The Future of Astronomy will be Built:
Results from the NASA in-Space Assembled Telescope (iSAT) Study

Nick Siegler
Chief Technologist
NASA Exoplanet Exploration Program
Jet Propulsion Laboratory / California Institute of Technology

Rudranarayan Mukherjee
Robotics Technologist
Jet Propulsion Laboratory / California Institute of Technology

Harley Thronson
Senior Scientist for Advanced Concepts
NASA Goddard Space Flight Center (retired)

ExEP Technology Colloquium Series
November 12, 2019
The Future of Space Telescopes
Will benefit from…

- increased aperture size

- lowered mission risk
 - As they will be expensive as their sizes and capabilities grow

- extended mission lifetime
 - Through refueling, repairing, replenishing
 - Enabling total cost to be spread out over decades

- improved capability over time
 - Replacing instruments with more advanced ones
The Current Approach to Space Telescopes

- Designed to meet the volume and mass requirements associated with a single launch vehicle.

- Relies on all going perfectly during deployment
 - JWST: Over 20 sequential deployment events, 40 deployable structures, 178 release mechanisms – all of which must work.
 - Repair capabilities do not yet exist other than with astronauts
 - Astronauts are not planned to go to Geo or Sun-Earth L2

- Mission lifetime is fuel or cryogen limited
 - Servicing capabilities to repair or extend lifetime not yet in place

- No new instruments - you live with what you have
One potential approach that addresses these current challenges and achieves that future is in-Space Assembly.
Study Objective:

– “When is it worth assembling space telescopes in space rather than building them on the Earth and deploying them autonomously from single launch vehicles?”

In-Space Assembled Telescope study commenced in May 2018
Study Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali Azizi</td>
<td>NASA JPL</td>
<td>Metrology</td>
</tr>
<tr>
<td>Larry Dewell</td>
<td>LMC</td>
<td>Pointing/Stability/Control</td>
</tr>
<tr>
<td>Oscar Salazar</td>
<td>NASA JPL</td>
<td>Pointing/Stability/Control</td>
</tr>
<tr>
<td>Phil Stahl</td>
<td>NASA MSFC</td>
<td>Telescopes</td>
</tr>
<tr>
<td>Jon Arenberg</td>
<td>NGAS</td>
<td>Thermal/Sunshade</td>
</tr>
<tr>
<td>Doug McGuffey</td>
<td>NASA GSFC</td>
<td>Telescopes/SE</td>
</tr>
<tr>
<td>Kim Aaron</td>
<td>NASA JPL</td>
<td>Structures</td>
</tr>
<tr>
<td>Dave Redding</td>
<td>NASA JPL</td>
<td>Telescopes</td>
</tr>
<tr>
<td>Bill Doggett</td>
<td>NASA LaRC</td>
<td>Structures</td>
</tr>
<tr>
<td>Al Tadros</td>
<td>SSL</td>
<td>Robotics</td>
</tr>
<tr>
<td>Bob Hellekson</td>
<td>NGIS</td>
<td>Telescope Systems</td>
</tr>
<tr>
<td>Eric Mamajek</td>
<td>NASA JPL</td>
<td>Astrophysicist</td>
</tr>
<tr>
<td>Shanti Rao</td>
<td>NASA JPL</td>
<td>Optical Design</td>
</tr>
<tr>
<td>Matthew East</td>
<td>L3 Harris</td>
<td>Mirror Segments</td>
</tr>
<tr>
<td>Mike Rodgers</td>
<td>NASA JPL</td>
<td>Optical Design</td>
</tr>
<tr>
<td>Ray Ohl</td>
<td>NASA GSFC</td>
<td>Optical AIT</td>
</tr>
<tr>
<td>Sergio Pellegrino</td>
<td>Caltech</td>
<td>Technologist</td>
</tr>
<tr>
<td>Tere Smith</td>
<td>NASA JPL</td>
<td>AIT</td>
</tr>
<tr>
<td>Paul Backes</td>
<td>NASA JPL</td>
<td>Robotics</td>
</tr>
<tr>
<td>Jim Breckenridge</td>
<td>Caltech</td>
<td>Optical Design</td>
</tr>
<tr>
<td>Allison Barto</td>
<td>Ball</td>
<td>SE/optical testing</td>
</tr>
<tr>
<td>David Stubbs</td>
<td>LMC</td>
<td>Telescopes/Design</td>
</tr>
<tr>
<td>John Dorsey</td>
<td>NASA LaRC</td>
<td>Structures</td>
</tr>
<tr>
<td>Jeff Sokol</td>
<td>Ball</td>
<td>Mechanical/AIT</td>
</tr>
<tr>
<td>Atif Qureshi</td>
<td>SSL</td>
<td>Robotics SE</td>
</tr>
<tr>
<td>Carlton Peters</td>
<td>NASA GSFC</td>
<td>Thermal</td>
</tr>
<tr>
<td>Kan Yang</td>
<td>NASA GSFC</td>
<td>Thermal</td>
</tr>
<tr>
<td>Paul Lightsey</td>
<td>Ball</td>
<td>SE</td>
</tr>
<tr>
<td>Kim Mehalick</td>
<td>NASA GSFC</td>
<td>Thermal/Sunshade</td>
</tr>
<tr>
<td>Bo Naasz</td>
<td>NASA GSFC</td>
<td>RPO</td>
</tr>
<tr>
<td>Keith Havey</td>
<td>L3 Harris</td>
<td>Mirror Segments</td>
</tr>
<tr>
<td>Harley Thronson</td>
<td>NASA GSFC</td>
<td>Mission Concepts</td>
</tr>
<tr>
<td>Scott Knight</td>
<td>Ball</td>
<td>Optics</td>
</tr>
<tr>
<td>John Lymer</td>
<td>SSL</td>
<td>Robotics</td>
</tr>
<tr>
<td>Glen Henshaw</td>
<td>NRL</td>
<td>Robotics</td>
</tr>
<tr>
<td>Gordon Roesler</td>
<td>ex-DARPA</td>
<td>Robotic Assembly</td>
</tr>
<tr>
<td>Rudra Mukherjee</td>
<td>NASA JPL</td>
<td>Robotics</td>
</tr>
<tr>
<td>Mike Fuller</td>
<td>NGIS</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>Ken Ruta</td>
<td>NASA JSC</td>
<td>Robotics</td>
</tr>
<tr>
<td>Dave Miller</td>
<td>MIT</td>
<td>System Assembly</td>
</tr>
<tr>
<td>Joe Pitman</td>
<td>Heliospace</td>
<td>Structures</td>
</tr>
<tr>
<td>Keith Belvin</td>
<td>NASA LaRC</td>
<td>Structures</td>
</tr>
<tr>
<td>Sharon Jeffries</td>
<td>NASA LaRC</td>
<td>Systems Eng</td>
</tr>
<tr>
<td>Dave Folta</td>
<td>NASA GSFC</td>
<td>Orbital Dynamicist</td>
</tr>
<tr>
<td>Lynn Bowman</td>
<td>NASA LaRC</td>
<td>Programmatic</td>
</tr>
<tr>
<td>John Grunsfeld</td>
<td>ex-NASA</td>
<td>Astronaut</td>
</tr>
<tr>
<td>Alison Nordt</td>
<td>LMC</td>
<td>Programmatic</td>
</tr>
<tr>
<td>Bill Vincent</td>
<td>NRL</td>
<td>Programmatic</td>
</tr>
<tr>
<td>Diana Calero</td>
<td>KSC</td>
<td>Launch Vehicles</td>
</tr>
<tr>
<td>Brad Peterson</td>
<td>OSU</td>
<td>Astrophysicist</td>
</tr>
<tr>
<td>Kevin Dimarzio</td>
<td>Made in Space</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Matt Greenhouse</td>
<td>NASA GSFC</td>
<td>Astrophysicist</td>
</tr>
<tr>
<td>Max Fagin</td>
<td>Made in Space</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Bobby Biggs</td>
<td>LMC</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Alex Ignatiev</td>
<td>U Houston</td>
<td>Coatings</td>
</tr>
<tr>
<td>Rob Hoyt</td>
<td>Tethers</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Scott Rohrbach</td>
<td>NASA GSFC</td>
<td>Scattered Light</td>
</tr>
<tr>
<td>Jason Herman</td>
<td>Honeybee</td>
<td>Robotics</td>
</tr>
<tr>
<td>Stuart Wiens</td>
<td>LMC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>Josh Woods</td>
<td>LMC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>Austin Van Otten</td>
<td>NGAS</td>
<td>Structures</td>
</tr>
<tr>
<td>Marshal Perrin</td>
<td>STScI</td>
<td>Astrophysicist</td>
</tr>
<tr>
<td>Jeff Hoffman</td>
<td>MIT</td>
<td>Astronaut</td>
</tr>
<tr>
<td>Keith Warfield</td>
<td>NASA JPL</td>
<td>Costing</td>
</tr>
<tr>
<td>Ron Polidan</td>
<td>PSST</td>
<td>Astrophysicist</td>
</tr>
<tr>
<td>Howard Macewen</td>
<td>Self</td>
<td>Aerospace</td>
</tr>
<tr>
<td>Sam Glassner</td>
<td>NEU</td>
<td>Student</td>
</tr>
<tr>
<td>Nick Siegler</td>
<td>NASA JPL</td>
<td>Technologist</td>
</tr>
</tbody>
</table>

Study Involvement

- 72 participants
- 6 NASA Centers
- 14 private companies
- 2 gov’t agencies
- 5 universities

Missions and Concepts

- JWST, HST, ISS, Restore-L, RSGS, NASA’s Tipping Point, Gateway, and future large mission concepts

Discipline Experts

- RPO
- telescope optics
- robotics
- structures
- sunshade
- instruments
- I&T + V&V
- launch vehicles
- orbital dynamics
Detailed Process Approach

Four-step approach

Step 1: Select a reference mission concept

Step 2a: Conduct a **qualitative** assessment based on experiences and lessons learned

Step 2b: Conduct a **quantitative** assessment using a grass-roots costing and risk exercise by SMEs from various subsystems

Step 2c: Independent parametric cost estimate for conventional telescope building
Study Assumptions

1. Reference telescope:
 – Non-cryogenic operating at UV/V/NIR assembled in space
 – Four sizes between 5 – 20 m

2. Driving requirement:
 – Structural stability required by coronagraphy of exo-planets

3. Operational destination:
 – Sun-Earth L2

4. Launch vehicles:
 – Use of 5 m-class launch vehicle fairings
Modularization of a Space Telescope
Reference Mission Concept

Very large option space

Assembly Agent

Robotic arms

Dextre and Canadarm2

Launch Vehicles

ULA's Delta IV Heavy ULA's Atlas V SpaceX's Falcon Heavy

Assembly Orbit

Assembly Platform

Telescope's spacecraft bus as the assembly platform
Key Aspects of the iSAT Paradigm

(1) Cargo delivery vehicle
(2) Multiple launch vehicles
(3) Rendezvous and proximity operations

(4) Supervised autonomous robotic arm
Existing Cargo Delivery Vehicles
Rendezvous, Grappled, and Berthed

Northrop Grumman’s Cygnus
SpaceX’s Dragon
Key Aspects of the iSAT Paradigm

(1) Cargo delivery vehicle
(2) Multiple launch vehicles
(3) Rendezvous and proximity operations
(4) Supervised autonomous robotic arm
(5) Modularized flight elements
(6) In-space testing
Delivery ConOps
Disposable Cargo Delivery Vehicle (CDV)

CDV maneuver to acquire assembly orbit

CDV RPO Grappled by Assemblage

Assemblage robotics berth CDV, remove cargo, releases CDV

Empty CDV Disposal to heliocentric

Stage Separation

1st Stage Expended or Recovered

Fairing Separation

2nd Stage Disposal to heliocentric

Observatory bus and robotics on orbit

CDV Separation

Repeat N times

Illustration: Bo Naasz (NASA GSFC)
Delivery Via Disposable Cargo Delivery Vehicle

CDV RPO Grappled by Assemblage

Assemblage robotics berth CDV, remove cargo, releases CDV

Empty CDV Disposal to Helo-centric

Illustration: Bo Naasz (NASA GSFC)
Delivery ConOps
Disposable Cargo Delivery Vehicle (CDV)

- Observatory spacecraft bus and robotics on orbit
- CDV maneuver to acquire assembly orbit
- CDV RPO Grappled by Assemblage
- Assemblage robotics berth CDV, remove cargo, releases CDV
- Empty CDV Disposal to Heliocentric
- Observatory Maneuver to SEL2

<table>
<thead>
<tr>
<th>Telescope PM Size (m)</th>
<th>Total Launches</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

Illustration: Bo Naasz (NASA GSFC)
telescope
backplane truss
Primary mirror raft (7 segments)
Science Instrument Module #5
iSAT Technical Challenges (incomplete list)

Robotic manipulators walking on gossamer structures with minimal induced stresses

Stiff linear structures and precision joining mechanisms

Precise, adjustable, reversible interfaces with harnesses

Multi-agent collaborative autonomous manipulation

Assembly and manipulation of soft goods such as Mylar sheets and blankets

Spacecraft attitude and control during assembly
Study Key Findings
iSAT Leverages Many TRL 9 Capabilities

Past Capability Advances

HST Servicing – Inspects, Repairs, Upgrades, Optical Alignment

ISS Assembly – Modularity, Multiple LV’s, Robotic Arms

Orbital Express
Autonomous Rendezvous and Soft Capture, Removal/installation of ORUs, Fluid Transfer

Ongoing Capability Improvements

ISS Servicing and Assembly – Robotic Repairs, Autonomous Docking, Instrument Assembly

Space X Dragon Resupply

JWST: Segmented Optics WFS&C Phasing

Curiosity
Supervised Autonomy Robotics

Future Capability

Advanced Servicing – Autonomy, Telerobotics, Refueling, Servicing

Gateway

Restore-L

Mars Sample Return

Commercial LEO – Infrastructure Buildup, Support Services
No technical showstoppers
Further engineering development required; several technology gaps

<table>
<thead>
<tr>
<th>#</th>
<th>ISA Key Capabilities</th>
<th>Status</th>
<th>Representative Examples</th>
<th>Readiness for Observatory ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modular Elements</td>
<td>Flight Demonstrated</td>
<td>Instruments on HST, instruments installed on ISS</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Development</td>
<td>JWST primary mirror segments</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicles</td>
<td>Flight Demonstrated</td>
<td>SpaceX Falcon, Falcon Heavy, ULA’s Delta IV</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Development</td>
<td>SLS, Blue Origin, Starship, Vulcan Centaur</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RPO</td>
<td>Flight Demonstrated</td>
<td>DARPA Orbital Express, NASA OSIRIS-Rex, Cygnus, Dragon, Crew Dragon, ATV, HTV, Progress, Soyuz</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>CDVs</td>
<td>Flight Demonstrated</td>
<td>SpaceX Dragon, Cygnus from Northrop Grumman</td>
<td>High</td>
</tr>
<tr>
<td>5a</td>
<td>Space Robotics Hardware</td>
<td>Flight Demonstrated</td>
<td>Several robotic arms on ISS (e.g. Canadarm 2), Orbital Express robotic arm, Mars Rover arms, Shuttle arm</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Development</td>
<td>NASA Restore-L and DARPA RSGS robotic servicing arms, Canadarm 3, Maxar’s Dragonfly arm, Mars 2020 rover</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Space Robotics Software</td>
<td>Flight Demonstrated</td>
<td>Mars Rover Autonomy (e.g. MSL, MER), ISS, Orbital Express</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Development</td>
<td>Mars 2020, Mars Sample Return, NASA Restore-L, DARPA RSGS, NASA Tipping Point Demonstrations</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>In-space Verification and Validation</td>
<td>Flight Demonstrated</td>
<td>Instruments on HST, instruments installed on ISS</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Development</td>
<td>JWST primary mirror segments and wavefront control</td>
<td></td>
</tr>
</tbody>
</table>

Technology investments needed most in items 1 and 6
Mass and Volume Constraints Decoupled

No “Tyranny of the Fairing”
• Telescopes can be designed with more relaxed mass and volume constraints, apertures of any size, and configurations that optimize performance and cost.

Only game in town when > 15 m
• A folded telescope can be stowed into the largest SLS fairing up to about 15 m, after that… it’s iSA.
iSA Solves the in-Space Servicing Question

Servicing is a natural byproduct of iSA telescopes as the robotic arms remain with the observatory and spacecraft.
Welcomed, but not required…

• Future space infrastructures (e.g. Lunar Gateway, ISS)
• Astronauts
• Large future launch vehicles (e.g. BFR, New Glenn, SLS)
Key Science Benefits Enabled by iSA

• No “Tyranny of the fairing”
 – Telescope diameters and configurations that achieve science goals not possible with apertures constrained by single launches
 – Instruments may be more capable as they are independently launched and less constrained by mass and volume

• Telescopes can evolve and last decades
 – Continuous stream of planned instrument upgrades (e.g., HST)
 – Can plan for refueling and preventive maintenance missions that extend useable lifetime
 – Can authorize unexpected repair missions

• No explicit servicer needed
 – Cost and science benefits
iSA can Reduce Mission Risk

- Eliminates complex autonomous self-deployments

- Mitigates the risks associated with a deployment anomaly
 - Faulty modules can be replaced during commissioning
 - Or during operations, with servicing (second chances)

- Mitigates the risks associated with a single launch vehicle
 - *Launch failure need not be mission failure*
Key Cost Benefits Enabled by iSA (1 of 2)

- Relaxes mass and volume constraints
 - Reduces engineering design complexity and time (i.e. cost)
 - Eliminates complex folding designs, reduces mass iterations, less need for complex modeling

- More versatile scheduling
 - More work conducted in parallel
 - Multiple parallel deliveries (swim lanes) so AIT team can move to different module deliveries when there are schedule delays (and not turn into a large marching army)

- Modules with standardized interfaces help speed up AIT, especially during anomaly resolution

- Eliminates costly systems-level testing activities
 - Enabled by greater degrees of designed on-orbit adjustability and correctability to meet system tolerance requirements
Key **Cost** Benefits Enabled by iSA (2 of 2)

- Diminishes cost and schedule impacts from late-stage hardware re-design changes and iterations.
- Reduces need for ruggedizing the system and its interfaces to survive launch
- Less need for new and larger ground test facilities
- **Spread the wealth**: Can distribute and compete module development work across NASA and industrial base to the most cost-effective vendors and facilities
- **Share the wealth**: Enhances international contributions and partnerships
- More readily enables *prescribed or flattened funding profile* programs
Cost Estimation

ISA will incur additional cost compared to a conventional, single launch observatory. These include:

- Modularity, multiple launches, cargo delivery vehicles, rendezvous and proximity operations, assembly robotics

ISA will likely offer opportunities for cost savings in the development of flight system elements such as the telescope, instruments, spacecraft:

- These elements typically represent 60-70% of mission costs. Hence, this can be a source of significant savings.
- Flight system assembly, I&T are other areas of potential savings.

→ What is the net effect?

Caption: Relative cost comparison between single-launch vehicle observatory and iSAT. Green represents WBS elements where ISA may provide cost benefits while red represents elements where ISA may have a cost increase in comparison to a conventional, single-launch approach.
Study Conclusions

- Even telescopes with apertures as small as 5 m may benefit from iSA as the implementation approach due to potentially better risk postures and opportunities for potential cost savings in comparison to the conventional approach of deployment from a single launch.

- When including future servicing missions the benefits may be even more important.

Actual cost and risk differences will depend ultimately on the mission and point design selected.
Suggestions to NASA

If the Astro2020 Decadal Survey recommends a large space observatory, we suggest:

1) NASA (a) conduct a detailed study of an iSA implementation of the specific observatory and (b) trade it against the conventional single launch approach

2) and

NASA initiate a technology development program to reduce the technology gaps associated with in-space assembled observatories
Moving Forward

• iSA has made significant progress over the last 15 years to the point it can now be considered as an alternative implementation approach to realize large space telescopes.
 - “another tool in the tool box”

• Designers can now consider hybrid solutions to reduce cost and risk (some elements deployed, some elements assembled).

• Next step is to focus on technology gaps and technologies:
 - Develop technology roadmaps
 - Recommend risk reduction demonstrations for future flight mission

Please contact the Study leads if you are interested in advancing this work.
Large aperture telescopes benefit all astrophysics as well as planetary and Earth science. They provide unprecedented spatial resolution, spectral coverage, and signal to noise. Advancing all of these science areas, envisioning the need for future large segmented telescopes to one day exceed the firing size of existing or even planned launch vehicles, NASA and NASA need to begin considering the in-space assembly (iSAT) of these future assets. In addition, robotically assembling space telescopes in space rather than deploying them from single launch vehicles offers the possibility, in some circumstances, of reduced cost and risk for even smaller telescopes. This possibility, however, has not been proven. Therefore, following discussions within NASA’s Science Mission Directorate (SMD) and Astrophysics Division (APD), the SMD Chief Scientist and APD Division Director have commissioned a study to assess the cost and risk benefits, if any, of the iSAT of space telescopes.

In particular, the study must answer the question: “When is it advantageous to assemble space telescopes in space rather than to build them on the Earth and deploy them autonomously from individual launch vehicles?” The Study Charter (on the right) describes the plan for the study: deliverables, process, and membership. The goal for completion of the study is a May 2019 culminating in a submitted whitepaper to the National Academies 2020 Astronomy and Astrophysics Decadal Survey.