

The Standard Definitions and Evaluation Team Final Report: A common comparison of exoplanet yield

Rhonda Morgan¹

rhonda.morgan@jpl.nasa.gov

Dmitry Savransky², Chris Stark³, Eric Nielsen⁴

¹Jet Propulsion Laboratory, California Institute of Technology

²Carl Sagan Institute, Cornell University

³Space Telescope Science Institute, ⁴Stanford University

December 16, 2019

CL#19-8103

© 2019 All rights reserved. Government sponsorship acknowledged. This information is predecisional and is provided for planning and discussion purposes only.

Contributors

ExSDET

Rhonda Morgan JPL, Lead

Dmitry Savransky Cornell University

Chris Stark STScI

Avi Mandell NASA Goddard

Ruslan Belikov NASA Ames

John Krist JPL

Eric Nielsen Stanford University

STDT Liasons:

Courtney Dressing Berkeley, LUVOIR

Karl Stapelfeldt *ExEP*, HabEx

Klaus Pontoppidan STScI, OST

Report Contributors

Eric Cady JPL

Walker Dula JPL

Shannon Dulz Notre Dame

Andrew Horning Cornell University

Eric Mamajek JPL

Bertrand Mennesson JPL

Patrick Newman George Mason University

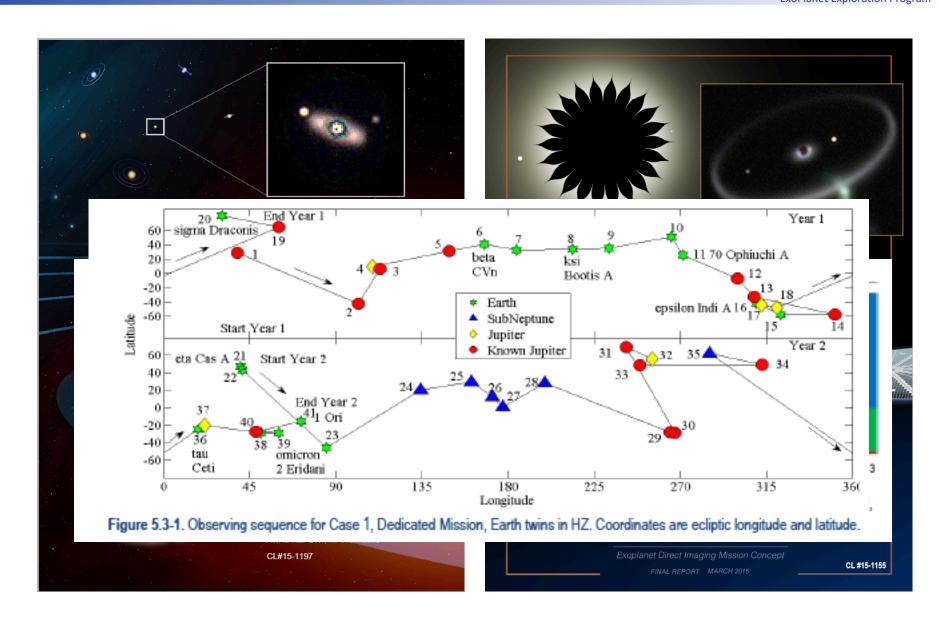
Peter Plavchan George Mason University

Ty Robinson *Northern Arizona University*

Garreth Ruane JPL

Dan Sirbu Ames Research Center

Gabriel J. Soto *Cornell University*

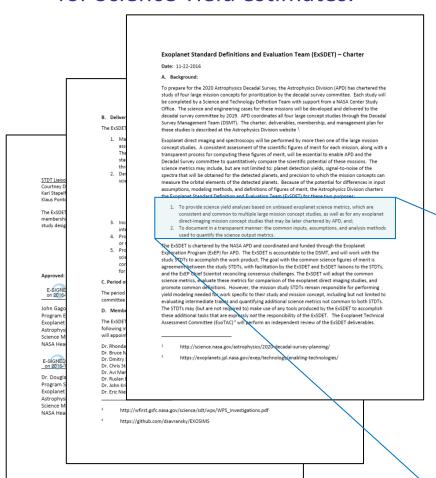

Michael Turmon JPL

Margaret Turnbull SETI Institute

PROGRAMMATIC OVERVIEW AND BACKGROUND

Exoplanet Direct Imaging Concept Missions

ExoPlanet Exploration Program



Charter Established for ExSDET Activity

ExoPlanet Exploration Program

 NASA / APD Chartered the Exoplanet Standards Definition and Evaluation Team (ExSDET) in Nov 2016 to address the need for a consistent and common basis for Science Yield estimates.

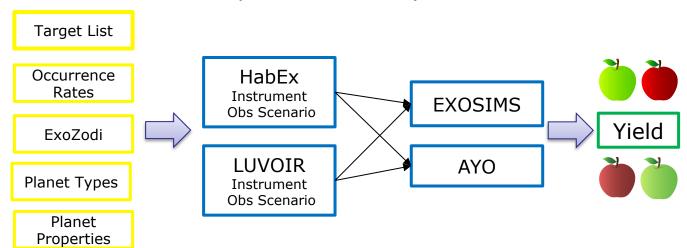
"A <u>consistent assessment</u> of the scientific figures of merit for each mission, along with a <u>transparent</u> <u>process</u> for computing these figures of merit, will be essential to enable APD and the Decadal Survey committee to <u>quantitatively compare</u> the scientific potential of these missions"

Purpose

- Provide science yield analyses
- Define unbiased exoplanet science metrics
- Be consistent and common to multiple large mission concept studies
- Document in a transparent manner

ExSDET Deliverables

The ExSDET is directed by the NASA Astrophysics Division to:

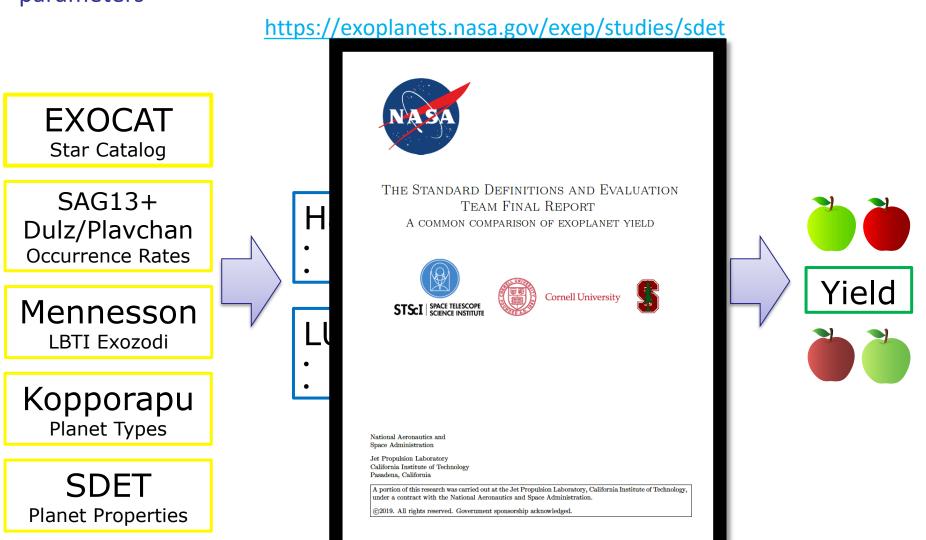

- 1. Maintain and <u>document transparent and consistent definitions of input parameters and analysis</u> <u>assumptions</u>, which are common to exoplanet direct imaging and characterization missions. These can include but are not limited to: planet and star properties, survey strategies, target star lists, assumed planet population characteristics, instrument parameters, and detection thresholds;
- 2. Develop and <u>provide transparent and unbiased analysis tools</u> that will allow quantification of the science metrics for the mission studies, including:
 - a. **A primary program analysis tool**, based on module additions to Dmitry Savransky's open-source tool, currently funded under the WFIRST Preparatory Science program....(EXOSIMS)
 - b. <u>Complementary independent analysis tools</u> (e.g. the Altruistic Yield Optimization tools developed by Chris Stark, or tools developed by others at the ExSDET discretion), which can be used to validate the results of the primary program analysis tool.
- 3. Incorporate <u>physics-based instrument models</u> to robustly evaluate the capabilities of specific internal coronagraph and external occulter designs;
- 4. Provide <u>simple test cases to validate these models</u>, with analytic or semi-analytic corroboration or modeled <u>cross-validation</u> of the results of these test cases if possible;
- 5. Provide <u>two separate</u>, <u>full</u>, <u>end-to-end evaluations of the common exoplanet direct imaging</u> <u>science metrics of the mission concepts for each STDT</u>: one intermediate and one final mission concept, as specified by the interim and final STDT deliverables defined in the Management Plan for Large Concept Studies (M4 and M7);

Summary of ExSDET Activity

ExoPlanet Exploration Program

- Over the past three years, Dr. Rhonda Morgan has led a geographically dispersed team in the development of a complex mission planning and science yield tool, EXOSIMS.
- She has worked closely with the two STDTs for HabEx and LUVOIR to understand the observing scenarios and criteria to enable characterization of the baseline missions in the tools.
- There has been extensive effort to understand, define, compare and reconcile the common input parameters and the differences between AYO and EXOSIMS to ensure accurate physical representations.
- The final report captures the best results to date of the comparison of the mission variants and the impact on science yield.

APPROACH


Standard Definitions and Evaluation Team

Supporting the Large Mission Studies for Exoplanet Direct Imaging

ExoPlanet Exploration Program

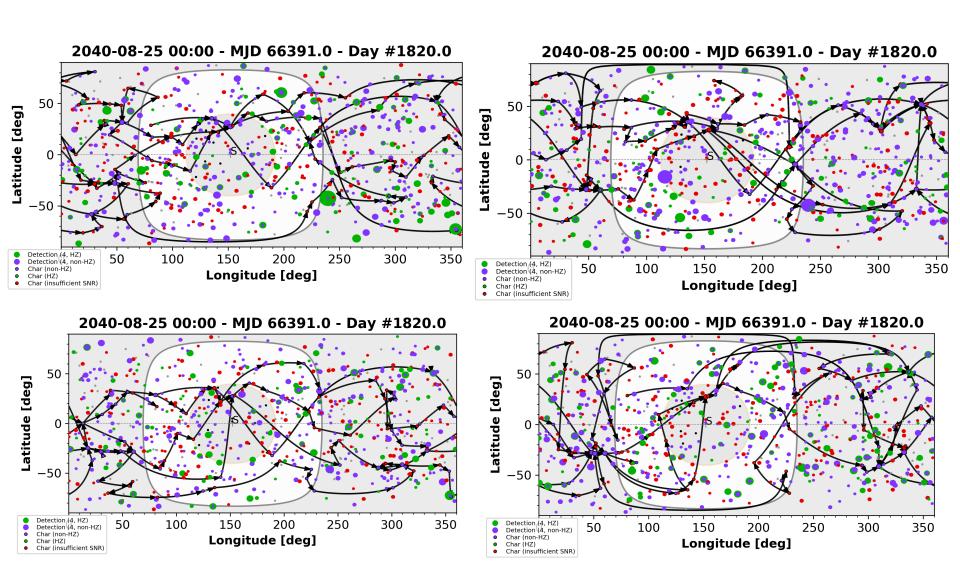
Chartered to provide a consistent, transparent yield analysis using common input parameters

Outline

✓ Introduction

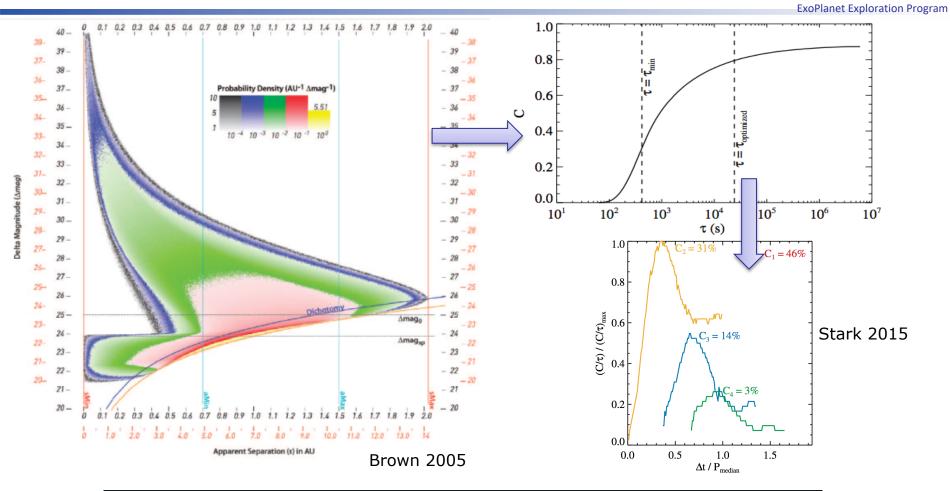
- Analysis
 - EXOSIMS overview
 - AYO overview
 - Observing scenarios
- Yield Definition
- Inputs
 - Occurrence Rates
 - Planet bins
 - Binary stars
 - Zodi
 - Exozodi

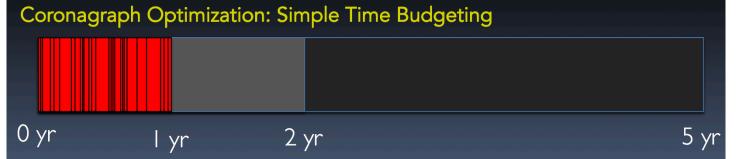
- Orbit determination
- Star catalog
- Astrophysics summary
- Instrument parameters
- Yield Model Results
 - HabEx 4H
 - LUVOIR B
 - HabEx 4C
 - HabEx 4S
- Summary/Conclusions
 - EPRV precursor



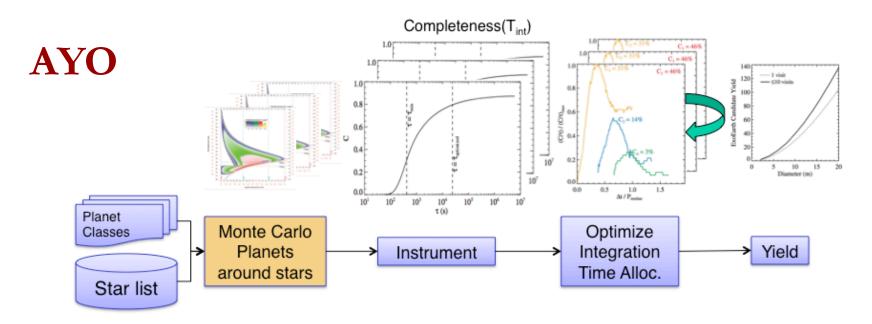
2035-12-20 00:00 - MJD 64681.0 - Day #0.0

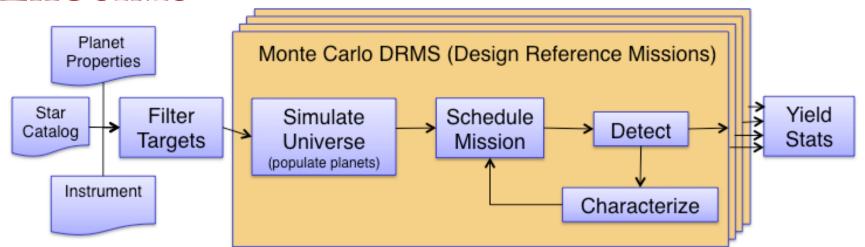
Monte Carlo Ensemble of 1000 DRMs


Calculating Yield via Completeness

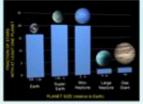


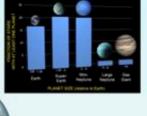
- Completeness, C = chance of observing a given planet "type" around a given star if that planet exists (Brown 2004)
- Yield = $\eta_{\text{planet}} \Sigma \mathbf{C}$
- Calculated via Monte Carlo simulation with ≥ 10⁵ synthetic planets per star


Completeness



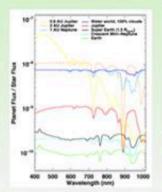
ExoPlanet Exploration Program


EXOSIMS



Calculating Yield with a DRM Code

Astrophysical Constraints


- η_{Earth}
- η_{exozodi}
- Planet sizes
- Albedos
- Phase functions

Observational Requirements

- Central wavelength
- **Total bandpass**
- Spectral resolution
- Signal-to-Noise
- Observing strategy

Technical Requirements

- Telescope diameter
- Contrast
- Contrast floor
- Inner working angle
- Outer working angle
- **Total throughput**
- **Overheads**

Physics Comparison of Count Rates

ExoPlanet Exploration Program

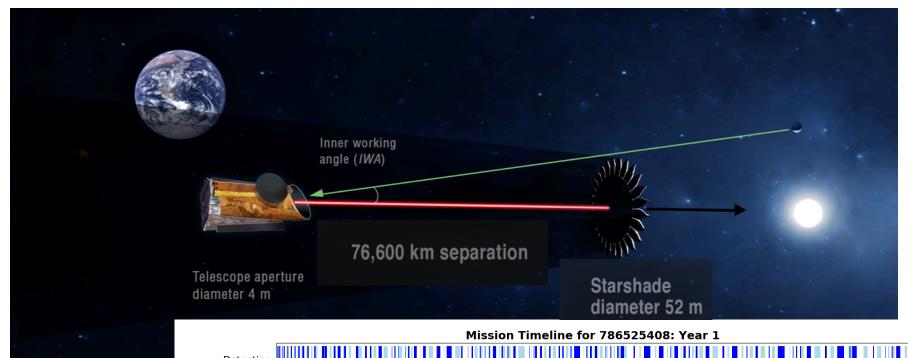
– LUVOIR B: 0.8 λ /D photometric aperture, 500 nm

Average fractional difference in count rates:

	Star				dark		integration
Planet	leakage	zodi	exozodi	read noise	current	CIC noise	time
(s^-1)	(s^-1)	(s^-1)	(s^-1)	(s^-1)	(s^-1)	(s^-1)	(d)
0.09	-0.60	0.35	-0.59		1.00	-0.21	-0.56

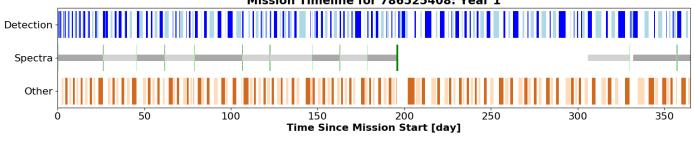
Overall agreement is good

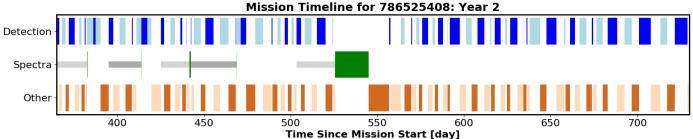
- Sources of variation:
 - Star Leakage: EXOSIMS does not account for variable stellar diameter in the stellar leakage. A nominal 0.4 mas stellar diameter PSF was used.
 - Zodi: AYO assumes observation at minimum Zodi
 - Exozodi: EXOSIMS employs an empirical scaling model for exozodi based on observed local zodi variation and applies to planet inclination
 - CIC: AYO uses an optimized, variable frame time
 - Integration time: different integration time formulas are used



4 OBSERVING SCENARIOS

Scenario: Habex 4H hybrid



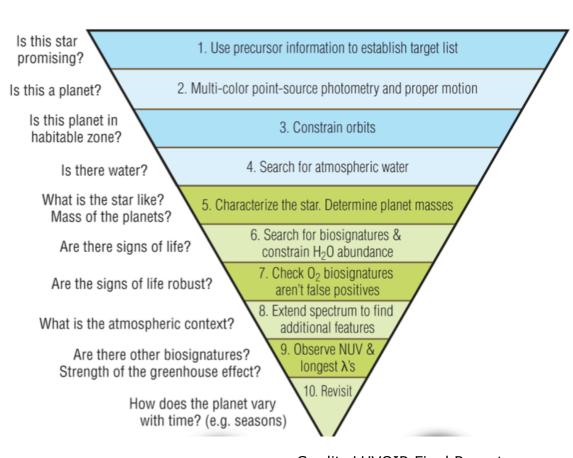


Coro. Det, SNR=7, 20% BW Spectra, SNR=10: 450-1000 nm:

> R=140 300-450 nm:

R=7

Scenario: LUVOIR B



Coronagraph

- Blind search for discovery
 - SNR=7, 20% BW
- Orbit determination
 - 6 observations
 - 4 detections
- Spectra at water line
 - 20% BW
 - SNR=5
 - R=70

The Large UV Optical Infrared Surveyor

LUVOIR

Credit: LUVOIR Final Report

ExoPlanet Exploration Program

Coronagraph only

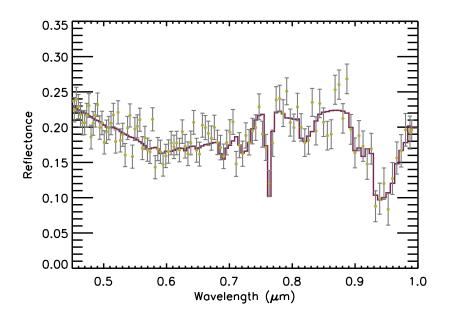
- Blind search for discovery
 - SNR=7
- Orbit determination
 - 6 observations
 - 4 detections
- Full spectra 450 -1000 nm
 - 20% BW in serial
 - SNR=10
 - R=70

Starshade only

- Blind search for discovery with starshade
 - SNR=7
- Full spectra 300 -1000 nm
 - Continuous 450-1000 nm:
 - SNR=10
 - R=70
 - UV 300 -450 nm:
 - SNR=10
 - R=7
- Orbit determination
 - SNR=7
 - 6 observations
 - 4 detections

Full spectra with HabEx coronagraph vs starshade

ExoPlanet Exploration Program

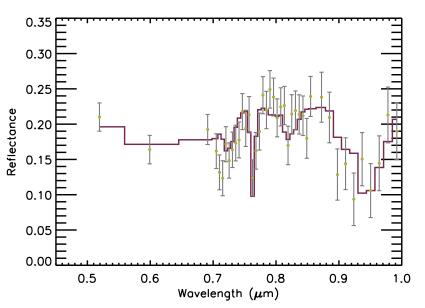

HabEx 4 m Starshade

450 – 1000 nm

R = 140, SNR = 10

Continuous spectra (metric C1)

int. time = 390 hrs


HabEx 4 m Coronagraph

450 – 700 nm, R=7, SNR=8.5

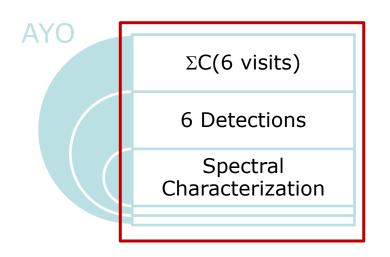
700- 1000 nm, R = 140 , SNR=8.5

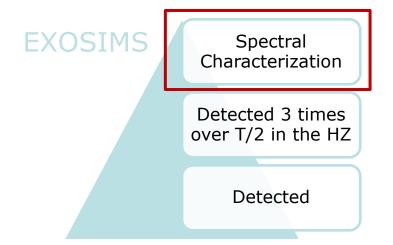
20% BW aggregated spectra D

total int. time = 392 hrs

Credit: Ty Robinson

Yield Metrics


A. Water line						R =	= 70, SNR = 5			
B. Oxygen + Water lines				R =	:140, SNR	=8.5 R =	= 70, SNR = 5			
C.1 HabEx Full	R = 7,	SNR = 5	R = 140, SNR = 10							
spectrum		-						-		
C2. HabEx				R = 70, SNR = 10						
Architecture Trade										
D. LUVOIR Full	R = 7,	SNR = 5	R = 7, S	SNR = 8.5		R = 140, S	NR = 8.5	R	= 40, SNR =	10
Spectrumn A										
	300	400	500	600	700	800	900	1000	1100	1200
					Wavel	ength (nm)				


What is Yield?

A. Water line				R	= 70, SNR = 5				
B. Oxygen + Water lines		R = 140, SNR = 8.5 R = 70, SNR = 5							
C.1 HabEx Full spectrum	R = 7, SNR = 5	R = 140, SNR = 10							
C2. HabEx Architecture Trade			R = 70, SNR = 10						
	R = 7, SNR = 5	R = 7, SNR = 8.5	,	R = 140, SI	NR = 8.5		R = 40, SNR	= 10	
D. LUVOIR Full Spectrum A	300 400	500 600		800 Wavelength (900 (nm)	1000	1100	1200	1300
									•

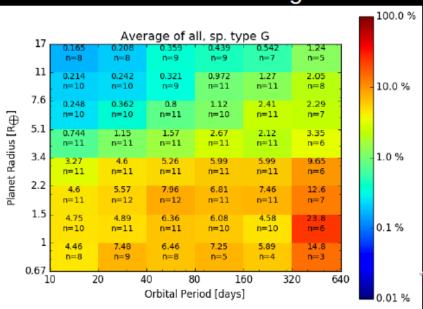
• What is the science product? How is it calculated?

ASTROMETRIC INPUTS

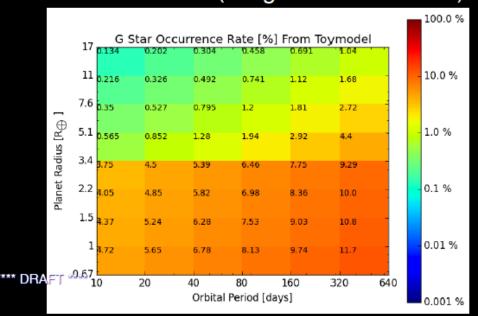
SAG13 Occurrence Rates: Parametric fit for G-dwarfs

ExoPlanet Exploration Program

$$\frac{\partial^2 N(R,P)}{\partial \ln R \, \partial \ln P} = \Gamma_i R^{\alpha_i} P^{\beta_i}$$


in region $R_{i-1} \leq R < R_i$

(R in Earth radius, P in years)


$\Gamma_{\!i}$	α_i	eta_i	R_i
0.38	-0.19	0.26	3.4
0.73	-1.18	0.59	Inf

[to be updated uncertainties]

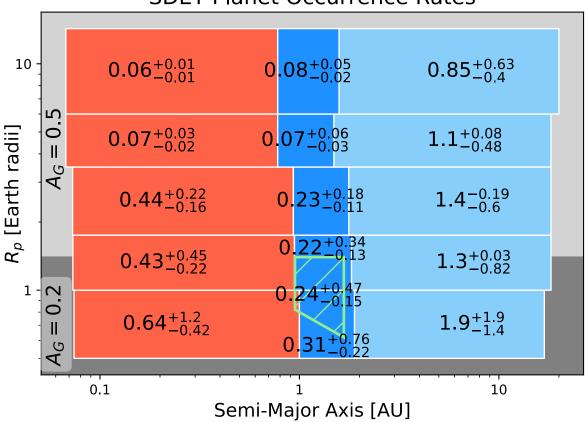
Submission average

Parameteric fit (integrated across bins)

Dulz/Plavchan Occurrence Rates

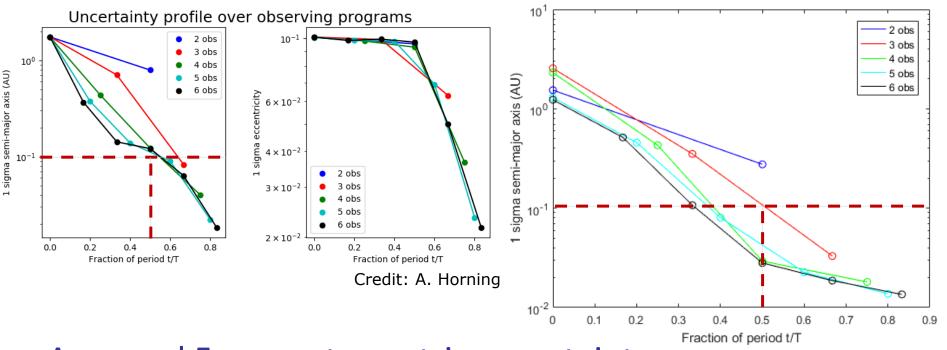
ExoPlanet Exploration Program

Planet Type	SAG13	Optimistic	Nominal	Pessimistic	c •	Fernandes et al. 2019 for large
Hot rocky	0.67	1.82	0.64	0.22	_	radius
Warm rocky	0.30	1.07	0.31	0.09	•	Hill stability criteria for large
Cold rocky	1.92	3.80	1.89	0.50		periods
Hot super-Earths	0.47	0.88	0.43	0.21		perious
Warm super-Earths	0.21	0.56	0.22	0.09		
Cold super-Earths	1.42	1.36	1.33	0.51		
Hot sub-Neptunes	0.48	0.66	0.44	0.28		
Warm sub-Neptunes	0.22	0.41	0.23	0.12		
Cold sub-Neptunes	1.63	1.19	1.38	0.78		
Hot sub-Jovians	0.07	0.10	0.07	0.05		0.072
Warm sub-Jovians	0.07	0.13	0.07	0.04		- 0.065
Cold sub-Jovians	1.35	1.14	1.06	0.58		
Hot Jovians	0.056	0.07	0.06	0.05		- 0.057
Warm Jovians	0.053	0.13	0.08	0.06		- 0.05
Cold Jovians	1.01	1.48	0.85	0.45		- 0.043
Earth	0.24*	0.71	0.24	0.09		
			4			- 0.036
			۳ که			- 0.029
						- 0.022
						- 0.014
			1.0			- 0.007
			-			0.0
						0.0
			-			
				10.0	100.0	1000.0 10000.0


P [days]

Planet bins

Dulz et al. occurrence rates with Kopporapu et al. bins


SDET Planet Occurrence Rates

Orbit determination: Is it in the Habitable Zone?

ExoPlanet Exploration Program

Assumed 5 mas astrometric uncertainty

Credit: E. Nielsen

- Heuristic:
 - 3 detections spanning half a period, generally
 - 4 detections required for higher inclination orbits

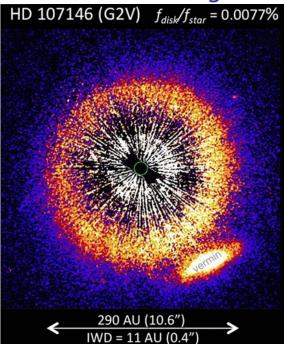
Stray Light from Binary Stars

Star Catalog

- EXOSIMS uses EXOCAT-1
 - https://exoplanetarchive.ipac.ca
 ltech.edu
- AYO uses union of the Hipparcos New Reduction catalog and the Gaia TGAS catalog
- Stark showed variation in catalog resulted in ~4% variation in yield, largely because Hipparcos is the backbone of both catalogs

Stray Light from Binary Stars

- Scatter from binary companions can exceed the suppressed starlight
- We included stray light from the companion star using λ/20 nm RMS surface roughness and f^{-2.5} model (based on WFIRST primary mirror)
 - Maggie Turnbull provided an addendum to EXOCAT-1 catalog with the WDS information for the brightest and closest binary companions


Zodiacal Light

ExoPlanet Exploration Program

Table from Leinert et al. 1998 based on color and pointing

Schneider et al. 2014

Smoothly varying 1/r² optical depth of number of zodis from the LBTI HOSTS survey results

 EXOSIMS uses Lindler 2008 model for inclination, color

Astrophysics Input Summary

EXEP	

Parameter	AYO	EXOSIMS	Description		
$\overline{\eta_{\oplus}}$	0.24	SAG13 power law	Fraction of sunlike stars with an exo-Earth candidate		
R_p	[0.6,	$1.4]R_{\oplus}$	Exo-earth candidate planet radius ^a		
a	[0.95,	$1.67]\mathrm{AU}$	Semi-major axis for solar twin		
e	_	0	Eccentricity (circular orbits)		
$\cos i$	[-	-1, 1	Cosine of inclination (uniform distribution)		
ω	$[0,2\pi]$		Argument of pericenter (uniform distribution)		
M	$[0,2\pi]$		Mean anomaly (uniform distribution)		
Φ	Lambertian		Phase function		
A_G	0.2		Geometric albedo of rocky planets		
A_G		0.5	Geometric albedo of gas planets		
z_c	$23~{\rm mag~asec^{-2}}$	Lindler model ^b	Average V band surface brightness of zodiacal light for coronagraph observations		
z_s	22 mag asec^{-2}	Lindler model ^b	Average V band surface brightness of zodiacal light for starshade observations		
x	22 ma	$ag asec^{-2}$	V band surface brightness of 1 zodi of exozodiacal dust $^{\rm c}$		
n	LBTI best	fit distribution	Number of zodis for all stars		

^aActual lower bound is $R_p > 0.8/\sqrt{a}$

^bLindler zodiacal light model as a function of ecliptic latitude and longitude at observation time

 $^{^{\}mathrm{c}}$ Local zodi based on ecliptic pointing of telescope. On average, starshade observes into brighter zodiacal light.

^d For solar twin. Varies with spectral type, as zodi definition fixes optical depth.

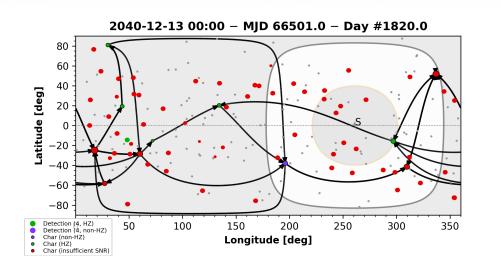
Instrument Parameters

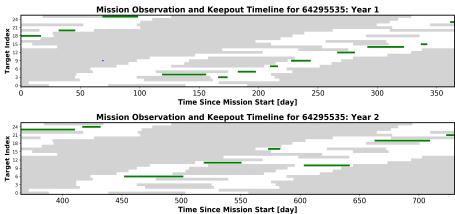
ExoPlanet Exploration Program

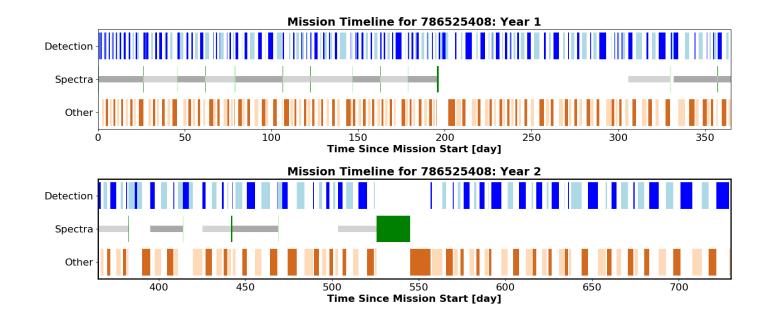
Parameter	LUVOIR B	HabEx
Primary Diameter (m)	8.0	4.0
Obscuration Factor	0.14	0
Integration Time Limit	60 days	60 days
	Coronagraph Performance	
Raw contrast floor ^a	1×10^{-10}	1×10^{-10}
Raw contrast stability ^b	1×10^{-11}	2×10^{-11}
Post-processing Factor	0.25	0.29
Systematic noise floor	$26.5 \Delta mag$	$26.5 \Delta \text{mag}$
Core throughput ^b	0.46	0.5
Photometric Aperture	$0.8 \; \lambda/D$	$0.7 \ \lambda/D$
Inner Working Angle, IWA _{0.5}	$3.9\lambda/D$	$2.4\lambda/D$
Inner Working Angle, IWA _{0.1}	$1.5\lambda/D$	$1.5\lambda/D$
Outer Working Angle	$60\lambda/D$	$26\lambda/D$
Bandwidth $(\Delta \lambda)$	20%	20%
, ,	Imaging Channel 1 [†]	
Non-coronagraph Throughput	0.17	0.28
Bandwidth	20%	20%
	Imaging Channel 2*	
Non-coronagraph Throughput	0.39	0.42
Bandwidth	20%	20%
	Spectral Channel	
Non-coronagraph Throughput	0.39	0.42
Bandwidth	20%	20%
$\Delta \lambda / \lambda$	140	140
λ	$500 \; \mathrm{nm}$	500 nm

Instrument Parameters (cont.)

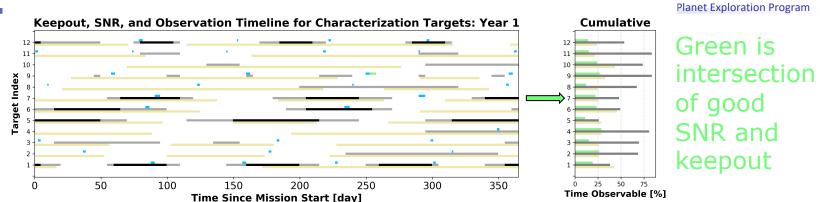
	$\underline{\text{Detectors}}$		
Quantum Efficiency	0.9	0.9	
Photon Counting Efficiency	0.75	$^{0.75}$. WFIRST	-
Dark Current (e/s)	3×10^{-5}	3×10^{-5} EMCCD	
Read Noise (e/pix)	0		
Clock-Induced Charge (e/s)	1.3×10^{-5}	1.3×10^{-5}	
	$\underline{\text{Starshade}}$		
Starshade Thrust (mN)	-	1040	
Starshade Slew I_{sp} (s)	-	3000	
Starshade Stationkeeping I_{sp} (s)	-	308	
Starshade Wet Mass (kg)	-	11180	
Starshade Dry Mass (kg)	-	4550	
Starshade Separation (km)	-	76600	

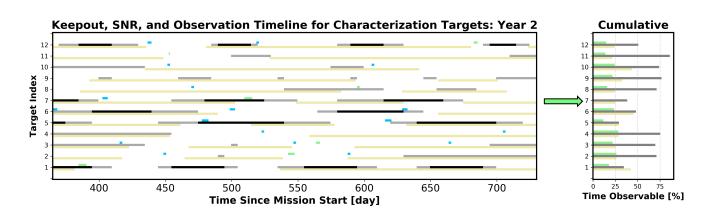


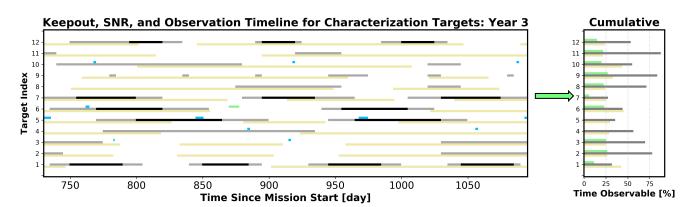

RESULTS

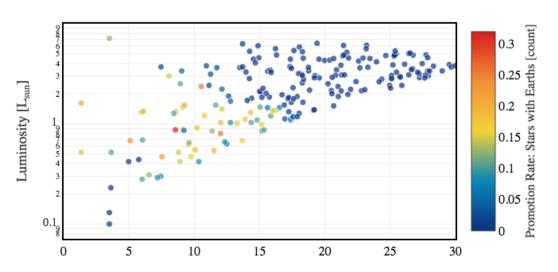

Scenario: Habex 4H hybrid

ExoPlanet Exploration Program

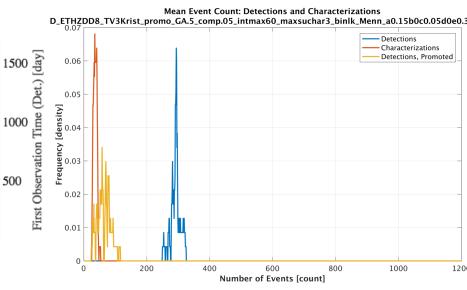





Timeline: Observational Constraints Keepout, SNR, and Observations for Characterization Targets Characterizations: Green; Detections: Blue Solar Keepout: Gold; Bad WA: Black; Low SNR: Grays



HabEx 4H: Coronagraph blind search


ExoPlanet Exploration Program

Promotion Rate

- First Observation Time
- 0.1₈
 0.1₉
 0.

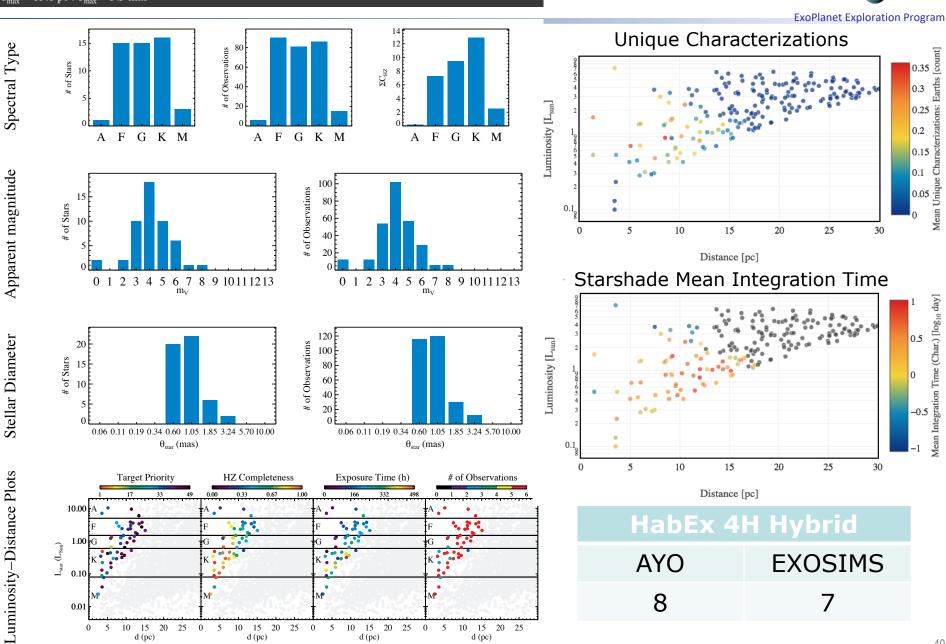
- Stars are ranked C/t and observed in order
- Revisit after T/3 elapsed
- Promote for Characterization:
 - 3 detections spanning > T/2
 - In habitable zone
 - Radius is EEC

Target List $= 15.1 \text{ pc} \mid \theta_{max} = 5.5 \text{ mas}$

> 15 20 25

d (pc)

15


d (pc)

20 25

0 5 15 20 25

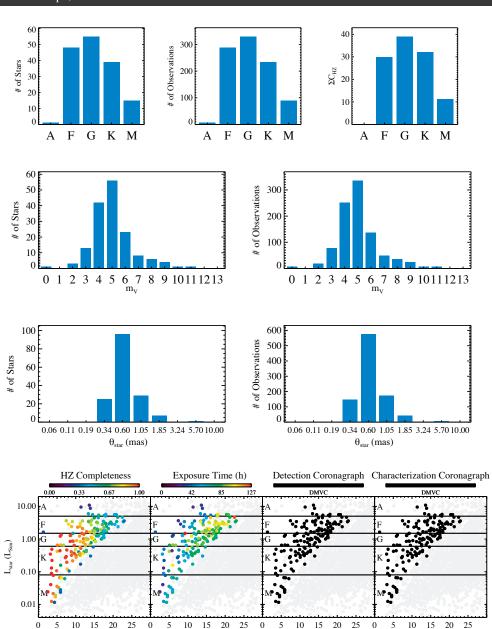
d (pc)

HabEx 4H Hybrid Yield

15 20

d (pc)

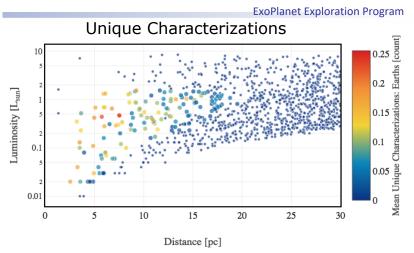
Max Distance = 22.9 pc, Max Stellar Diameter = 9.3 mas

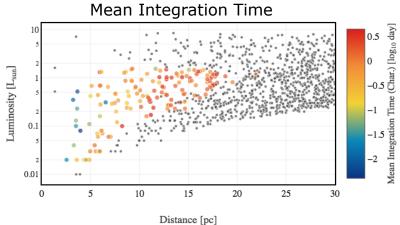

LUVOIR B yield

Spectral Type

Apparent magnitude

Stellar Diameter

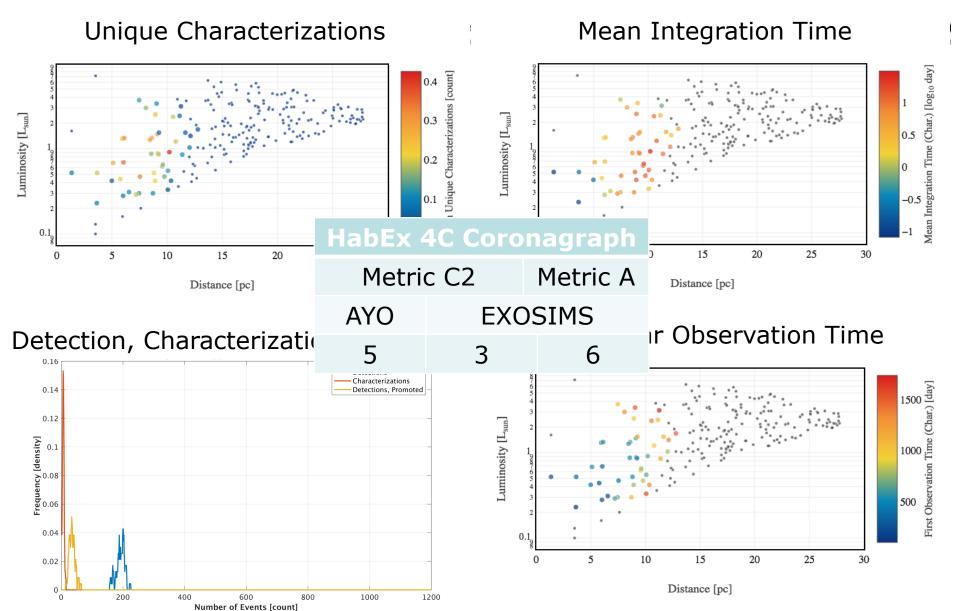



d (pc)

d (pc)

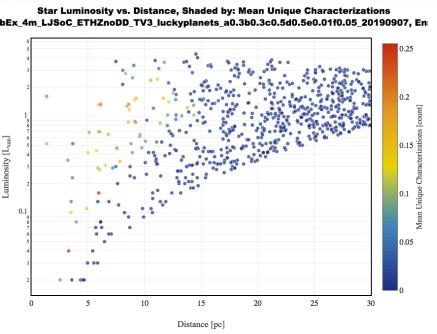
d (pc)

d (pc)



LUVOIR B	, metric A
AYO	EXOSIMS
28	18

HabEx 4C: Coronagraph only metric C2



HabEx 4S: Starshade only

		M	lission Timelin	e for 8695442	30: Year 1		
Detection -							
Spectra -		+				-	
Other -							
Ċ	50	100	150 Time Since	200 e Mission Start [250 day]	300	350
		M	lission Timelin	e for 8695442	30: Year 2		
Detection -							
Spectra -							
Other -							
	400	450	500 Time Since	550 • Mission Start [600 day]	650	700
Mission Timeline for 869544230: Year 3							
Detection -							
Spectra -							_
Other -							
	750	800		900 9 • Mission Start [000 1	050
		M	lission Timelin	e for 8695442	30: Year 4		

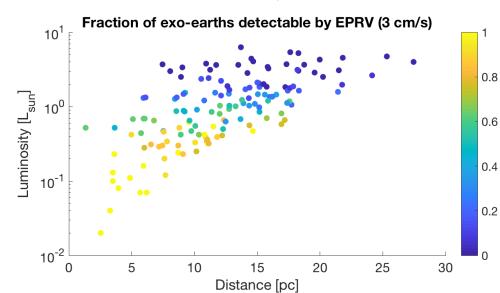
HabEx 4S Starshade					
AVO	EXOSIMS				
AYO	Char	orbit			
5	3	2			

Detection: 33 days = 1.8% Spectra: 283 days = 15.5% Slew: 1473 days = 80.6% Other: 1456 days = 79.7%

Detection
Spectra
Other

Results Summary

ExoPlanet Exploration Program


	H ₂ 0 L	ine: me	etric A	Broad (metric C1)			Broad (metric C2)		
Scenario	AYO	EXO SIMS	Omni	AYO	EXOS IMS	Omni	AYO	EXOSIMS	Omni
HabEx 4H	-	9	29	8	5	9	8	7	17
LUVOIR A	54*	-	50	-	-	-	-	-	-
LUVOIR B	28*	18	28	-	4	6	-	7	10
HabEx 4C	-	6	12	-	2	3	5	3	5
HabEx 4S	-	3	18	-	3	9	5	3	13

^{*}AYO evaluated LUVOIR A & B for 40% of a 5 year mission. AYO yield is cumulative completeness.

- Full spectra is costly.
 - Coronagraph search for water line is an efficient filter step
 - Starshade spectra has one cost for the full spectrum
- Blind search is costly
 - Front loading exoplanet mission portion may increase yield
- Starshade blind search is not as inefficient as one might expect, though orbit determination is a challenge
- HabEx is target starved and can return a fair number of EECs

Sensitivity to simulated RV recovered planets

- Plavchan et al. modeled a ground-based Super-NEID
 - 3 cm/s RV machine
 - on a 10-m class telescope
 - surveying ~53 HabEx targets
 - 5 year, 25% time survey
- Heuristic sensitivity added to EXOSIMS
 - Monte Carlo universes of synthetic planets showed which were detectable by EPRV
- EPRV can find 30%-50% of present earths.
- ~50 earths *.24 *.5 = 6

Planning for Decadal

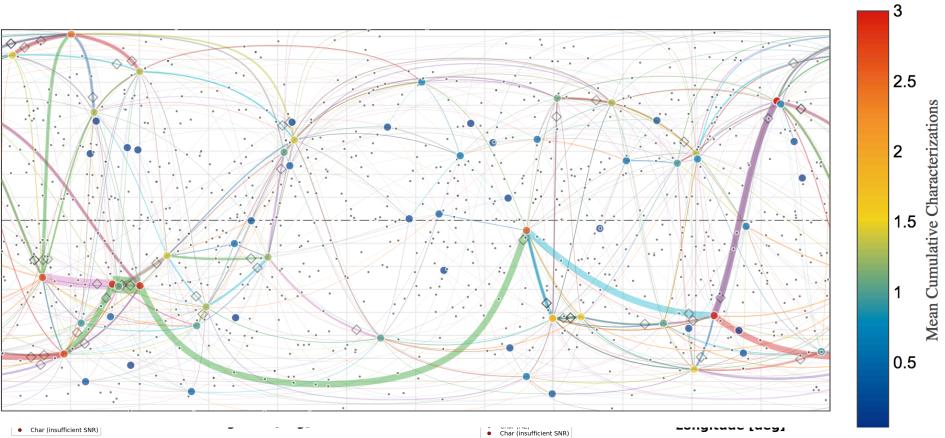
 A yield prediction for a flagship mission of this complexity needs more formality and more resources

- EPRV precursor initial study showed half of omniscient earths found by EPRV
- Improvements in work
 - SURP1: Cornell grad student Gabe Soto improving fidelity of starshade slew model: continuous thrust, deltaV(θ ,time), fuel optimization
 - SURP2: MIT grad student multi-planet system orbit fitting towards when is the best time to revisit
 - Low hanging fruit for agility

Conclusions

 Through a collaborative community based activity, we arrived at a widely accepted set of inputs for yield calculations and produced an Open Source code available for all studies

- The comparison of different yield methods shows very similar results for the same input assumptions.
 - Uncertainties in yield are dominated by uncertainty in knowledge of astrophysics inputs
- The knowledge gained through this activity has identified the areas to be addressed in the field of yield modeling to make these tools/processes as effective as possible for the future studies emerging from Astro 2020

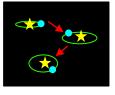


BACKUP

Monte Carlo Ensemble of 1000 DRMs

Mean Cumulative Characterizations and Slew Paths Over Ensemble Point Shading: Mean Visits across Ensemble; Slew Path Shading: Arbitrary Diamond Indicators Show Slew Information near Slew Destination

What is EXOSIMS?

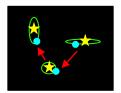


• EXOSIMS

- Open source. Python. Parametric. Probabilistic. Modular.
- Creates ensembles of DRMs which can be analyzed statistically.

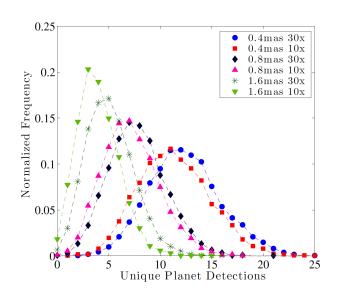
Universe n

2 Detections1Characterization


Universe n+1

1 Detection

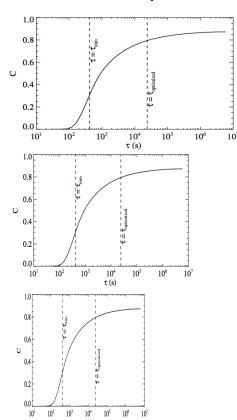
Universe n+2



1 Detection

1.3 +/- 0.5 Det.

0.3 +/- 0.5 Char.



Altruistic Yield Optimization (Stark)

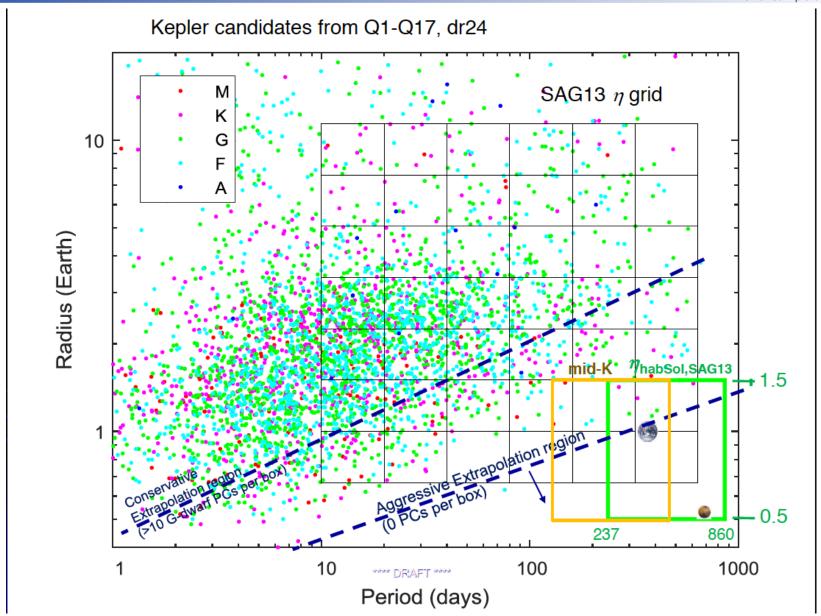
AYO: https://asd.gsfc.nasa.gov/luvoirdev/tools/

Oversimplified:

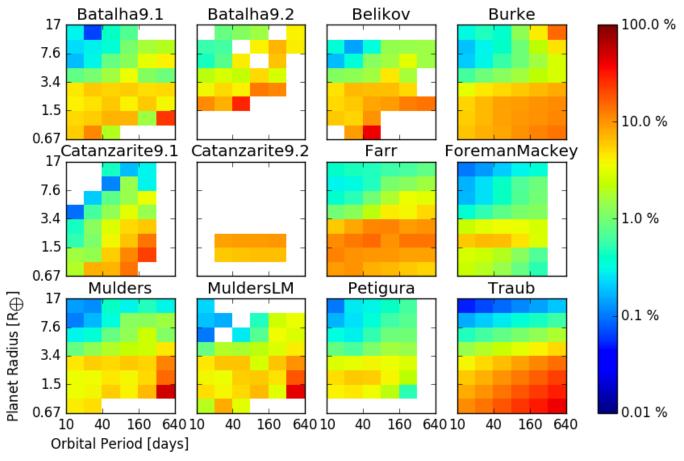
Cumulative Completeness = $C_1+C_2+C_2$

Optimize ΣC : $t_{exposure} = t_1 + t_2 + t_2$

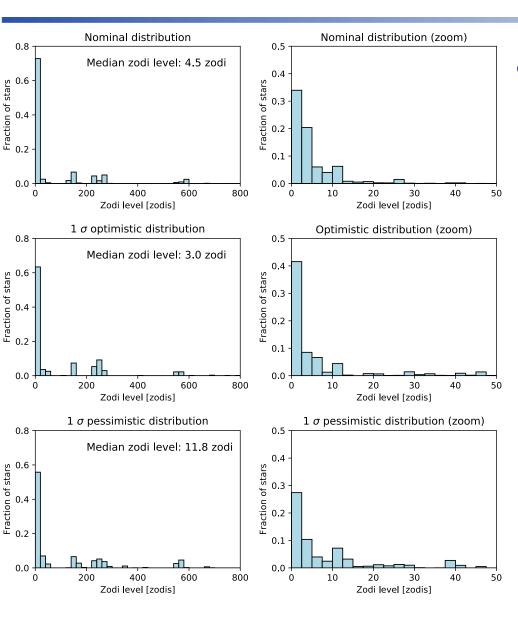
Comparison of Approaches


	EXOSIMS	AYO
Monte Carlo	Universes	Cloud of planets
Time allocation	Dynamically responsive to mission events	Statically optimized over all targets
output	Detections and posterior statistics	Cumulative Completeness (probability of detection)

SAG 13 Occurrence rates from Kepler


ExoPlanet Exploration Program

Crowd-sourced inputs

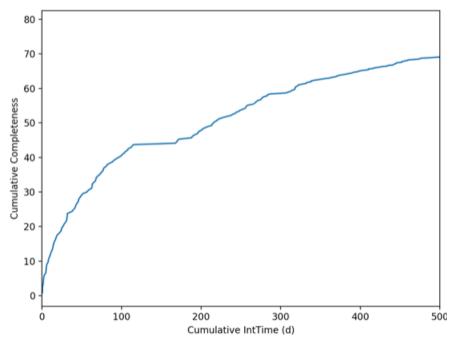


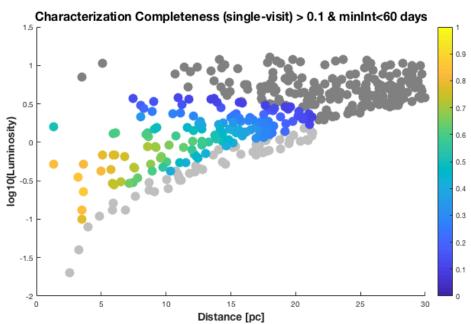
- Some overlap in data pipelines
- Some data re-binned from publications

LBTI HOSTS survey

- 35 stars
- Data fit to nominaldistribution has median of4.5 zodis
- Yields evaluated with draws from nominal, optimistic, and pessimistic distributions

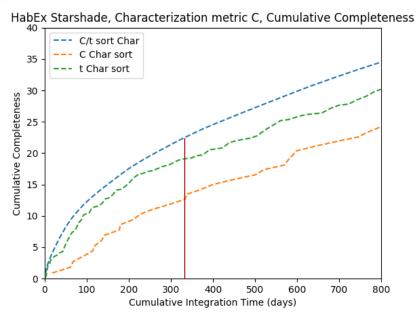
Input parameters summary




- Evolution of inputs during 3 year effort
 - Kopporapu et al. was published near the beginning of the effort
 - The HOSTS survey became available in year 3
 - The SDET drove the Dulz/Plavchan effort
- All critical input parameters were reviewed by the STDTs
 - Instrument parameters were reviewed with the STDTs and shared between modelers
 - The astrophysical input parameters were discussed with the STDTs and are thoroughly captured in the final report

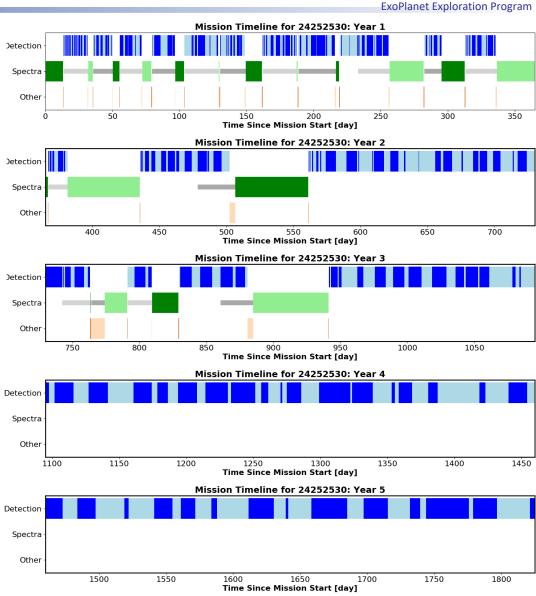
- What is the best we can do?
- How do we do the best?
 - Pre-filter for the best characterization

Characterization single visit Completeness (P_D)


Outline for HabEx 4H Results

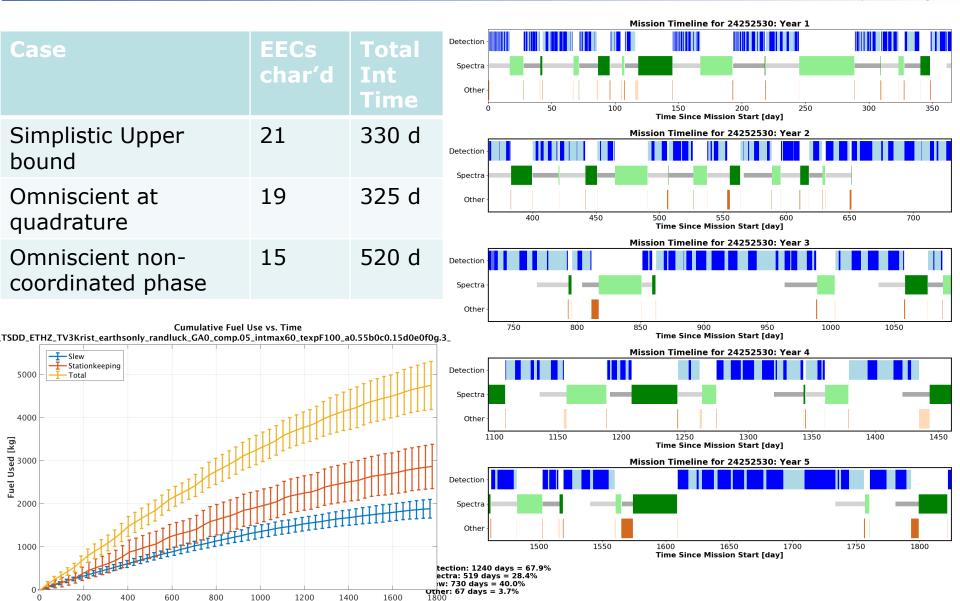
- Overview of the Tiered Scheduler
- What is the best we can do?
 - Assessing an upper bound
- Do starshade realistic constraints de-rate the yield?
 - Separating the starshade and coronagraph
 - Omniscient scenario
- Does the coronagraph blind search need scheduling?
 - Revisit cadence for increasing Completeness and for orbit determination are different optimizations
- Putting the coronagraph and starshade back together
- Compare results to AYO

What is the best we can do? Simple upper bound

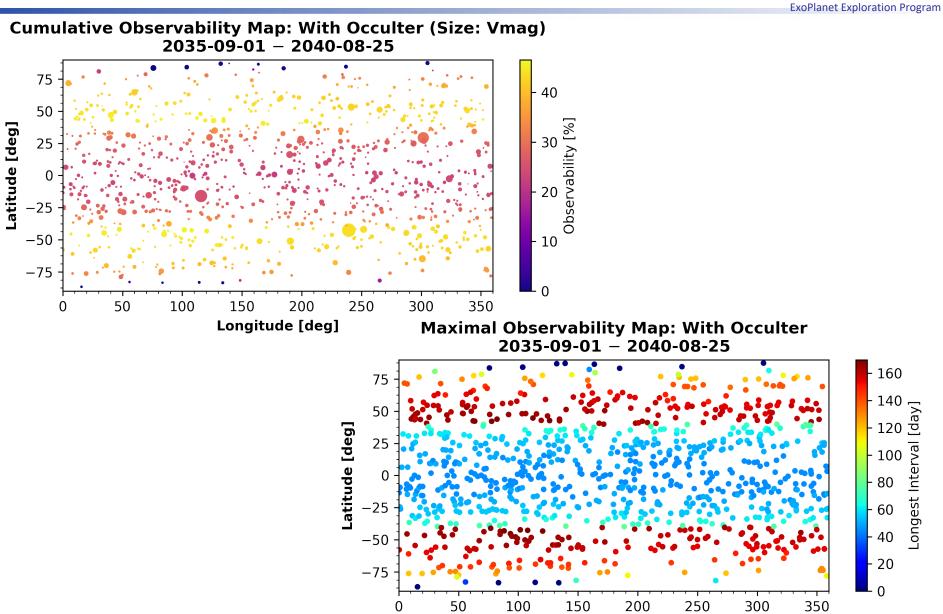


333 days: 21 earths

110 days: 11 exo-earths x 3 visits


 325 days for omniscient case to exhaust targets

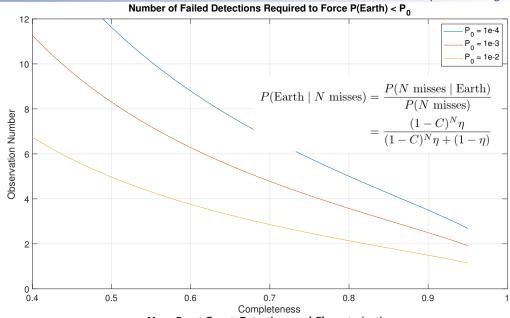
Impact of Starshade slewing

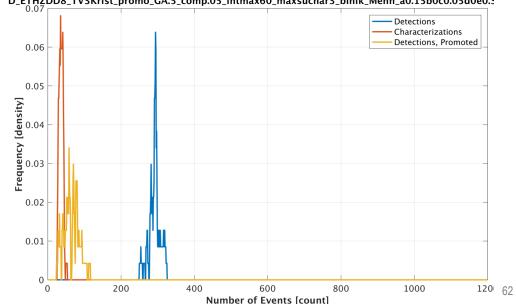

ExoPlanet Exploration Program

Time [days]

Starshade Cumulative and Maximal Observability

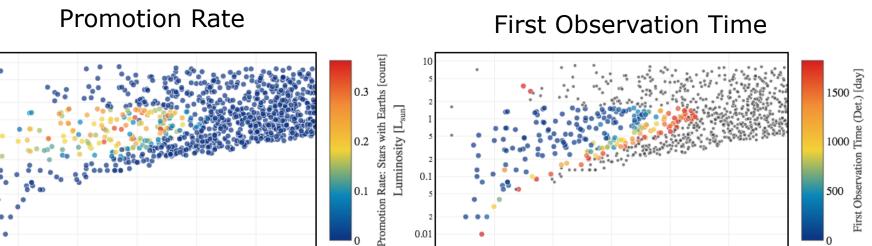
Longitude [deg]


Crafting the coronagraph blind search


ExoPlanet Exploration Program

- Trade thoroughness for efficiency
 - Max null detections = 2
 - Max successful det = 4
 - Max det visits = 10

Promotions after tuning is ~8



Mean Event Count: Detections and Characterizations
D_ETHZDD8_TV3Krist_promo_GA.5_comp.05_intmax60_maxsuchar3_binlk_Menn_a0.15b0c0.05d0e0.3

LUVOIR B Detections

0.01

5

10

Detection, Characterization Histogram

20

25

30

15

Distance [pc]

Luminosity [L_{sun}]

0.0

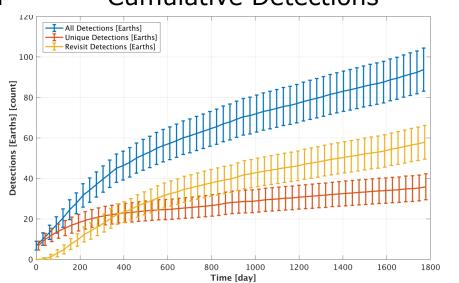
0

5

10

Detections Characterizations Detections, Promoted 0.1 Frequency [density] 80.0 60.0 40.0 0.02 200 400 800 1000 1200 Number of Events [count]

Cumulative Detections


20

25

30

15

Distance [pc]

