

Starshade Mechanical to TRL-5 Starshade Mechanical Architecture & Technology Update SPIE 2019

Presented by David Webb

Authors: David Webb, Manan Arya, Samuel Bradford, Evan Hilgemann, John Steeves, Stuart Shaklan, Douglas Lisman, Phillip Willems, Gregg Freebury CL#19-5464

August 13, 2019

This research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics ands Space Administration. © 2019

Starshade S5 Baseline Design

26m NI2 design with 8m petals

HabEx 52m Starshade

Mechanical System Structural Analysis Summar

26m Stowed Analysis Summary

 Meets all stiffness and strength requirements including placement of telescope co-launched on top of starshade

Deployed Analysis Summary

- S5: 1st mode > 1 Hz, 1^{st,} in-plane = 17.3 Hz
- HabEx: 0.8Hz
- Structure stable (truss buckling or loss of tensions, accelerations/thermal)

Output Set: Mode 1, 11.65172 Hz Deformed(3.398): Total Translation Nodal Contour: Total Translation

Subsystem Definitions

Mechanical Subset of KPP's & Error Budget

Technology Gaps	KPP #	KPP Specifications	KPP Threshold Values		KPP Goals
Petal Shape	Petal Shape 5 Verify pre-launch accuracy (manufacture, AI&T, storage)		$\leq \pm ~70~\mu m$	1 x 10 ⁻¹¹	\leq ± 50 μm
	6	Verify on-orbit thermal stability	$\leq \pm 80 \ \mu m$	5 x 10 ^{-12 *}	\leq \pm 40 μ m
Petal Position 7 Verify pre-launch accuracy (manufacture, AI&T, storage)		$\leq \pm 300 \ \mu m$	1 x 10 ⁻¹²	$\leq \pm 212 \ \mu m$	
	8	Verify on-orbit thermal stability	$\leq \pm 200 \ \mu m$	5 x 10 ⁻¹³	$\leq \pm 100 \ \mu m$

*KPP #6 & 8 represented the largest unverified mechanical shape error contributor to contrast in the error budget prior to S5 project

KPP Verification Activities Flow Chart

Petal Activities Flow Chart w/ Activity Status

Shape vs temp. test complete @ 5 micron accuracy, model validation on-going, preliminary results show large margin on requirement
Shape post thermal cycle extremely stable (repeatable to a few microns)

- Deploy cycle (unfurl) & shape meas. upcoming

Petal in thermal chamber at Tendeg Facility in Louisville, Co.

NGAS-ATK & Southern Research provided optical measurement capability & data processing & Tendeg who was responsible for petal build & test campaign

Optical Edge Activities Flow Chart w/ Activity Status

- Pathfinder edges thru environments
- In-plane shape and scatter performance preserved & meet reqts
- Evan Hilgemann (edge lead engineer) has talk on this next

Half length (0.5m) edge prototype (top – telescope side, bottom – Star side)

Truss Bay Activities Flow Chart w/ Activity Status

Longeron assemblies:

- Length vs temp. meets reqs (1 of 3 meas.)
- Post thermal cycle dimensional stability meets reqs (2 of 3 meas.)

Node Assembly:

- Testing and model validation in process
- Post thermal cycle dimensional stability meets
 reqs (2 of 3 meas.)
- Material data looks good

Node assy (left) & longeron assys (right) on Micro-Vu Measurement Maching at Tendeg Facility in Louisville, Co. Length vs. temp measurement at NGAS-ATK in San Diego in IMF (interferometric measurement facility)

Inner Disk Activities Flow Chart w/ Activity Status

- Multiple successful deployments of 10m (full scale) Inner Disk Subsystem w/ truss, spokes and optical shield
- Deployment accuracy to date well within requirements (10x 10%, 3x 50%, 3x 80% and 1x full stow, more coming)
- Deployment FEA modeling efforts ongoing

200

-20

Truss & shield at Tendeg Facility in Louisville, Co., measurements made with JPL Leica laser tracker

Inner Disk Deployment

Var: U Deformation Scale Factor: +1.000e+00

Shield furling FEA developed by Roccor (Longmont, Co)

Petal Unfurl Subsystem Engineering Work

- PLUS testbed w/full set of petal has been deployed and characterized
- Future work to include test of 4x medium fidelity petals (CFRP) with upgraded interfaces and offloading to validate against deployment model

TRL-5 Test Activities Flow Chart

Test Article 2 Description Milestone 5B & 6B

Petal Test Articles 1 & 2 Description

Truss Assembly	Milestone 7C hardware key purpos presence of an optical shield with de	e : Verify de eployment	ployment performan relevant features (kev	ice of inner di y & driving pe	isk (perimete etal compone	er truss) in the ents present)	5
Node Assy	Milestone 7D hardware key purpos optical shield and petals with all rele	e: Verify de evant featu	eployment performar res	IDS for Mi	isk (perimete	er truss) with	stone 7D
Cable spooler/motor Assy		Scale:	10m diameter	10m dia	Relevant Components Present for Test	10m dia	Relevant Components Present for Test
Restraint I/F			Perimeter Truss	Medium			
Longeron incl. Petal Hinge I/F	Existing prototype to be upgraded		Spokes	Fidelity			
Shorteron			Hub	form, fit & funciton sufficient		Madium	
Diagonal Assy Spokes Assy	Sockes (112:0) Sockes (112:0) Since Sockes (112:0)	Components	Optical Shield	Low Fidelity, deployment critical features present		Fidelity (hub = form/fit/ function)	
			4x full petal + petal stubs	not present			
			Inner disk shield to petal shield interface	not present			
			Inner disk shield to hub interface	not present			
		Tests	Verify shape Accuracy (deploy cycles) disk shape response vs I/F load (Validate Structural	YES	Perimeter truss, spokes, hub	YES	Perimeter truss, spokes, hub

- Tests: verifying no edge contact during unfurl and validate the analytical model of deployment kinematics
- Critical components for tests: Rollers incl. tip management, 2x 6m composite petals, 2x I/F petals and remaining simulators
 - Key components to enable medium fidelity petal unfurling
- Scale: Full 2.25m core + 6m petals (shortened length, full width/thickness (significant upgrade/overhaul of existing prototype)

Components:

- Roller arm assemblies (all new, medium fidelity): rollers and tip management, batten snubber and cart restraints
- Carousel motorized drive system (existing)
- Petals: all petals incl. all features, e.g. rib assy's & optical shields, snubbers, carts
 - 2x 6m composite petals (new)
 - 2x interface petals (boundary condition for CFRP petals) (new) •
 - 20 simulator petals (flexural stiffness of petal, existing in starshade lab)

Cross Section View

Optical Shield Solar Array SBIR (Tendeg SBIR)

- Product Description:
 - SolAero is constructing a solar cell string of IMM cells to be assembled to the Tendeg starshade optical shield solar array for testing (an array is 4 strings combined in a frame structure that gets attached to an optical shield gore)
 - In one array, a single string will be electrically active for test verification. These cells will be IMM cells that are leftover and/or lower efficiency
- Risks
 - Matching the interaction of array and OS to create a simple, low risk stow and deploy
 - Individual cell breakage due some localized interference of adjacent OS, spoke, frame, cabling etc
- Testing:
 - Electrical continuity of IMM cell in stow/deploy from array to hub connector, frame to OS interface, cell mechanical survivability, CTE mismatch design, temperature limits
 - Testing to be performed on a standalone "quad-gore" (4x gores only), not in presence of the rest of the shield
 - Not tested More than 4x string config in a frame, multiple string electrical routing, vibe

S5 Error Tree

S5 Key Performance Parameters

Technology Gaps	KPP #	KPP Specifications	KPP Threshold Values	KPP Goals
Starlight	1	Demonstrate flight instrument contrast performance is viable via small-scale lab-tests	$1 \text{ x} 10^{-10}$	5×10^{-11}
Suppression	2	Validate contrast model accuracy relative to flight-like shape errors	≤ 25%	≤10%
Solar Scatter	3	Verify solar scatter lobe brightness visual magnitude	$V \ge 25 mags$	$V \ge 26 mags$
Lateral Formation Sensing & Control	4	Verify lateral position sensor accuracy and that it supports ± 1 m control via simulation	$\leq \pm 30 \text{ cm}$	$\leq \pm 10 \text{ cm}$
Petal Shape	5	Verify pre-launch accuracy (manufacture, AI&T, storage)	\leq \pm 70 μm	\leq ± 50 µm
	6	Verify on-orbit thermal stability	\leq \pm 80 μm	\leq \pm 40 μm
Petal Position	7	Verify pre-launch accuracy (manufacture, AI&T, storage)	$\leq \pm 300 \ \mu m$	$\leq \pm 212 \ \mu m$
	8	Verify on-orbit thermal stability	≤±200 µm	≤±100 µm

Temperature Mapping

27

Stowed Configuration Modal Analysis

Dedicated Mission

- The primary modes were also checked assuming the dedicated mission configuration
 - Telescope mass was taken from "Exo-S STDT Final Report," Table 7.2-1
 - Mass = 1,644 kg, Axial CG = 1.7 meters
 - Per Table 7.2-1, the propellant required for Starshade would decrease from 2000 kg to approximately 49 kg
 - Propellant mass in the FEM was conservatively left at 2000 kg
 - Impacts to the Petal tip, structural edge, and roller arm modes due to the additional telescope mass were negligible
- Critical frequencies and mass participation fractions
 - First primary lateral mode = 24.50 Hz (Mass participation = 1,770 kg)
 - First primary axial mode = 104.24 Hz (Mass participation = 2,842 kg)
 - Requirement: First primary lateral mode greater than 10 Hz
 - First primary lateral mode
 - Frequency = 24.36 Hz
 - Mass participation = 619 kg (1,366 lb)
 - Mass participation fraction = 0.11
 - Additional lateral modes occur in this frequency range
 - Petals and roller arms are hidden for clarity

- Requirement: First primary axial mode greater than 25 Hz
- First fundamental axial mode
- Frequency = 103.93 Hz
 - Mass participation = 1,709 kg (3,767 lb)
 - Mass participation fraction = 0.30
- Petals and roller arms are hidden for clarity

- Rendezvous Mission
 - 1st major mass lateral mode is at 51 Hz (Req't 10 Hz)
 - 1st major mass axial mode is at 142 Hz (Req't 25 Hz)
 - Strength margins of safety > 2.7 against falcon 9 user's guide
 - Peak displacements within dynamic fairing envelope
 - Petal edge and tip relative displacements show large margin on petal to petal interaction
- Dedicated Mission (with telescope)
 - 1st major mass lateral mode is at 25 Hz (Req't 10 Hz)
 - 1st major mass axial mode is at 104 Hz (Req't 25 Hz)

Inner Disk Optical Shield Deployment & Simulations

5m prototype (1/2 flight scale):

- flight-like materials, learn about required features to enable flight design (e.g. gravity offloading & test)
- Understand shield, spacecraft, truss, & petal relative deployment and required features (e.g. carbon rods for hub/starshade structural connection, analysis pending)

Deployment Simulation Model in Abaqus:

- Preliminary Abaqus deployment simulation model developed (T. Murphey) & utilized to understand 1g offloading
- Capability exists to combine a future, more developed model with the perimeter truss ADAMS model

Inner Disk Optical Shield Deployment & Simulations

5m prototype (1/2 flight scale):

- flight-like materials, learn about required features to enable flight design (e.g. gravity offloading & test)
- Understand shield, spacecraft, truss, & petal relative deployment and required features (e.g. carbon rods for hub/starshade structural connection, analysis pending)

Deployment Simulation Model in Abaqus:

- Preliminary Abaqus deployment simulation model developed (T. Murphey) & utilized to understand 1g offloading
- Capability exists to combine a future, more developed model with the perimeter truss ADAMS model

STOP analysis refresher of results for representative cases* :

- Thermal analysis (temperature) results
- Thermal distortion results
- Resulting contrast due to nominal thermal distortion & comparison to the error budget
- CTE variability monte-carlo study results

* Subset of sun angle cases showing representative temperatures & distortions/results, full set in backup

Thermal analysis temperature results mapped to structural FEM

Quiver plot of resultant thermally induced shape distortion

Sun Angles and Shadowing by Hub

*** Slow rotation run every 3.75°. @1/3 RPM this is every 1.875 seconds, 96 positions. Temperatures available at each of the 96 locations.

Non-spinning Shadow Orientation Conclusions

			Max/Min
	Comment	Gradient	Temp
NON- Spinning	Shadow clocking orientation has little effect on max/min temps, only moves cold portion of starshade	300 C	70 C / -230 C
Spinning	Averages temperatures symetrically aound spin axis Transient has negligible effect on contrast	90 C	65 C / -95 C

Sun Angle 78 Comparison of Spinning to Non-Spinning

Spinning

- Spinning has a telescope axis-symmetric contrast
- Contrast varies radially

NON-Spinning

- Largely distorted shadowed petals :
 - Shift high contrast annulus toward shadow
 - Reduce contrast in petal distorted zone

- Thermal elastic distortions are caused by the combination of temperature and CTE
- Thermal analysis results (temperatures) were mapped to the structural model
- CTE material cards were populated with CTE lookup tables, CTE vs temp
 - CFRP ply data test data characterization produces "nominal" CTE curves
 - Ply CTE data combines with layup to produce nominal layup CTE curve based CFRP layup design
 - Wrapped design utilizes 2 different layups
 - Structural Members (most) Quasi-iso layup from NGAS
 - Optical Edge Quasi-iso layup with the addition of the amorphous metal foil and 5 mil epoxy each side
 - Truss longerons Quasi-iso layup with the addition three invar fittings that attach petal hinges
 - Uni-directional pultruded members utilized for JPL's SWOT program
 - What about variation in CTE? Sensitivity to variation in mean CTE by layup type, and variation in CTE from component to component (for a given layup design) will be varied in a wide enough range to capture bounding variations and to check sensitivity to these bounds.

Thermal analysis temperature results mapped to structural FEM

Quiver plot of resultant thermally induced shape distortion

Thermal Distortion Contrast Results

Case	<u>CBE</u> Delta Contrast x 1e-12	<u>Max Expected</u> Delta Contrast w/ 100% contingency x 1e-12	<u>Max Expected</u> % of Starshade Allocated Shape Error (3.4 e-11)**
Spinning			
40 deg*	0.002	0.01	>1%
78 deg	0.398	1.592	4.6%
83 deg*	0.655	2.62	7.7%
Non- Spinning			
40 deg	0.06	0.24	>1%
78 deg	0.45	1.81	5.3%
83 deg	0.56	2.24	6.5%**

* Utilizes CTE for truss longeron w/ petal interface fittings affecting longeron CTE (w/no CTE design compensation)

** Error budget carries CBE contrast from spinning results, non-spinning shown for reference only

SA83 SPINNING Distortions

- <u>Raw</u> distortions on order of 50 microns (0.002")
- Distortions correspond to temperature results (thermal analysis), e.g.
 - Truss @ 20 C (room temp) = almost no shape change
 - Petal dT = -65 C, 50 microns (0.002")

SA40 SPINNING Distortions

- <u>Raw</u> distortions on order of 50 microns (0.001")
- Distortions correspond to temperature results (thermal analysis), e.g.
 - Truss @ 60 C (dT = 40C), ~25 micron radial expansion
 - Petal dT = ~+40 C, 30 microns (0.002")

Sun Angle 83, NON-spinning, Distortions

- Sun Angle 83 degrees produces representative distortions and worst case contrast, shown as example of NON-spinning results
- **<u>Raw</u>** distortions on order of 75 microns (0.003")
- Distortions correspond to temperature results (thermal analysis), e.g.
 - Truss HOT @ 70 C (dT = 50C), ~25 micron radial expansion
- Cold Petals are longer, disrupts apodization function

Sun Angle 83, NON-spinning, Distortions

Output Set: SA83SSC2 Lookup Deformed(0.00685): Total Translation Nodal Contour: T2 Translation

Transformed to Coordinate System: 1

- Sun Angle 83 degrees produces representative distortions for the steady state sun angle cases and is the worst case contrast for steady state, shown as example of NON-spinning results
- **Raw** distortions on order of 100 microns (0.004")
 - Truss bays in shadow are cold, and grow (neg CTE), and splay petals apart from eachother

* Preliminary analysis shows max expected thermally deformed starshade meets requirements for both spinning and nonspinning configurations over working sun angles

Case	<u>CBE</u> Delta Contrast x 1e-12	<u>Max Expected</u> Delta Contrast w/ 100% contingency x 1e-12	<u>Max Expected</u> % of Starshade Allocated Shape Error (3.4 e-11)**
Spinning			
40 deg*	0.002	0.01	>1%
78 deg	0.398	1.592	4.6%
83 deg*	0.655	2.62	7.7%
Non- Spinning			
40 deg	0.06	0.24	>1%
78 deg	0.45	1.81	5.3%
83 deg	0.56	2.24	6.5%**

* Utilizes CTE for truss longeron w/ petal interface fittings affecting longeron CTE (w/no CTE design compensation)

** Error budget carries CBE contrast from spinning results, nonspinning shown for reference only

- Two analyses for the impact of thermal distortion on contrast:
 - STOP Analysis: uses thermal mapping and nominal CTE values (temperature dependent) to compute contrast for each sun angle
 - Monte-Carlo Analysis: uses random distributions on CTEs to determine statistical distribution on contrast for each sun angle