NASA-Chartered In-Space Assembled Telescope Study: Final Report

Nick Siegler Chief Technologist NASA Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Rudranarayan Mukherjee Robotics Technologist Jet Propulsion Laboratory / California Institute of Technology

Harley Thronson Senior Scientist NASA Goddard Space Flight Center

July 2019

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Outline

- 1. Study Effort
- 2. Reference Observatory
- 3. Study Findings
- 4. Study Suggestions
- 5. Support Slides for Findings
- 6. Final Thoughts

Study Effort

Exoplanet Science Strategy Report

Released September 5, 2018 by the National Academies

Recommendation #1:

NASA should lead a <u>large</u> strategic direct imaging mission capable of measuring the reflected-light spectra of temperate terrestrial planets orbiting Sun-like stars.

David Charbonneau (Harvard)

Scott Gaudi (Ohio State University)

Existing Large Observatory Paradigm: Constraints

Severe packaging and mass constraints on JWST

- Over 20 sequential deployment events, 40 deployable structures, 178 release mechanisms – all of which must work.
- Numerous light-weighting iterations to meet LV mass constraints
- Complex modeling development and validation efforts

No servicing capabilities

- No fault recovery if anomaly during commissioning or operations
- No instrument upgrading to extend useable life (already ~ 10 yrs old at launch)

Study Objective and Deliverables

Dr. Paul Hertz Director Astrophysics Division Science Mission Directorate NASA Headquarters

- Study Objective:
 - "When is it worth assembling space telescopes in space rather than building them on the Earth and deploying them autonomously from single launch vehicles?"

• Deliverables:

An Astro 2020 Decadal Survey whitepaper by July 2019 assessing:

- 1. the telescope size at which iSA is necessary (an enabling capability)
- 2. the telescope size at which iSA is cheaper or lower risk with respect to current launch vehicle deployment techniques (*an enhancing capability*)

• Decadal Survey Statement of Task:

 Consider ongoing and planned activities and capabilities in other organizational units of NASA, including (but not limited to) in-space assembly and servicing and existing and planned research platforms in Earth orbit and cis-lunar space₆

iSAT Charter

In-Space Assembled Telescope (iSAT) Study 5/19/2018 v8

Charter

Authors:

Nick Siegler, NASA ExEP, Jet Propulsion Laboratory, California Institute of Technology Harley Thronson, NASA PCOS/COR, NASA Goddard Space Flight Center Rudra Mukherjee, Jet Propulsion Laboratory, California Institute of Technology

A. Background

Large aperture telescopes benefit all astrophysics as well as planetary and Earth science. They provide unprecedented spatial resolution, spectral coverage, and signal to noise advancing all of these science areas. Envisioning the need for future large segmented telescopes to one day exceed the fairing size of existing or even planned launch vehicles, NASA will need to begin considering the in-space assembly (iSA) of these future assets. In addition, robotically assembling space telescopes in space rather than deploying them from single launch vehicles offers the possibility, in some circumstances, of reduced cost and risk for even smaller telescopes. This possibility, however, has not been proven. Therefore, following discussions within NASA's Science Mission Directorate (SMD) and Astrophysics Division (APD), the SMD Chief Technologist and APD Division Director have commissioned a study to assess the cost and risk benefits, if any, of the iSA of space telescopes. In particular, the study must answer the question: "When is it worth (or advantageous) to assemble space telescopes in space rather than to build them on the Earth and deploy them autonomously from individual launch vehicles?" This document charters the plan for the study deliverables, process, and membership. The goal for completion of the study is May 2019 culminating in a submitted whitepaper to the National Academies' 2020 Astronomy & Astrophysics Decadal Survey.

B. Deliverables

The in-Space Assembly Telescope (iSAT) Study Working Group is chartered by the NASA SMD Chief Technologist and APD Director to deliver by the goal of May 2019 a whitepaper assessing:

- 1. the telescope size at which iSA is necessary (an enabling capability)
- the telescope size at which iSA is cheaper or lower risk with respect to traditional single launch vehicle deployment (an enhancing capability)
- the important factors that impact the answers (e.g., existence of HEO-funded infrastructure, architecture of space telescope (segments or other), cryogenic or not, coronagraph capable (stability) or not, etc.)

https://exoplanets.nasa.gov/exep/technology/in-space-assembly/iSAT_study/

1

Study Assumptions

- 1. Reference telescope:
 - Non-cryogenic operating at UV/V/NIR assembled in space
 - Four sizes between 5 20 m
- 2. Driving requirements:
 - Structural stability required by coronagraphy of exo-planets
- 3. Operational destination:
 - Sun-Earth L2
- 4. Launch vehicles:
 - Use of 5 m-class LV fairings
- 5. Number of reference concepts to study:
 - Only one
 - Not a down select, not a recommendation

Study Activities

Activity 2a: Qualitative assessment of the benefits/disadvantages Activity 2b: Quantitative estimate of the costs and identify risks

Activity 1b: Assembly and Infrastructure

Privately Developed Spacecraft obotic Arms Supporting Technology

Detailed Process Approach

Five steps

- Step 1a: A systematic approach was used to select a <u>reference</u> <u>telescope</u> and its modularization strategy for apertures between 5-20 m.
- Step 1b: A systematic approach was used to select <u>reference assembly</u> orbit, assembly <u>agent</u> (astronaut vs robot), assembly <u>platform</u>, <u>launch</u> <u>vehicles</u>, and notional <u>con-ops</u>

A two-pronged costing (and risk) approach:

- Two separate teams initially blind to each other's findings; then converged to check consistency to get verification.
- Step 2a: A <u>qualitative</u> approach based on experiences and lessons learned, including JWST, ISS, HST, Restore-L, Orbital Express, RSGS
- Step 2b: A <u>quantitative</u> approach based on a grass-roots costing exercise and risk assessment by SMEs from various subsystems:
 - Define assembly conops, Phase A-E schedules
 - Implementation plans, including testing, V&V, and integration
 - Resource needs and budget, MEL, PEL, launch manifest
- Step 2c: Independent parametric cost estimate for conventional

Study Participants

Institution Name Expertise 1. Ali Azizi NASA JPL Metrology 2. Larry Dewell LMC Pointing/Stability/Control Oscar Salazar Pointing/Stability/Control 3. NASA JPL Phil Stahl Telescopes NASA MSFC 4. Thermal/Sunshade 5. Jon Arenberg NGAS Doug McGuffey NASA GSFC Telescopes/SE 6. 7. Kim Aaron NASA JPL Structures 8. Dave Redding NASA JPL Telescopes 9. Bill Doggett NASA LaRC Structures 10. Al Tadros Robotics Maxar 11. Bob Hellekson NGIS **Telescope Systems** 12. Eric Mamajek Astrophysicist NASA JPL 13. Shanti Rao NASA JPL **Optical Design** 14. Matthew East L3 Harris **Mirror Segments Optical Design** 15. Mike Rodgers NASA JPL 16. Ray Ohl **Optical AIT** NASA GSFC 17. Sergio Pellegrino Caltech Technologist 18. Tere Smith NASA JPL AIT 19. Paul Backes NASA JPL Robotics 20. Jim Breckenridge Caltech **Optical Design** 21. Allison Barto SE/optical testing Ball 22. David Stubbs LMC Telescopes/Design 23. John Dorsey NASA LaRC Structures 24. Jeff Sokol Ball Mechanical/AIT 25. Atif Qureshi **Robotics SE** SSL 26. Carlton Peters NASA GSFC Thermal 27. Kan Yang NASA GSFC Thermal SE 28. Paul Lightsey Ball Thermal/Sunshade 29. Kim Mehalick NASA GSFC RPO 30. Bo Naasz NASA GSFC **Mirror Segments** 31. Keith Havey L3 Harris 32. Harley Thronson NASA GSFC **Mission Concepts** 33. Scott Knight Ball Optics

Name	<u>Institution</u>	<u>Expertise</u>
34. John Lymer	Maxar	Robotics
35. Glen Henshaw	NRL	Robotics
36. Gordon Roesler	ex-DARPA	Robotic Assembly
37. Rudra Mukherjee	NASA JPL	Robotics
38. Mike Fuller	NGIS	Spacecraft
39. Ken Ruta	NASA JSC	Robotics
40. Dave Miller	MIT	System Assembly
41. Joe Pitman	Heliospace	Structures
42. Keith Belvin	NASA LaRC	Structures
43. Sharon Jeffries	NASA LaRC	Systems Eng
44. Dave Folta	NASA GSFC	Orbital Dynamicist
45. Lynn Bowman	NASA LaRC	Programmatic
46. John Grunsfeld	ex-NASA	Astronaut
47. Alison Nordt	LMC	Programmatic
48. Bill Vincent	NRL	Programmatic
49. Diana Calero	NASA KSC	Launch Vehicles
50. Brad Peterson	OSU	Astrophysicist
51. Kevin DiMarzio	Made in Space	Fabrication
52. Matt Greenhouse	NASA GSFC	Astrophysicist
53. Max Fagin	Made in Space	e Fabrication
54. Bobby Biggs	LMC	Fabrication
55. Alex Ignatiev	U Houston	Coatings
56. Rob Hoyt	Tethers	Fabrication
57. Scott Rohrbach	NASA GSFC	Scattered Light
62. Jason Herman	Honeybee	Robotics
63. Stuart Wiens	LMC	Spacecraft
64. Josh Woods	LMC	Spacecraft
65. Austin Van Otten	NGAS	Structures
66. Marshal Perrin	STScl	Astrophysicist
67. Jeff Hoffman	MIT	Astronaut
68. Keith Warfield	NASA JPL	Costing
69. Ron Polidan	PSST	Astrophysicist
70. Howard Macewen	Self	Aerospace
71. Samantha Glassne	er NEU	Student
72. Nick Siegler	NASA JPL	Technologist 11

Study Participants

Expertise

Metrology

Pointing/S

ointing/S

elescopes hermal/S

elescopes

Institution

NASA JPL

LMC

Name 1. Ali Azizi 2. Larry Dewell

Key Commercial

Companies

- Lockheed
- Ball
- NGIS (O-ATK)
- NGAS
- SSL
- L3 Harris
- several consultant
- 24. Jeff Sokol 25. Atif Qureshi 26. Carlton Peters 27. Kan Yang 28. Paul Lightsey 29. Kim Mehalick 30. Bo Naasz 31. Keith Havey 32. Harley Thronson 33. Scott Knight

)pt ∕lir ●
	pt
	pt
	ech
	obones
	ptical De
L_	E/optica
[S	elescope
	structures
all	Mechanic
SL	Robotics S
ASA GSFC	Thermal
ASA GSFC	Thermal
all	SE
ASA GSFC	Thermal/S
ASA GSFC	RPO
B Harris	Mirror Se
ASA GSFC	Mission C
all	Optics

<u></u>	
s/SE	41. Joe Pitman
unshade	40. Dave Miller
5	39. Ken Ruta
tability/Control	38. Mike Fuller
tability/Control	37. Rudra Mukh
	36. Gordon Roes
	35. Glen Hensha
	34. John Lymer

Study Involvement

- 72 participants
- **6 NASA Centers**
- **14 private companies**
- 2 gov't agencies
- **5** universities

esign testing s/Design al/AIT Sunshade gments oncepts

Name

- 34. DUDDY DIEES 55. Alex Ignatiev 56. Rob Hoyt
- 57. Scott Rohrbach
- 62. Jason Herman
- 63. Stuart Wiens 64. Josh Woods
- 65. Austin Van Ott
- 66. Marshal Perrin
- 67. Jeff Hoffman
- 68. Keith Warfield
- 69. Ron Polidan
- 70. Howard Macey
- 71. Samantha Glassner NEU NASA JPL

72. Nick Siegler

Student

orbital dynamics

- Technologist

SMEs Missions: JWST, HST, ISS, Restore-L, **RSGS, NASA Tipping Point, APD** STDTs, Gateway

Disciplines:

- **RPO**
- telescope optics •
- robotics •
- structures •
- sunshade
- instruments •
- 1&T + V&V
- launch vehicles •

New Steering Committee Study Members

Transitioning from telescope focus to robotic assembly and systems focus

1. Dave Redding	JPL
2. Joe Pitman	consultant
3.Scott Knight	Ball
4.Bill Doggett	NASA LaRC
5. Matt Greenhouse	NASA GSFC
6.Ben Reed	NASA GSFC
7. Gordon Roesler	DARPA (ret)
8. John Grunsfeld	NASA (ret)
9. Keith Belvin	NASA STME
10.Brad Peterson	STScI/OSU
11.Florence Tan	NASA SMD
12.Ray Bell	Lockheed
13.Nasser Barghout	yNASA APD
14.Dave Miller	MIT
15.Keith Warfield	NASA ExEP
16.Bill Vincent	NRL
17.Bo Naasz	NASA GSFC
18.Erica Rogers	NASA OCT

Four Face-to-Face Meetings

... and multiple weekly telecons

Qualitative Cost, Risk Assessments: JPL (Feb 2019)

Robotics, Orbits, LVs, Assembly Platforms: LaRC (Oct 2018)

Reference Observatory

Telescope Architecture Candidates

Telescope Concepts Considered

Elliptical, off-axis

5 m segments

Pie-shaped segments

Sparse,

Segmented, off-axis

Robot Candidates

Multi-Limbed Robot Caltech/JPL; Lee et al. (2016)

Free-Flying Robots

NASA's Restore-L

DARPA/SSL's Robotic Servicing of Geosynchronous Satellites Orbital ATK's Mission Extension Vehicle

Robotic Arm ISS's DEXTER and Canadarm2

Astronauts

Can play an important role in iSA, to be defined

Credit: NASA

Assembly Platform Candidates

International Space Station

Earth Sciences Space Station

Sun Synchronous Orbit

Gateway cis-Lunar orbit

Illustration: NASA

Bring Your Own Assembly Platform

Free-fliers with specialized robotic arms docked to spacecraft bus

Evolvable Space Telescope

Northrop Grumman

Orbit Candidates

Delta v's

Launch Vehicle Candidates

Candidate Launch Vehicles

Modularization of a Space Telescope

Selected Reference Mission Concept

Assembly Agent

Lunar Surface $\Delta V \sim 2.5$ km/s ΔV~2.5 $\Delta V \sim 1.9$ km/s S-E L1, km/s LLO ∕∆V~ tens m/s $\Delta V \sim 4 \text{ km/s}$ -M I 1 2 GEO $\Delta V \sim 3.8$ km/s $\Delta V \sim 4.4$ km/s ∆V ~ 4 km/s LEO ∆V ~10 km/s Earth

Assembly Orbit

Launch Vehicles

ULA's Delta IV Heavy

Photo: United Launch Alliance

Photo: United Launch Alliance

Photo: SpaceX

Assembly Platform

Delivery ConOps Disposable Cargo Delivery Vehicle (CDV)

Illustration: Bo Naasz (NASA GSFC)

Delivery Via Disposable Cargo Delivery Vehicle

Delivery ConOps Disposable Cargo Delivery Vehicle (CDV)

Robotic Arm

Structural Trusses

Disposable Cargo Delivery Vehicle

All illustrations from R. Mukherjee and D. Mick (NASA/JPL/Caltech) 38

Spacecraft

backplane truss

Servicing is a natural byproduct of iSAT as the robotic arms remain with the observatory and spacecraft.

Study Findings

Key Aspects of the iSAT Paradigm

- Modularized flight elements: encapsulation of complexity, standardized interfaces, more readily assembled/serviceable, tailor to LV fairing size
- 2) Multiple launches: leverages existing commercial medium-lift capabilities for lower cost, more flexibility, greater margins
- 3) Cargo delivery vehicles to deliver modules to the assembly site; leverages ISS experience
- 4) Rendezvous and proximity operations: Robotic arm grappling and berthing as demonstrated at the ISS
- 5) Supervised autonomous robotic arms: ISS-qualified arms; ensures executed commands are correct before launching subsequent steps
- 6) In-space V&V: Combination of "smart" module diagnostics, onboard metrology, model validation
- 7) Servicing: Follows same paradigm no explicit servicer needed

Key Cost Benefits Enabled by iSA (1 of 2)

• Relaxes mass and volume constraints

- Reduces engineering design complexity and time (i.e. cost)
- Eliminates complex folding designs, reduces mass iterations, less need for complex modeling
- More versatile scheduling
 - More work conducted in parallel
 - Multiple parallel deliveries (swim lanes) so AIT team can move to different module deliveries when there are schedule delays (and not turn into a large marching army)
- Modules with standardized interfaces help speed up AIT, especially during anomaly resolution
- Eliminates costly systems-level testing activities
 - Enabled by greater degrees of designed on-orbit adjustability and correctability to meet system tolerance requirements

Key Cost Benefits Enabled by iSA (2 of 2)

- Diminishes cost and schedule impacts from late-stage hardware redesign changes and iterations.
- Reduces need for ruggedizing the system and its interfaces to survive launch
- Less need for new and larger ground test facilities
- Spread the wealth: Can distribute and compete module development work across NASA and industrial base to the most cost-effective vendors and facilities
- Share the wealth: Enhances international contributions and partnerships
- More readily enables prescribed or flattened funding profile programs

Key Science Benefits Enabled by iSA

• No "Tyranny of the fairing"

- Telescope diameters and configurations that achieve science goals not possible with apertures constrained by single launches
- Instruments may be more capable as they are independently launched and less constrained by mass and volume
- Telescopes can evolve and last decades
 - Continuous stream of planned instrument upgrades (e.g., HST)
 - Can plan for refueling and preventive maintenance missions that extend useable lifetime
 - Can authorize unexpected repair missions
- No explicit servicer needed
 - Cost and science benefits

Key Risk Benefits Enabled by iSA

- Eliminates complex autonomous self-deployments
- Mitigates the risks associated with a single LV or deployment anomaly
 - Faulty modules can be replaced during commissioning
 - Or, with servicing, during operations.
 - Launch failure need not be mission failure.
- Modularization enables faults and anomalies to be more readily contained and not propagated.
- Multiple LV vendors reduces programmatic risk of depending on a specific vendor in case of over-subscription or anomaly.

iSAT will also have Challenges/Drawbacks

- iSAT operations not required in single LV deployment approach:

- Phases A and B likely longer durations
- Space AI&T is a new engineering development
- Robotic arms autonomy software development
- $\circ~$ Robotic arm testbeds demonstrating assembly and sequences
- In-space rendezvous and capture operations
- \circ iSA contamination issues
- Fewer anomaly resolution options while in space and more expensive
- Ground Data Systems will have to be altered to include robotic assembly
- Multi-decade lifetime may require additional component dev and testing

NASA OCT Joint Agency iSA Capability Needs

Item	Capability	Rank	Score
7.3	Fail-safe modes of behaviour on failure detection	1	100%
10.3	odular design		96%
14.1	Soft docking / berthing of modules		91%
13.1	A limited number of standard mechanical, electrical, thermal and fluid connection approaches with well-characterized properties	4	89%
6.1	Standard protocols and ports to accommodate visiting vehicles and communications traffic	5	87%
5.1	Means of verifying the continuity of interface connections / disconnections		84%
10.5	Design for servicability		84%
5.5	Modeling and simulation for verification and validation	8	83%
5.6	Modeling and simulation for assembly sequencing / planning	8	83%
4.1	Ability to reversibly assemble structural, electrical and fluid connections	10	82%
6.2	Standard but secure communications protocols to accommodate interaction with other (TBD) associated systems	11	80%
5.7	Quantitative performance prediction for autonomous systems		79%
10.4	Design for assembly	13	78%
2.5	Ability to assemble high stiffness structures	14	78%
8.2	Known precision limits of any and all assembly agent elements across the assembly site's environmental envelope	15	77%
2.1	Robotic assembly with joining		76%
3.1	Abiity to route electrical power and data across assembled joints	17	76%
4.2	Ability to disconnect structure, electrical, and fluid connections without propagating damage to other system components	18	73%
3.3	Ability to route fiber optical conductors across joints	19	71%
7.1	Intelligence to make stereotyped decisions correctly without human input	20	68%

NASA OCT Joint Agency Capability Needs

				ISAT Readiness		
Item	Capability	Rank	Score	Tech	Rationale	
7.3	Fail-safe modes of behaviour on failure detection	1	100%		Standard Phase C/D engineering	
10.3	Modular design	2	96%		Leverage HST & ISS modular design experience	
14.1	Soft docking / berthing of modules	3	91%		Leverage HST & ISS TRL9 Common Berthing Mechanisms	
13.1	A limited number of standard mechanical, electrical, thermal and fluid connection approaches with well-characterized properties	4	89%		Leverage HST, ISS, Restore-L, RSGS I/F's. Define ISAT modules to simplify I/F req'ts.	
6.1	Standard protocols and ports to accommodate visiting vehicles and communications traffic	5	87%		Leverage existing HST & ISS I/F's. Develop as standard engineering in phase C/D.	
5.1	Means of verifying the continuity of interface connections / disconnections	6	84%		Leverage HST, ISS, Restore-L, RSGS I/F's. Could benefit from smart switch technology.	
10.5	Design for servicability	7	84%		Leverage and expand HST & ISS design of ORU's. Optimize modularity/serviceability in Phase A.	
5.5	Modeling and simulation for verification and validation	8	83%		Leverage JWST, HST SM ModSim experiences	
5.6	Modeling and simulation for assembly sequencing / planning	8	83%		Leverage ISS experience	
4.1	Ability to reversibly assemble structural, electrical and fluid connections	10	82%		Leverage HST, ISS, Restore-L, RSGS I/F's. Define ISAT modules to simplify I/F req'ts.	
6.2	Standard but secure communications protocols to accommodate interaction with other (TBD) associated systems	11	80%		Leverage HST and ISS secure ops protocols. Leverage DOD secure comms capabilites.	
5.7	Quantitative performance prediction for autonomous systems	12	79%		Leverage Planetary missions and Safe mode ops	
10.4	Design for assembly	13	78%		Leverage ISS assembly design experience	
2.5	Ability to assemble high stiffness structures	14	78%		Leverage ISAT multiple LV's approach to provide additional mass for design to stiffness req'ts	
8.2	Known precision limits of any and all assembly agent elements across the assembly site's environmental envelope	15	77%		Leverage ISS robotics (MT, SSRMS, SPDM). Constrain modular design and I/F's to capabilities.	
2.1	Robotic assembly with joining	16	76%		Leverage ISS, STS, Restore-L, RSGS robotics	
3.1	Abiity to route electrical power and data across assembled joints	17	76%		Leverage ISS PDGF and PVGF.	
4.2	Ability to disconnect structure, electrical, and fluid connections without propagating damage to other system components	18	73%		Leverage HST, ISS, Restore-L, RSGS I/F's. Could benefit from smart switch technology.	
3.3	Ability to route fiber optical conductors across joints	19	71%		Leverage ISS PVGF and commercial telecon FO switching technology.	
7.1	Intelligence to make stereotyped decisions correctly without human input	20	68%		Leverage telerobotics from ISS, STS, Restore-L, RSGS	
				Exper	ted normal space flight systems development effort	
		EGEND		Some additional pre-A technology or engineering prudent		
				Riskp	prudent to mitigate and balance prior to entering Phase A	

Technology Readiness

#	ISA Key Capabilities	Status	Representative Examples	Readiness for Observatory ISA	
1	Modular	Flight Demonstrated	Instruments on HST, instruments installed on ISS	Low	
	Elements	Active Development	JWST primary mirror segments		
2	Loungh Vahialog	Flight Demonstrated	SpaceX Falcon, Falcon Heavy, ULA's Delta IV	High	
	Launch vehicles	Active Development	SLS, Blue Origin, Starship, Vulcan Centaur	nign	
3	RPO	Flight Demonstrated	DARPA Orbital Express, NASA OSIRIS-Rex, Cygnus, Dragon, Crew Dragon, ATV, HTV, Progress, Soyuz	High	
4	CDVs	Flight Demonstrated	SpaceX Dragon, Cygnus from Northrop Grumman	High	
5a	Space Robotics Hardware	Flight Demonstrated	Several robotic arms on ISS (e.g. Canadarm 2), Orbital Express robotic arm, Mars Rover arms, Shuttle arm		
		Active Development	NASA Restore-L and DARPA RSGS robotic servicing arms, Canadarm 3, Maxar's Dragonfly arm, Mars 2020 rover	nign	
5b	Space Pohotics	Flight Demonstrated	Mars Rover Autonomy (e.g. MSL, MER), ISS, Orbital Express		
	Software	Active Development	Mars 2020, Mars Sample Return, NASA Restore-L, DARPA RSGS, NASA Tipping Point Demonstrations	Medium	
6	In-space	Flight Demonstrated	Instruments on HST, instruments installed on ISS		
	Verification and Validation	Active Development	JWST primary mirror segments and wavefront control	Low	

- Capability needs 2, 3, 4, 5a have all achieved a high-level of iSAT readiness through space demonstrations.
- Capability need 5b has achieved a medium-level of iSAT readiness through space demonstrations.
- Capability needs 1 and 6 currently have low readiness and will require the most focused investment for a specific observatory design

iSAT Technical Challenges (incomplete list)

Robotic manipulators walking on gossamer structures with minimal induced stresses Stiff linear structures and precision joining mechanisms

Multi-agent collaborative autonomous manipulation

Spacecraft attitude and control during assembly Assembly and manipulation of soft goods such as Mylar sheets and blankets

Precise,

adjustable,

reversible

interfaces with

harnesses

iSAT Study Findings

Finding 1: With key capabilities demonstrated in space over the last decade, ISA has emerged as a viable approach for observatory assembly. Engineering development needs and technology gaps for specific observatory designs will have to be addressed.

Finding 2: ISA removes the constraint of fitting the entire observatory in a single, specific launch vehicle by enabling use of multiple launches. This enables observatory and instrument designs that best suit the science goals and not the mass and volume constraints of fitting in a single fairing.

Finding 3: ISA approach is scalable and can enable observatory sizes that cannot be achieved by conventional single-launch approaches. The largest conventionally developed filled-aperture telescope deployed from a future 8-10m fairing appears to be 15m in size.

iSAT Study Findings

Finding 4: ISA offers an in-situ approach to servicing the observatory and replacing instruments by re-using the on-board robotics needed to assemble the observatory in space. No additional servicing infrastructure is required.

Finding 5: ISA changes the risk posture of single-launch observatories and makes it potentially more manageable. Hence, ISA may be a preferred implementation approach compared to single-launch approach for observatories, particularly those with 10m class or larger apertures.

Finding 6: For aperture sizes 15m or less, ISA may offer opportunities for reducing the costs compared to conventional single-launch observatories, particularly when including the servicing infrastructure in mission scope. Actual cost differences will depend ultimately on the point design selected and its technology needs.

Study Suggestions

Suggestions to the Decadal Survey

If the Astro2020 Decadal Survey recommends a large space observatory, we suggest it also recommend:

 (1) NASA (a) conduct a detailed study of an ISA implementation of the specific observatory and (b) trade it against the conventional single-launch approach

and

(2) NASA initiate a technology development program to reduce the technology gaps associated with in space assembled observatories.

Final Thoughts

Final Thoughts

- iSA has made significant progress over the last 15 years to the point it can now be considered by the Agency as an alternative implementation approach to realize large telescopes.
- The least mature aspects are the ones related to the observatory itself and not on the "basic" aspects of iSA which through space demonstrations have achieved high technology readiness (multiple launches, cargo delivery vehicles, rendezvous and proximity operations, and robotic arms).
- This Study found an iSA implementation approach that is largely self-sustained (uses the observatory's own spacecraft) and does not depend on future space platforms (e.g. Gateway), future rockets (e.g. SLS), or the need for astronauts. But these assets could all be incorporated with potential benefits.
- During the last Decadal Survey, iSA was not on the Astrophysics Division's radar. This Study concludes that iSA has indeed matured since that time and should now be part of the Agency's option space in building the future.

Support Slides for Findings

Finding 1: Technology Readiness

With key capabilities demonstrated in space over the last decade, ISA has emerged as a viable approach for observatory assembly. Engineering development and technology gaps for <u>specific observatory designs</u> will need to be addressed, however, no technical show stoppers have been identified.

- Development needs that extend today's ISA capabilities to the level needed for future observatories include both engineering and technology considerations.
- The Study performed an initial cursory assessment of a draft list of such needs but did not attempt to define these needs.
 - Not within the scope of this assessment and would require a specific observatory point design to properly frame the development needs.
 - This is a recommended future activity.
- While ISA capabilities have advanced significantly, their application to ISA of space telescopes is the least mature.

Finding 1: Technology Readiness iSAT Leverages Many TRL 9 Capabilities

JWST:

Segmented Optics

WFS&C Phasing

Past Capability Advances

HST Servicing – Inspects, Repairs, Upgrades, Optical Alignment

ISS Assembly – Modularity, Multiple LV's, Robotic Arms

Autonomous Rendezvous and Soft Capture, Removal/installation of ORUs, Fluid Transfer

Ongoing Capability Improvements

ISS Servicing and Assembly – Robotic Repairs, Autonomous Docking, Instrument Assembly

Supervised Autonomy Robotics

Commercial LEO – Infrastructure Buildup, Support Services

Future Capability

Advanced Servicing – Autonomy, Telerobotics, Refueling, Servicing

Mars Sample Return

Key Aspects of the iSAT Paradigm

- Modularized flight elements: encapsulation of complexity, standardized interfaces, more readily assembled/serviceable, tailor to LV fairing size
- 2) Multiple launches: leverages existing commercial medium-lift capabilities for lower cost, more flexibility, greater margins
- 3) Cargo delivery vehicles to deliver modules to the assembly site; leverages ISS experience
- 4) Rendezvous and proximity operations: Robotic arm grappling and berthing as demonstrated at the ISS
- 5) Supervised autonomous robotic arms: ISS-qualified arms; ensures executed commands are correct before launching subsequent steps
- 6) In-space V&V: Combination of "smart" module diagnostics, onboard metrology, model validation
- 7) Servicing: Follows same paradigm no explicit servicer needed

Technology Readiness

#	ISA Key Capabilities	Status	Representative Examples	Readiness for Observatory ISA	
1	Modular	Flight Demonstrated	Instruments on HST, instruments installed on ISS	Low	
	Elements	Active Development	JWST primary mirror segments		
2	Loungh Vahialog	Flight Demonstrated	SpaceX Falcon, Falcon Heavy, ULA's Delta IV	High	
	Launch vehicles	Active Development	SLS, Blue Origin, Starship, Vulcan Centaur	nign	
3	RPO	Flight Demonstrated	DARPA Orbital Express, NASA OSIRIS-Rex, Cygnus, Dragon, Crew Dragon, ATV, HTV, Progress, Soyuz	High	
4	CDVs	Flight Demonstrated	SpaceX Dragon, Cygnus from Northrop Grumman	High	
5a	Space Robotics Hardware	Flight Demonstrated	Several robotic arms on ISS (e.g. Canadarm 2), Orbital Express robotic arm, Mars Rover arms, Shuttle arm		
		Active Development	NASA Restore-L and DARPA RSGS robotic servicing arms, Canadarm 3, Maxar's Dragonfly arm, Mars 2020 rover	nign	
5b	Space Pohotics	Flight Demonstrated	Mars Rover Autonomy (e.g. MSL, MER), ISS, Orbital Express		
	Software	Active Development	Mars 2020, Mars Sample Return, NASA Restore-L, DARPA RSGS, NASA Tipping Point Demonstrations	Medium	
6	In-space	Flight Demonstrated	Instruments on HST, instruments installed on ISS		
	Verification and Validation	Active Development	JWST primary mirror segments and wavefront control	Low	

- Capability needs 2, 3, 4, 5a have all achieved a high-level of iSAT readiness through space demonstrations.
- Capability need 5b has achieved a medium-level of iSAT readiness through space demonstrations.
- Capability needs 1 and 6 currently have low readiness and will require the most focused investment for a specific observatory design

Examples of iSAT Technical Challenges

Robotic manipulators walking on gossamer structures with minimal induced stresses Stiff linear structures and precision joining mechanisms

Multi-agent collaborative autonomous manipulation

Spacecraft attitude and control during assembly Assembly and manipulation of soft goods such as Mylar sheets and blankets

Precise,

adjustable,

reversible

interfaces with

harnesses
Finding 2: Reduces System Complexity

ISA is a paradigm shift that removes the "Tyranny of the rocket fairing". This enables observatory and instrument designs that best suit the science goals and not the mass and volume constraints of fitting in a single fairing.

- No "Tyranny of the rocket fairing"
 - Telescope diameters and configurations that achieve science goals not possible with apertures constrained by single launches
 - Instruments may be more capable as they are independently launched and less constrained by mass and volume

Finding 2: Reduces System Complexity

ISA is a paradigm shift that removes the "Tyranny of the rocket fairing". This enables observatory and instrument designs that best suit the science goals and not the mass and volume constraints of fitting in a single fairing.

- The mass and volume constraint of a single launch vehicle imposes a hard ceiling which is met in the conventional approach at significant cost and high engineering and programmatic risk.
 - JWST is a remarkable engineering feat of fitting such a large volume at such a low mass into a single fairing.
 - It has accepted the risk of using hundreds of deployment mechanisms, long delays in its implementation, verification and validation phases, and significant cost growths.
 - 1.0 ratio

Finding 2: Reduces System Complexity

Fragile elements had to be tightly packed

design decisions needed extensive validation

High fidelity models and extensive testing for validation

iterations of labor-intensive, customized model-test-validate iterations for light weighting

AIT needed disassembly to get access

thermal design had to use a highly complicated folded sunshield

ISA enables use of multiple launches

Off axis designs

optical layouts with fewer reflections,

slower (and longer) telescopes,

more instruments,

prime focus instruments,

higher stability

The observatory could also be evolvable.

Finding 3: Enabling Approach

The ISA approach is scalable and can enable observatory sizes that cannot be achieved by conventional singlelaunch approaches. The largest conventionally developed filled-aperture telescope deployed from a future 8-10m fairing appears to be 15m in size.

- Super Heavy Lift Launch Vehicles offer 15m telescope apertures
 > SpaceX's Big Falcon Rocket and NASA's SLS offer 8-10m fairings
- Apertures greater than 15m in diameter cannot be deployed to a Sun-Earth L2 orbit with a single launch
- ISA is a scalable approach and no inherent issue in going larger than 15m class aperture

When is iSA enabling?

Paul's first question

Study answer: When the observatory, even folded, no longer fits into the launch vehicle's fairing.

Given that ISA enables scaling to large aperture sizes, the answer depends on the size of a given rocket's launch vehicle.

• for example, our Study showed a 20 m observatory with multiple 5 m-class fairings is feasible.

Launch Vehicle	Fairing Size Interior Diameter (m)	Estimated Maximum Telescope Aperture (m)	Comment
NASA SLS Block 2	8	15	Block 2 realization appears unlikely
NASA SLS Block 1B	8	13-15	Upgraded engines could provide more lift
SpaceX Big Falcon Rocket	9	15	
Blue Origin New Glenn	7	< 15	
SpaceX Falcon Heavy	5	~ 8	Only one on this list currently available
ULA Vulcan	5	~ 8	

Finding 4: Servicing Benefits

ISA offers an approach to servicing the observatory and replacing instruments by re-using the on-board robotics needed to assemble the observatory in space. No additional servicing infrastructure is required.

٠

- Congress has mandated: "future observatories be serviceable, where possible"
 - Currently no credible plan or resource
 - NASA would need a separate program
- Serviceability of some of the deployments in the conventional designs can be extremely difficult, if not impossible.
 - A monolithic sunshade (soft goods) deployment failure may be extremely difficult to service.

- ISA does not need a separate servicer spacecraft to be developed.
 - New modules may be delivered using the same approach for delivering the modules for assembly
 - The robotic arms used for assembling the observatory can be used for in-situ servicing.
- Even difficult soft goods like sunshades can be modularized.

Finding 4: Servicing Benefits

ISA offers an approach to servicing the observatory and replacing instruments by re-using the on-board robotics needed to assemble the observatory in space. No additional servicing infrastructure is required.

With a servicing solution in hand, telescopes can evolve and last multiple decades enabling:

- A continuous stream of planned instrument upgrades (e.g., HST)
- Planned refueling and preventive maintenance missions
- Unexpected repair missions
- Amortized mission costs over decades

Servicing is a natural byproduct of iSAT as the robotic arms remain with the observatory and spacecraft.

Finding 5: More Manageable Risks

ISA changes the risk posture of single-launch observatories and makes it potentially more manageable. Hence, ISA may be a preferred implementation approach compared to single-launch approach for observatories, particularly those with 10m class or larger apertures.

- Eliminates complex autonomous self-deployments
 - JWST relies on 20 sequential deployment events, 40 deployable structures, and 178 release mechanisms. They all have to work.
- Mitigates the risks associated with a single launch vehicle
 Launch failure need not be mission failure.
- Modularization enables faults and anomalies to be more readily contained and not propagated.
- Multiple LV vendors reduces programmatic risk of depending on a specific vendor in case of over-subscription or anomaly.

Additional Support for Finding 5

- Future observatories and their large sunshades may need even more deployment mechanisms.
- These mechanisms have high reliability but the sheer number of them impacts the overall system reliability.
- Rigorous testing of all the different deployment mechanisms is expensive, and introduces schedule risk

- Large sunshades may either be assembled in space with no deployment mechanisms or hybridized (a combination of space assembly and lower-risk deployments)
- Modules can be robotically reversible and contain adjustable joining interfaces
- iSA uses an incremental assemble-and-verify approach

Additional Support for Finding 5

• Current mission schedules have a single critical path.

- Late deliveries can result in large standing armies.
- Maintaining peak funding for several years may put considerable strain on the Astrophysics budget.

- An ISA mission may be planned in a phased approach to have multiple delivery paths.
- Reduces inter-dependence, bottlenecks, and resulting standing marching armies
- iSA offers an opportunity to flatten the funding profile, when beneficial, reducing the strain on the annual Astrophysics budget.

Additional Support for Finding 5

- Late project phase mass or volume ulletgrowth is typical in conventional development.
- With a hard ceiling, spirals into ulletzero-sum game of spreading the growth across flight elements potentially impacting schedule, eat into desired margins, and result in cost growth and schedule risk.
- Cost, complexity, and time required ulletfor system-level AIT and deployment demonstrations
- Tests in the presence of gravity • becomes particularly challenging

- Larger mass and volume • allocations through the use of multiple launches
- Provides the option to change • launch vehicle or add a new launch late in the project
- ISA may reduce reliance on ۲ system-level ground AIT:
 - o eliminating complex pre- and post- launch deployments,
 - o using simpler module-level and interface testing, allowing for reversible iSA and reduced systems testing
- iSA occurs in the operational 0-g environment.

Finding 5: More Manageable Risks

Qualitative Assessment Activity Results

- The Study SMEs arrived at consensus that the ratio of JWST's 6.5 m aperture to 5 m-class launch fairing capacity represented a combined cost, schedule, and success risk threshold for the conventional, single-launch approach.
- The SMEs estimated that observatories with a 10 m-class aperture would represent a similar risk threshold for a future SLS launch vehicle.
 - For e.g, the technical challenges and risk associated with JWST's large deployed sunshield remain today and future sunshades will only get larger for larger observatories.
- The consensus was that ISA may be a lower-risk approach at and beyond that threshold.

Finding 6: Cost Benefits

For aperture sizes 15m or less, ISA may offer opportunities for reducing the costs of conventional single-launch observatories, particularly when including the servicing infrastructure in mission scope. Actual cost differences will depend ultimately on the point design selected and its technology needs.

- 1. Qualitative activity using lessons learned and SME recommendations to drive cost down indicate likely cost savings.
- 2. Existing cost models shown to be inadequate for ISA.
- 3. Quantitative bottoms-up costing exercise conducted in parallel to compare to qualitative.
- 4. The cost of the development effort to advance the unique aspects of an ISAT technology program to flight readiness was not included in the costs analysis.

Cost Estimation

ISA will incur additional cost compared to a conventional, single launch observatory. These include:

 Modularity, multiple launches, cargo delivery vehicles, rendezvous and proximity operations, assembly robotics

ISA will likely offer opportunities for cost savings in the development of flight system elements such as the telescope, instruments, spacecraft

- These elements typically represent 60-70% of mission costs. Hence, this can be a source of significant savings.
- Flight system assembly, I&T are other areas of potential savings.

\rightarrow What is the net effect?

Relative cost comparison between single-launch vehicle observatory and iSAT. Green represents WBS elements where ISA may provide cost benefits while red represents elements where ISA may have a cost increase in comparison to a conventional, single-launch approach

WBS 1-3 Mng. SE. SMA	WBS 4 SCI	WBS 5.1 Telescope Structure	WBS 5.2 Telescope Optics	WBS 5.3 Sunshade	WBS 5.4 Inst	WBS 5.5 Robotics	WBS 6 SC	WBS 7-9 MOS/GDS	LV	CDV	Ops	WBS 10 SI&T

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech. CL#19-4130

Cost Estimation

Developed and compared estimates of conventional single-launch vs ISA same architecture but 3 different aperture size (5, 10, 15m).

<u>Used current cost models for</u> <u>conventionally developed</u> <u>observatories</u>

- an architectural study undertaken by JPL's A-Team
- Same MEL as ISA
- CERs using established models
- and scaling laws

Our Study conducted a grass roots cost estimation for ISA

- detailed phase A-E plan,
- schedule,
- MEL, PEL,
- launch manifest
- resource plans

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Estimating Conventional Single Launch Costs Using Traditional Cost Models

WBS/Element	Title	Calculation Method (Inputs)
1	Project Management (PM)	% (of 5A, 5B, 6A, 6B, 6C costs) – w/ % stretched operations for ISATs
2	Project Systems Engineering (PSE)	% (of 5A, 5B, 6A, 6B, 6C costs) – w/ % stretched operations for ISATs
3	Safety & Mission Assurance (SMA)	% (of 5A, 5B, 6A, 6B, 6C costs) – w/ % stretched operations for ISATs
4	Science (SCI)	% (of 5B Costs Only)
5A	Optical Telescope Element (OTE)	Phil Stahl Model (Dia., Temp., Diffraction wavelength, Segment Size) 15% reduction for ISAT (no full scale I&T on the ground)
5B	Instrument(s) Element (IE)	NASA Instrument Cost Model aka NICM (mass, power, type)
6A	Spacecraft Element (SCE)	\$/kg (SCE mass) SCE mass as % of (mass of : OTE, IE, & RAE) OTE mass scaled as a power of the aperture from JWST mass
6B	Robotic Assembly Element (RAE)	Weighted \$/kg Structure Cost Estimating Relationship from SMAD for Structure Spacecraft Cost Estimating Relationship from SMAD for "Smart Mass"
6C	Cargo Delivery Element (CDE)	\$/kg (mass scaled from CYGNUS by cargo carrying capacity) 85% learning curve assumed for multiple units
7	Mission Operations System (MOS)	% (of 5A, 5B, 6A, 6B, 6C costs) – w/ % stretched operations for ISATs
8	Launch Vehicle Services (LVS)	LSP Catalog. # of launches based on Mass Only [no volume considerations]
9A	Ground Data System (GDS)	% (of 5A, 5B, 6A, 6B, 6C costs) – w/ % stretched operations for ISATs
9B	Science Data System (SDS)	% (of 5B costs Only) – w/ % stretched operations for ISATs
10	Systems Integration & Test (SI&T)	% of costs of elements integrated on the ground 5A, 5B, 6A, & 6B for GOATs 6A, & 6B only for ISATs
	Reserves	% of everything above EXCEPT WBS 8 Launch Vehicle Services
	TOTAL	Total of everything above

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

iSAT Grass Roots Estimation

WBS Element	Basis of Estimate
WBS 1-3: Proj. Mgmt, Sys Eng (incl. Mission Design), SMA	Cost-to-Cost Ratio Based on Flagship class missions
WBS 4: Science	Cost-to-Cost Ratio Based on Flagship class missions
WBS 5.1 Telescope Structure	Grass roots for labor, per unit non-labor estimates: \$10M
WBS 5.2 Telescope Optics	Grass roots for labor, per unit non-labor estimates: \$100M
WBS 5.3 Telescope Sunshade	Grass roots for labor, per unit non-labor estimates: 30% of labor
WBS 5.4 Instruments	CADRe based on analogues (HDI, ECLIPS, LUMOS, Pollux)
WBS 5.5 Robotics (2 arms)	Labor: Grass roots for labor, analogues (Gateway, Restore-L, RSGS, Mars), Non-Labor: estimate of \$100M per arm
WBS 6: Spacecraft	Grass roots estimate, \$1B , \$1.5B and \$2B for 3 sizes
WBS 7 & 9: MOS/GDS	Cost-to-Cost Ratio Based on Flagship class missions
Reserves	Consistent with A-Team (30%). Does not include LV and CDS,
WBS 8.1 Launch Systems	Input from NASA Launch Service Program (NLSII PPBE input)
WBS8.2 Cargo Delivery Vehicle	Grass roots estimate from analogues (Cygnus, Dragon)
Operations	\$80M/year assembly ops cost added to mission operations
Servicer	From Analogues (DARPA RSGS and Restore-L)
Tech Dev and Pre-Phase A	Did Not Estimate

• Used \$500k per person per year for labor; unit modules for truss and optics shown in next slide

- Multiplied labor estimates by factor of 2 to account for optimism in grass roots i.e. 100% margin for all three sizes
- Includes scaling effect with aperture size on non-labor costs, including materials
- Does not include learning curve for repeat modules The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

What is a unit module?

Example of truss and optical unit module are shown

Unit Module for Optical Raft

Unit Module for Truss

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Grass Roots Costing Creating List of Representative Activities

Example of Activities Per Phase shown for Thermal Subsystem

Thermal ICD, thermal specification finalization

Thermal Subsystem Risks, waivers and/or deviation status

Technology development tested and completed

Detailed Spacecraft Thermal Design/Architecture

Thermal model including simplified components with corresponding power

Finalized trade studies and outcomes for Spacecraft/Observatory

Thermal Analyses for Observatory utilizing flight orbit for full complement of cases including Launch, ascent, early operations and/or transition orbits

Thermal Predictions for Spacecraft and Observatory (temperature, heater power, gradients, etc.)

Integrated Modeling (STOP) Thermal inputs for bounding cases

Early delivery of Spacecraft model/boundaries for OTE and Instrument Analyses Preliminary Thermal Vacuum and Balance Tests configurations and concepts identified including required GSE and facilities

Thermal Hardware identified (MLI, heaters, sensors, heat pipes, etc.) including installation process and testing identified

Mass estimates

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Grass Roots Estimation: Creating a Notional Payload Schedule

Example of a Schedule per Payload Element

1100	T 1 1	D	T . 101 . 1	0	PT 1 1	
, wbs	Task Name	Duration	I otal Slack	Start		2029 2034 2039 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
1.5	iSAT Optical Telescope Assemblies	4607 days	528 days	Wed 10/1/25	Thu 5/28/43	
1.5.1	OTE Program Start	0 days	761 days	Wed 10/1/25	Wed 10/1/25	
1.5.2	OTE SRR	1 day	761 days	Wed 1/20/27	Wed 1/20/27	
1.5.3	OTE TRL-6 Demo Complete	0 days	911 days	Wed 6/20/29	Wed 6/20/29	<u>♦_</u> 6/20/29
1.5.4	OTE PDR	1 day	1893 days	Thu 7/20/28	Thu 7/20/28	∥ I <u>T</u>
1.5.5	OTE CDR	1 day	761 days	Thu 1/17/30	Thu 1/17/30	
1.5.6	OTE Phase A/B	1121 days	761 days	Wed 10/1/25	Wed 1/16/30	1/16/30
1.5.6.1	Level 1 > 2 > 3 OTE Concept & Requirements	520 days	761 days	Wed 10/1/25	Tue 9/28/27	1 P
1.5.6.2	Risk Reduction Studies (Latches, metrology, RBA, production)	520 days	972 days	Wed 10/1/25	Tue 9/28/27	
1.5.6.3	* PDR Phase	390 days	761 days	Thu 1/21/27	Wed 7/19/28	
1.5.6.4	CDR Phase	390 days	761 days	Thu 7/20/28	Wed 1/16/30	
1.5.6.4.1	Final OTE Subsystems Design	390 days	761 days	Thu 7/20/28	Wed 1/16/30	
1.5.6.4.2	EM Technology Demonstrations	240 days	911 days	Thu 7/20/28	Wed 6/20/29	
1.5.6.4.2.1	* PMSA	240 days	911 days	Thu 7/20/28	Wed 6/20/29	
1.5.6.4.2.2	EM Latches, System Metrology	240 days	911 days	Thu 7/20/28	Wed 6/20/29	
1.5.6.4.3	Production Lines Design and Long Lead Procure	390 days	4014 days	Thu 7/20/28	Wed 1/16/30	
1.5.7	OTE Production (Rafts 1-3, SMA, Aft Optics)	1309 days	761 days	Thu 1/17/30	Wed 1/24/35	
1.5.7.1	Complete parallel production lines (single line is ready)	120 days	810 days	Fri 1/18/30	Thu 7/4/30	Č
1.5.7.2	* Multi-RAFT Assembly & Handling Pathfinder (1 EM raft, 2 simulators)	953 days	168 days	Thu 1/17/30	Tue 9/13/33	
1.5.7.3	Raft #1 Subassemblies	381 days	761 days	Fri 1/18/30	Fri 7/4/31	
1.5.7.4	Raft #1 Assembly Integration & Test	266 days	168 days	Wed 9/14/33	Wed 9/20/34	
1.5.7.5	End of 5m Program	0 days	2794 days	Wed 9/20/34	Wed 9/20/34	♦_9/20/34
1.5.7.6	Raft #2 Subassemblies	126 days	767 days	Fri 6/6/31	Fri 11/28/31	
1.5.7.7	Raft #2 Assembly Integration & Test	64 days	767 days	Mon 12/1/31	Thu 2/26/32	п
1.5.7.8	* Raft #3 All Elements	70 days	767 days	Fri 2/27/32	Thu 6/3/32	п
1.5.7.9	Completion of RAFTS 1-3 I&T (milestone)	0 days	168 days	Wed 9/20/34	Wed 9/20/34	9/20/34
1.5.7.10	• Multi-Raft Assembly Demonstrations	90 days	168 days	Thu 9/21/34	Wed 1/24/35	п
1.5.7.11	* Secondary Mirror Assembly	260 days	1217 days	Fri 1/18/30	Thu 1/16/31	
1.5.7.12	Aft Optics & Instrument Interface	260 days	1217 days	Fri 1/18/30	Thu 1/16/31	
1.5.8	Initial Phase Complete (Rafts 1-3, SMA, Aft Optics)	0 days	168 days	Wed 1/24/35	Wed 1/24/35	♦ 1/24/35
1.5.9	OTE Final Production (10m , 15m, 20m)	2176 days	168 days	Thu 1/25/35	Thu 5/28/43	l
1.5.9.1	Final Production Phase (20m / rafts 4-37)	2176 days	168 days	Thu 1/25/35	Thu 5/28/43	l
1.5.9.2	20m OTE Production Complete	0 days	528 days	Thu 5/28/43	Thu 5/28/43	
1.5.10	OTE Program Complete	0 days	528 days	Thu 5/28/43	Thu 5/28/43	
	T					

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Grass Roots Estimation: Creating a Notional Overall Schedule

Example of a Schedule per Payload Element

														GFY							
	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	Q1 Q2 Q3 Q	401020304	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	14 01 02 03 04	Q1 Q2 Q3	040102030	Q1 Q2 Q3 Q	Q1 Q2 Q3 Q	Q1 Q2 Q3	Q4Q1Q2Q3	040102030	401020304	Q1 Q			
Phase			P	RE-PI	IASE	Α		PH/	ASE A	/B				PHAS	E C/	D				PH	AS
Mission-Level Milestones	Deca	dal Pre	-Phase A			м	CR	SRR	SDR		NAR, I	PDR	CD	R	LF	RD-1	1st Scie	nce ORR			
	Confirm	nation	Start "							<u> </u>		+		<u> </u>	<u> </u>	₩		++			⊢
Mission					CDR Integ	rated Med	oling (INA)							1							1
Systems	<u> </u>	<u> </u>	<u> </u>		SDR Integ	rated wood	eiing (iivi) I							+	<u> </u>		—		+		⊢
Telescope Structure								SRR	PDR			CDR									
		<u> </u>	<u> </u>			TRL-6 Deve	lopment &	& Test 🔜		<u> </u>			B B	ild & Test	<u> </u>						⊢
Spacecraft							SRI	R	PDR			CDR									
Sunshade								SRI		PDR		CDR	Build &	est							
Optical Telescope Assemblies								SRR	PDR	velonment	CDR & Test			uild 9 Tost							
Assembler							SRR	PD	R		c	DR			'						
							TRL-6 D	evelopme	nt & Test _			Build	& Test								⊢
On-Orbit Verification & Metrology							Pha	ise A	Phas	e B	Pha	se C/D									
Science Instruments												SI #	1	SI #2		SI #3 SI #4					
Launch & On- Orbit Assembly														51 #5		La	unches f Lau	r SC, stru tches for Launches	cture, sunsh optics, SI#1 - to complete	ield - first scienc - PM, SIs	;e

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Grass Roots Estimation:

Creating a Notional MEL

Elements covered by this MEL

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

WBS Element	Basis of Estimate
WBS 1-3: Proj. Mgmt, Sys Eng	Cost-to-Cost Ratio Based on Flagship class missions
(incl. Mission Design), SMA	
WBS 4: Science	Cost-to-Cost Ratio Based on Flagship class missions
WBS 5.1 Telescope Structure	Grass roots for labor, per unit non-labor estimates:\$10M
WBS 5.2 Telescope Optics	Grass roots for labor, per unit non-labor estimates: \$100M
WBS 5.3 Telescope Sunshade	Grass roots for labor, per unit non-labor estimates: 30% of labor
WBS 5.4 Instruments	CADRe based on analogues (HDI, ECLIPS, LUMOS, Pollux)
WBS 5.5 Robotics (2 arms)	Labor: Grass roots for labor, analogues (Gateway, Restore-L,
	RSGS, Mars), Non-Labor: estimate of \$100M per arm
WBS 6: Spacecraft	Grass roots estimate, \$1B , \$1.5B and \$2B for 3 sizes
WBS 7 & 9: MOS/GDS	Cost-to-Cost Ratio Based on Flagship class missions
Reserves	Consistent with A-Team (30%). Does not include LV and CDS,
WBS 8.1 Launch Systems	Input from NASA Launch Service Program (NLSII PPBE input)
WBS8.2 Cargo Delivery Vehicle	Grass roots estimate from analogues (Cygnus, Dragon)
Operations	\$80M/year assembly ops cost added to mission operations
Servicer	From Analogues (DARPA RSGS and Restore-L)
Tech Dev and Pre-Phase A	Did Not Estimate

- Used \$500k per person per year for labor; unit modules for truss and optics shown in next slide
- Multiplied labor estimates by factor of 2 to account for optimism in grass roots i.e. 100% margin for all three sizes
- Includes scaling effect with aperture size on non-labor costs, including materials
- Does not include learning curve for repeat modules

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Cost Estimation

The cost estimates are normalized by the cost estimate of the single-launch observatory i.e., for each aperture size, the estimate of the conventional, single launch observatory is **1**.

Costs to advance ISA technology to flight readiness for space telescopes is not included. The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.