level resin test design/test plan completed

Preliminary Analyses: SPIE Prototype Geometry

Global Geometry

Local Geometry

SPIE Prototype Geometry in Abaqus

Modeling Approach: Abaqus/MultiMechanics (MM)

- Global geometry

 3D deformable shell
- BCs & Loads
 - Petal fully constrained at root
 - Bending moment applied at Petal tip (from SPIE paper)
- Material properties
 - Combined Abaqus/MM
 - MM RVE allows CFRP → viscoelasticity

#	Resin Identifier	Resin Description	Nanosilicate	Toughener
1	F7C	Pure epoxy	No	No
2	F7	Epoxy with toughener	No	Yes
3	Epoxy (38% NS)	Epoxy with nano-silicates, no toughener	38%	No
4	F7 (10% NS)	Epoxy with toughener and nano-silicates	10%	Yes
5	F6	Cvanate ester	N/A	N/A

Translation/rotation constrained at root Bending moment applied at tip

Modeling Approach: Petal Edge Stowage

Preliminary Analyses: Results & Key Outcomes

#	Resin Identifier	Resin Description	Tip Displacement (m)	Edge Elastic Strain (με)	Edge Creep Strain (με)	CFRP Visco.		
1	F7C	Neat epoxy	0.121	286.4	0.274	On		
2	F7	Epoxy w/ T	0.121	286.4	0.274	On		
3	F3GHT	Epoxy w/ NS	0.120	284.6	0.273	On		
4	F7 10%	Epoxy w/ T and NS	0.122	289.7	0.277	On		
5	F6	Neat cyanate ester	0.120	284.3	0.272	On		
6	F7	Epoxy w/ T	0.122	283.8	0.274	Off		
*T = toughener, NS = nanosilicates, all reported values correspond to 5 minute stow (i.e. load still applied)								

- 1. Time-dependent deformations (viscoelastic) small compared to elastic deformations
- 2. Time-dependent deformations minimally influenced by changing CFRP resin
- 3. Time-dependent deformations dominated by epoxy bond lines (EA9394)

Moving Forward: Experimental Approach

- Next steps Opterus focused on generating material test data
- Time-dependent deformations go beyond viscoelastic response to loading
 - Physical aging
 - Hygroscopic stability (moisture absorption)
 - o Thermal stability
- Test design targets an understanding of both isolated and coupled environment driven material deformation

Test Design: Bi-material Strip & Photogrammetry

- Cantilevered "Bi-material" strip coupons
- Coupon deflection driven by changes in time/temp/humidity
- Cantilever tip deflection tied to curvature
- Cantilever curvature tied to strain mismatch

Coupon Fabrication

Resin cured between shimmed caul plates

Coupon thickness is defined here!

Resin thickness controllable down to 0.002"

Coupon Dimensions

- Steel thickness 0.002"
- Resin thickness 0.020"
- Unsupported strip length 2"
- Strip width 0.125" (width does not drive measurement accuracy)

Measurement accuracy of ~ 1 microstrain

Test Cases

Case	Time (minutes)	Temp (°C)	Humidity (RH%)	Notes
1	43200	Ambient	Ambient	One-month, ambient, physical aging
2	1440	55	Ambient	24 hours, elevated temp, temp stability
3	1440	Ambient	99	24 hours, high humidity, hygroscopic
4	1440	55	99	24 hours, combined temp & humidity

- Time scale encompasses hours to weeks
- Temperature scale encompasses both room temperature stowage & deployment
- Humidity scale encompasses worst-case scenario

Moving Forward: Full-Scale Petal Simulation

- Full-scale petal simulation incorporates all CFRP structural elements & bonded joints
- Petal-edge modeling approach will scale to full petal
- Tailored material models incorporating test generated data should provide prediction on shape stability

Summary

- Key Technology Gaps
- Error Budget Reduction
- Work Scope
- Preliminary Analyses
- Material Test Data Generation
- Next Steps

- Deployment Accuracy & Shape Stability
 - ➡ KPP 5 & KPP 6
 - Coupled analysis/test approach
 - Time-dependent deformations small, bond lines drive
 - Test design complete, prelim. coupon geo and test cases
 - Preliminary analysis methods and test data extended to full-scale petal simulation

COPTERUS Deployable Spacecraft Structures

Big Gains for Small Spacecraft [™]

Thomas Murphey, PhD tmurphey@opterusrd.com (505) 250-3006 Patrick Rodriguez patrick@opterusrd.com (505) 795-3896

Opterus R&D Overview Slide Deck

Contact Thomas Murphey with questions

Thomas Murphey, PhD tmurphey@opterusrd.com (505) 250-3006

Deployable Spacecraft Structures

1U CubeSat (10cm cube)

Core Technology Areas

Booms and Hinges

TRL 5-9 Flight Heritage 100% Success

Solar Array Structures

TRL 4-5 Key partnerships established

Antennas, Phased Arrays and Reflectors

Not OPTERUS Tech

Not OPTERUS Tech

TRL 2-4 Key features demonstrated

Multiple patents in process

Core Material Innovation: HSC (high strain composites)

CTM Boom

2x stronger

8X stiffer

5X lighter weight

20x more stable

Industry leading source for **HSC technologies**

Capabilities

- Composite design, manufacturing and testing capabilities
 - Specialize in High Strain Composite manufacturing methods
- Deployable spacecraft structures and mechanical systems
 - $_{\circ}$ Conception > Design > Analysis/Simulation > Fabrication
- Simulation and Analysis
 - Deployment simulations
 - ∘ Finite Element Analysis
 - 。 Structural architecture development

Facilities

- In-house composites fabrication
 - $_{\circ}~$ 30 ft modular oven
 - $_{\circ}$ 2x 30ft modular lay-up tables
- Loveland, CO (1 hour north of Denver)

and testing

 \circ 9,000 ft² for fabrication

Our Team

Dr. Thomas Murphey CEO, CTO

Shane Stamm Chief Engineer

Jeremy Kellog Composites Production

Erik Pranckh Engineer

Levi Nicholson Engineer

Sebastian Mettes Engineer

Patrick Rodriguez Engineer II

Gina Olson

Technology Advisor

Tiffany Dailey Controller