**National Aeronautics and Space Administration** 



### S5: Starshade technology to TRL5 Milestone 4 : Lateral formation sensing & control

Thibault Flinois, Michael Bottom, Stefan Martin, Daniel Scharf, Megan Davis, Stuart Shaklan Jet Propulsion Laboratory, California Institute of Technology April 4<sup>th</sup>, 2019

© 2019 California Institute of Technology. Government sponsorship acknowledged. (CL#19-1857)



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



**ExoPlanet Exploration Program** 

# Introduction and overview



National Aeronautics and Space Administration

### Starshades: stop the starlight from getting into your telescope



**ExoPlanet Exploration Program** 

Create an "artificial eclipse" using a ~30 meter flower-shaped occulter ...flying 20-80,000 km in front of your telescope





National Aeronautics and Space Administration

## **Starshades operations concept**



- Starshades slews to target star 1.
- 2. Starshade and telescope align themselves with the target star
- 3. Telescope detects planets around the target star
- GOTO: 1) until you run out of fuel 4.





## Why is it shaped like a flower?







National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Why is it shaped like a flower?

The annoying Arago spot—a near-field diffraction effect



**ExoPlanet Exploration Program** 





Occulting Aperture

Beam intensity at intermediate distance



## Why is it shaped like a flower?

Hypergaussian edges can suppress the Arago spot (W. Cash 2006)



**ExoPlanet Exploration Program** 



**Occulting Aperture** 



Beam intensity at intermediate distance





#### lational Aeronautics and Space Administration Jet Propulsion Laboratory

## Challenge: formation flying

**ExoPlanet Exploration Program** Starshade and telescope must be aligned to within 1 meter at 20-80000 km

- The shadow is **only slightly** wider than the telescope aperture (2.4 m for WFIRST)
- Tolerances
  - 1 meter in shear (x, y)
  - **250 km** in distance (z)
- (If WFIRST is the size of a pencil eraser, starshade is the size of a drink coaster 60 miles away)







National Aeronautics and Space Administration Jet Propulsion Laboratory

#### **Starshade Formation Flying Milestone**



Exoplanet

**ExoPlanet Exploration Program** 

#### S5 Technology Development Plan, Formation Flying Milestone

Starshade Lateral Alignment Testbed validates the sensor model by demonstrating lateral offset position accuracy to a flight equivalent of  $\pm$  30 cm. Control system simulation using validated sensor model demonstrates on-orbit lateral position control to within  $\pm 1$  m.







Space Administration Jet Propulsion Laboratory California Institute of Technology

## S5 Milestone and approach to TRL5



- Starshade Lateral Alignment Testbed validates the sensor model by • demonstrating lateral offset position accuracy to a flight equivalent of  $\pm 30$ cm
  - Sensor performance is demonstrated using numerical simulations and analytic model
  - SLATE testbed validates the sensor model and demonstrates sensor function
- Control system simulation using validated sensor model demonstrates onorbit lateral position control to within  $\pm 1$  m
  - A high-fidelity simulation of the space environment including the testbed-validated lateral sensor \_ model is developed and validated
  - Robust control performance is demonstrated in Monte Carlo simulations



### Milestone: Results Brief



**ExoPlanet Exploration Program** 

#### Sensing

- Showed that the sensor performance predicted by validated simulations meets ٠ requirement with large margin
  - To reveal the sensor error, had to increase the stellar magnitudes by more than 2 and 4, thus the sensor was given a signal between 12x and 75x fainter than expected
- Validated the end-to-end sensing approach with results from the testbed ٠
  - Testbed matched conservative (faint) SNR from flight simulations

#### Control

- Developed a high-fidelity simulation environment including testbed-validated lateral • sensor model
- Demonstrated control of the starshade with the required accuracy over a realistic ٠ observation timescale
  - To demonstrate robust control, the sensor error was inflated far above the expected value to the flight equivalent of  $\pm$  30 cm called for in the milestone statement



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



**ExoPlanet Exploration Program** 

# Lateral sensing



National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

### Lateral sensing overview



- Starshades create a very deep shadow in the design band, but this shadow brightens substantially (~10<sup>6</sup>) outside these wavelengths
- The shadow has structure that encodes positional information
- Using a pupil sensor to image the shadow and a grid of precomputed shadow images, it is possible to determine the relative offset between the Starshade and telescope





#### National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

### **Milestone demonstration overview**



**ExoPlanet Exploration Program** 



Repeated measurements

15



## Radiometry

#### Main points



- A key question is how much light is detected by the pupil camera, the CGI ٠ low-order wavefront sensor (LOWFS)
- This depends on: ٠
  - The stellar photon flux —
  - The starshade contrast \_
  - The internal optical efficiency of the telescope —
  - The detector efficiency —
- This subsection will review how these numbers are determined ۰







**ExoPlanet Exploration Program** 

#### Stellar flux and internal telescope efficiency



designers, with further 10% loss assumed 17



### Radiometry

#### Starshade contrast

- Formation flying does not depend on understanding contrast to extreme levels of accuracy. Formation flying operates at the **10**<sup>-3</sup> to **10**<sup>-4</sup> level
- Starshade shadow contrast was computed using Eric . Cady's (JPL) flight starshade design code.
- The starshade design code is well validated and ٠ understood
  - Princeton testbed results validate the starshade \_ optical model at better than the 10<sup>-10</sup> contrast level
- Model is more than sufficiently accurate  $\geq$











#### Summary

- Starlight, starshade, telescope, and detector all contribute to the photon budget •
- Each of these terms is well understood
- Results will show formation flying performance is robust to efficiency changes ٠
  - Main sensitivity is to change to starshade transmission





#### National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Analytic calculations



ExoPlanet Exploration Program

Centroid precision can be predicted from spot size and signal-to-noise ratio

• Assuming the shadow consists of just the Arago spot, can get a rough estimate of centroid precision using the standard centroid accuracy formula

 $\sigma_x = \frac{\text{FWHM}}{c \cdot \text{SNR}}$ 

- sigma is in FWHM units, like pixels or meters.
  FWHM is the width of the spot
- The constant c depends on the exact shape of the PSF (or spot).
  - The theoretical limit is  $c=\pi$
  - Often people (eg Kepler mission) use c=2
- This is a theoretical limit and other errors will get you first





#### National Aeronautics and Space Administration Jet Propulsion Laboratory

### Analytic calculations



#### Summary

- Analytic calculations indicate sensor should
  - **Easily exceed** the requirement at all target star magnitudes
  - Achieve ~cm-level precision for \_ the faintest target stars
  - Meet the requirement at star \_ magnitudes of up to ~10
- Caveats:
  - does not include effects like pupil obscuration, off-axis starshade shadow pattern, etc





#### National Aeronautics and Space Administration Jet Propulsion Laboratory

### **Numerical simulations**

#### Main points

- Detailed numerical calculations are • used to get a more accurate prediction of sensor performance
- Use optical propagation codes to ٠ move wave from star, to starshade, and through telescope
- Simulate realistic images on LOWFS, allowing for Monte Carlo experiments of sensor performance

# red science band, 10<sup>th</sup> mag



(6<sup>th</sup> mag noisy case would have nearly undetectable difference with noiseless case)



ExEP

**ExoPlanet Exploration Program** 

22



National Aeronautics and Space Administration

## Numerical simulations

#### Monte Carlo simulations

- 1. Take noisy LOWFS image
  - 1. Equalize image (eg divide by mean)
- 2. Match to image library (2cm grid)
  - 1. Use least-squares matching algorithm
  - 2. Record matched position
- 3. Goto 1, repeat hundreds of times
- Analyze results to determine sensitivity at ٠ different star magnitudes
  - Note: exposure time is always 1 second, \_ but this is overkill too









#### lational Aeronautics and Space Administration Jet Propulsion Laboratory

### Numerical simulations: Results



- At target star magnitudes (<6<sup>th</sup> mag), 2cm grid never mismatches
  - Must increase magnitude until start getting some misses
- All science bands easily beat the 30 cm (3σ) requirement by at least a ٠ factor of 3, on stars at least 10x fainter than any target star





#### National Aeronautics and Space Administration Jet Propulsion Laboratory

#### Numerical simulations: Results (2) California Institute of Technology



- Analytic and numerical simulations agree
- Blue band disagrees, probably ٠ because the (larger) spot is always partially obscured by the pupil

| Scienc<br>e band | Star<br>magnitud<br>e | Median 3σ<br>error (cm) | Analytic<br>3σ error<br>(cm) |
|------------------|-----------------------|-------------------------|------------------------------|
| Red              | 10.0                  | 1.6                     | 1.6                          |
| Green            | 8.0                   | 3.6                     | 3.9                          |
| Blue             | 8.0                   | 9.7                     | 6.1                          |





National Aeronautics and Space Administration

### Laboratory experiment

- Starshade Lateral Alignment Testbed (SLATE)
  - A movable beam launcher and starshade produce a realistic starshade shadow
  - A camera and software simulate the functionality of WFIRST-CGI LOWFS when used as a starshade alignment sensor
- The purpose of SLATE is to demonstrate the sensor function, testing the agreement between predicted performance and simulated performance, thus validating the sensor model







#### National Aeronautics and Space Administration

#### Jet Propulsion Laboratory California Institute of Technology Pasadena, California



### Is SLATE a faithful reproduction of the space environment? *NO, it's worse*

- Camera
  - Noise 20 to >10000x more than flight EMCCD
  - Bias and dark drift, flat field nonlinearities
- Optics
  - Significant wavefront error at the 10<sup>-4</sup> contrast level (despite excellent optical surface quality)
  - Significant scatter
  - Some background light/variation
  - Wavefront error prevents testing at the largest Fresnel number, by producing excess scatter.
  - However this does not invalidate the tests since the error source is known and at lower Fresnel numbers, the system works.
- Philosophy
  - Match flight simulation SNR (not photon flux)
  - Match flight morphology (spot/pupil ratio)

| Parameter                      | Flight expectation SLATE testbed            |                            |
|--------------------------------|---------------------------------------------|----------------------------|
| Fresnel number                 | 5-7 4.5                                     |                            |
| Light type                     | broadband starlight<br>(50-100 nm filtered) | 632 nm laser               |
| Wavefront quality              | ~14nm wavefront<br>error                    | >500 nm wavefront<br>error |
| Beam apodization               | None                                        | Gaussian                   |
|                                |                                             |                            |
| Camera chip                    | e2v CCD201                                  | SBIG KAF402-me             |
| Camera read noise              | 2 electrons                                 | 40 electrons               |
| Camera dark current            | 1.5e-4<br>electrons/pixel/sec               | 2 electrons/pixel/sec      |
| Camera clock-induced<br>charge | 0.02 electrons                              | <1 electron                |
| Camera flat field calibration  | excellent                                   | none                       |
|                                |                                             |                            |
| Arago spot FWHM                | 10 pixels /32x32<br>detector                | 10 pixels/ 32x32 pixels    |
| Arago spot SNR                 | 5/pixel in FWHM                             | 5/pixel in FWHM            |



### Lab experiment

Test design

- Create SLATE image library from optical • model of lab
  - Contrast matches at ~20% level
    - Note this is just a check •
- Match Arago spot size and SNR to space-like levels (flux >10x lower than target stars)
- Run sensor simulation
  - Command actuators to move to different points on trajectory
  - Match image to library
  - Get statistics of matched position



Position: (0.275,0.875), Setpoint: (0.0, 0.0)



ExEP



National Aeronautics and Space Administration

### Lab experiment results

- Good agreement despite many non-idealities in testbed
- Reproduce numerical results to ~55%
- Main differences between model and testbed are flat ٠ fielding errors, background/scattered light, and pixel non-uniformity
- These all produce a worse performance than ٠ expected for an optically perfect testbed
- Thus, if the testbed model can be "flown" by the s/w, • this satisfactorily validates the sensor

| Sim 3σ  | Sim 3σ   | SLATE 3σ | SLATE 3σ |
|---------|----------|----------|----------|
| (worst) | (median) | (worst)  | (median) |
| 6.7 cm  | 4.0 cm   | 10.2 cm  | 6.2 cm   |











- **ExoPlanet Exploration Program**
- 1. Flight simulations predict sensor performance well above what is needed, for all science bands, using stars ~12-75x fainter than the faintest target star
- Laboratory experiments demonstrate good agreement with simulations of 2. sensor performance



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



**ExoPlanet Exploration Program** 

# Formation flying simulations



## Formation flying overview







#### National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Formation flying overview







#### Space Administration Jet Propulsion Laboratory California Institute of Technology







National Aeronautics and Space Administration

### **Formation flying overview**







National Aeronautics and Space Administration

#### Formation flying overview California Institute of Technology





- → Demonstrate successful control with required accuracy
- → Demonstrate observational efficiency



National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology



ExoPlanet Exploration Program

- Orbital dynamics of starshade and telescope
  - Sun, Earth, Moon, solar system planets, solar radiation pressure (SRP) (JPL SPICE library)
  - Validated with JPL high-fidelity mission design tool (JPL MONTE)
- Prescribed attitude of starshade
  - Expected worst-case attitude motion prescribed
  - Spinning and precessing with spin axis at 1° offset from line of sight
  - Affects thrust allocation and SRP force

#### Thruster models

- 16-thruster configuration
- Models based on flight-qualified bipropellant 22N thrusters
- Conservative thruster execution errors and delays





## Initial conditions

z (m)

×10<sup>8</sup>

- Maximize relative lateral acceleration
- Earth gravity: driving influence for *relative* dynamics
- i Sun, Earth, Moon, Telescope almost aligned i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C i C





- Worst-case formation geometry:
- ➔ Closest to Earth/Sun
- → Max starshade-telescope range
- ➔ Formation "Earth angle" for max disturbance: 40°-45°



Direction of starshade initial position

ExEP



Testbed-validated

sensor model for:

8<sup>th</sup> magnitude star

(12x fainter than

faintest target)

Blue band

Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California





**ExoPlanet Exploration Program** 

- Model based on extremely conservative (scaled) sensor model
- $\rightarrow$  Assume performance is **no better than 30cm (3** $\sigma$ )
- **Other errors**: Measurement time, time-tag, delays added



Extremely conservative model:

used in formation flying simulations







- Typical deadbanding for attitude control /docking is "per-axis" •
- Developed two-dimensional disk-deadbanding algorithm



- Max drift time requires initial position at "well"
- → Seek trajectory that targets well







**ExoPlanet Exploration Program** 

Two-dimensional disk-deadbanding algorithm, developed for S5



- Max drift time requires initial position at "well"
- Always seek trajectory that targets well →
- Given initial & final position: maximize drift time
- Intercept point tangent to boundary ➔







- Typical deadbanding for attitude control /docking is "per-axis"
- Developed two-dimensional disk-deadbanding algorithm



- Converges to globally optimal trajectory
- Only requires a single algorithm
- Provides effectively optimal observational efficiency (long drift times)







- **Double threshold approach:** •
  - Small overshoots don't trigger correction burns to maximize drift time
  - Large deviations are corrected to ensure control requirement is met





#### National Aeronautics and Space Administration Jet Propulsion Laboratory

### **Remaining GNC algorithms**



**ExoPlanet Exploration Program** 

- Estimation •
  - Filter state is 3DOF relative position, velocity, acceleration
  - Constant acceleration model, justified at deadbanding timescales

- Longitudinal control ۰
  - Not required in most cases due to loose control requirement (±250km)
  - Implemented "rate damping" if required: slows drift towards boundary edge

#### Thrust Allocation .

- Internally developed 6DOF thrust allocation algorithm used
- Developed at JPL, flight-proven e.g. used on Mars Science Laboratory



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## **Results: Typical formation flying behavior**



 1-m radius control requirement met for all simulations

 ±250 km longitudinal control requirement also met in all cases





## **Results: Monte Carlo simulations statistics**



- Effectively optimal drift time given relative acceleration and control tuning
- High observational efficiency: Mean drift time for worst-case disturbance ~ 850s
- **Threshold sizing:** balance between nominal drift time and risk of correction burn





#### National Aeronautics and Space Administration

### Further simulations: robustness analysis



**ExoPlanet Exploration Program** 

- Repeated Monte Carlo simulations with **HabEx**-like conditions: ۲
  - Longer range (76.6Mm)  $\rightarrow \sim 2x$  larger relative lateral acceleration
  - Larger dry mass (~6-7 tons)
  - Worst-case HabEx initial formation geometry

#### Approach robust to environment

- Repeated Monte Carlo simulations **0.5Hz sensor measurement rate**
- → Approach not driven by sensor measurements
- Identified driving disturbance: mass uncertainty ٠
  - Only affects observational efficiency, not ability to meet milestone
- Readily addressed with calibration



## Formation flying simulations summary



**ExoPlanet Exploration Program** 

Showed lateral sensing approach enables formation flying for starshades ٠

Developed control approach that allows **meeting requirements** with ٠ effectively optimal observational efficiency

Confirmed **robustness** of flight-traceable GNC algorithms, even with ۲ conservative assumptions



National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

## **Formation Flying Milestone: Conclusion**



**ExoPlanet Exploration Program** 

#### Starshade Lateral Alignment Testbed validates the sensor model by demonstrating lateral offset position accuracy to a flight equivalent of $\pm$ 30 cm.

- Developed a lateral sensing approach based on least squares image fitting
- → Showed that analytical and numerical models predict excellent performance: 3x better than requirement on 10x fainter stars
- → Verified and validated formation sensing technique in SLATE hardware testbed

#### Control system simulation using validated sensor model demonstrates on-orbit lateral position control to within ± 1 m

 Created a high-fidelity model of the flight environment including a realistic sensor model with very conservative parameters

 $\rightarrow$  Developed a control approach utilizing the sensor that meets formation flying requirements with effectively optimal observational efficiency

→ Confirmed robustness of flight-traceable GNC algorithms, even with conservative assumptions



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



**ExoPlanet Exploration Program** 

# **Questions?**