



## **ExEP Technology Needs and Status**

### Nick Siegler NASA Exoplanet Exploration Program Program Chief Technologist

01/04/16 ExoPAG Meeting 2016 Kissimmee, FL

© 2016 California Institute of Technology. Government sponsorship acknowledged.

CL#15-5804



## **Driving Requirements for Imaging Exo-Earths**











- Industry
- STMD

## **ExEP Technology Gap Lists**



#### Starshade Technology Gap List

#### Table A.3 Coronagraph Technology Gap List.

| ID   | Title                                                   | Description                                                                                                                        | Current                                                                                                                                                                                                                | Required                                                                                                                                                                                                                                         |
|------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-1  | Specialized<br>Coronagraph<br>Optics                    | Masks, apodizers, or<br>beam-shaping optics to<br>provide starlight<br>suppression and planet<br>detection capability.             | A linear mask design has<br>yielded 3.2×10 <sup>-10</sup> mean raw<br>contrast from 3–16 $\lambda/D$<br>with 10% bandwidth using<br>an unobscured pupil in a<br>static lab demonstration.                              | Circularly symmetric masks<br>achieving $\leq 1 \times 10^{-10}$ contrast<br>with IWA $\leq 33/D$ and $\geq 10%$<br>bandwidth on obscured or<br>segmented pupils.                                                                                |
| C-2* | Low-Order<br>Wavefront<br>Sensing &<br>Control          | Beam jitter and slowly<br>varying large-scale (low-<br>order) optical aberrations<br>may obscure the<br>detection of an exoplanet. | Tip/tilt errors have been<br>sensed and corrected in a<br>stable vacuum<br>environment with a<br>stability of $10^{-3}\lambda$ rms at<br>sub-Hz frequencies.                                                           | Tip/tilt, focus, astigmatism,<br>and coma sensed and<br>corrected simultaneously to<br>$10^{-4} \lambda$ ( $-10^{\circ}$ so of pm) rms to<br>maintain raw contrasts of<br>$\le 1 \times 10^{-10}$ in a simulated<br>dynamic testing environment. |
| C-3* | Large-Format<br>Ultra-Low<br>Noise Visible<br>Detectors | Low-noise visible<br>detectors for faint<br>exoplanet<br>characterization with an<br>Integral Field<br>Spectrograph.               | Read noise of < 1 er/pixel<br>has been demonstrated<br>with EMCCDs in a 1k × 1k<br>format with standard read-<br>out electronics                                                                                       | Read noise < 0.1e <sup>-</sup> /pixel in a<br>≥ 4k × 4k format validated for<br>a space radiation environment<br>and flight-accepted electronics.                                                                                                |
| C-4* | Large-Format<br>Deformable<br>Mirrors                   | Maturation of deformable<br>mirror technology toward<br>flight readiness.                                                          | Electrostrictive 64x64 DMs<br>have been demonstrated to<br>meet ≤ 10-9 contrasts in a<br>vacuum environment and<br>10% bandwidth.                                                                                      | ≥ 64x64 DMs with flight-like<br>electronics capable of<br>wavefront correction to ≤ 10 <sup>-10</sup><br>contrasts. Full environmental<br>testing validation.                                                                                    |
| C-5  | Efficient<br>Contrast<br>Convergence                    | Rate at which wavefront<br>control methods achieve<br>10 <sup>-10</sup> contrast.                                                  | Model and measurement<br>uncertainties limit<br>wavefront control<br>convergence and require<br>many tens to hundreds of<br>iterations to get to 10 <sup>-10</sup><br>contrast from an arbitrary<br>initial wavefront. | Wavefront control methods<br>that enable convergence to<br>10 <sup>-10</sup> contrast ratios in fewer<br>iterations (10-20).                                                                                                                     |
| C-6* | Post-Data<br>Processing                                 | Techniques are needed to<br>characterize exoplanet<br>spectra from residual<br>speckle noise for typical<br>targets.               | Few 100x speckle<br>suppression has been<br>achieved by HST and by<br>ground-based AO<br>telescopes in the NIR and<br>in contrast regimes of 10-5<br>to 10-4, dominated by<br>phase errors.                            | A 10-fold improvement over<br>the raw contrast of ~10° in the<br>visible where amplitude errors<br>are expected to no longer be<br>negligible with respect to<br>phase errors.                                                                   |

\*Topic being addressed by directed-technology development for the WFIRST/AFTA coronagraph. Consequently, coronagraph technologies that will be substantially advanced under the WFIRST/AFTA technology development are not eligible for TDEMs.

JPL Document D-94249



#### Exoplanet Exploration Program Technology Plan

#### Appendix: 2015

Peter Lawson with revisions by Nick Siegler and Brian Lim

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California





#### Coronagraph Technology Gap List

Table A.4 Starshade Technology Gap List

| ID         | Title                                                                      | Description                                                                                                                     | Current                                                                                                                                                                                       | Required                                                                                                                                                                                                                         |
|------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-1        | Control Edge-<br>Scattered<br>Sunlight                                     | Limit edge-scattered<br>sunlight with optical<br>petal edges that also<br>handle stowed bending<br>strain.                      | Graphite edges meet all<br>specs except sharpness,<br>with edge radius ≥10 µm.                                                                                                                | Optical petal edges<br>manufactured of high<br>flexural strength material<br>with edge radius ≤ 1 µm<br>and reflectivity ≤ 10%.                                                                                                  |
| <b>S-2</b> | Contrast<br>Performance<br>Demonstration ar<br>Optical Model<br>Validation | Experimentally validate<br>the equations that<br>predict the contrasts<br>achievable with a<br>starshade.                       | Experiments have<br>validated optical<br>diffraction models at<br>Fresnel number of ~500<br>to contrasts of 3×10 <sup>-10</sup> at<br>632 nm.                                                 | Experimentally validate<br>models of starlight<br>suppression to<br>≤ 3×10 <sup>-11</sup> at Fresnel<br>numbers ≤ 50 over 510-<br>825 nm bandpass.                                                                               |
| S-3        | Lateral<br>Formation<br>Flying Sensing<br>Accuracy                         | Demonstrate lateral<br>formation flying sensing<br>accuracy consistent with<br>keeping telescope in<br>starshade's dark shadow. | Centroid accuracy 2 1% is<br>common. Simulations<br>have shown that sensing<br>and GN&C is tractable,<br>though sensing<br>demonstration of lateral<br>control has not yet been<br>performed. | Demonstrate sensing<br>lateral errors < 0.20m at<br>scaled flight separations<br>and estimated centroid<br>positions < 0.3% of<br>optical resolution. Control<br>algorithms demonstrated<br>with lateral control errors<br>< 1m. |
| 5-4        | Flight-Like<br>Petal<br>Fabrication and<br>Deployment                      | Demonstrate a high-<br>fidelity, flight-like<br>starshade petal and its<br>unfurling mechanism.                                 | Prototype petal that<br>meets optical edge<br>position tolerances has<br>been demonstrated.                                                                                                   | Demonstrate a fully<br>integrated petal, including<br>blankets, edges, and<br>deployment control<br>interfaces. Demonstrate a<br>flight-like unfurling<br>mechanism.                                                             |
| S-5        | Inner Disk<br>Deployment                                                   | Demonstrate that a<br>starshade can be<br>autonomously deployed<br>to within the budgeted<br>tolerances.                        | Demonstrated<br>deployment tolerances<br>with 12m heritage<br>Astromesh antenna with<br>four petals, no blankets,<br>no outrigger struts, and<br>no launch restraint.                         | Demonstrate deployment<br>tolerances with flight-like,<br>minimum half-scale inner<br>disk, with simulated<br>petals, blankets, and<br>interfaces to launch<br>restraint.                                                        |

#### http://exep.jpl.nasa.gov/technology/







- A. Please listen for:
  - 1. Completeness Are there any gaps missing?
  - 2. Correctness Are the "Needed Capabilities" the right ones?
- B. I'll also provide status on the various technologies and possible paths forward
- C. Please contact me anytime during the week or via email to discuss/edit anything you hear today.

## **Coronagraph Technology Needs**

### <u>Contrast</u>







Ultra-low noise visible and infrared detectors

Segment phasing and rigid body sensing and control

Low-order wavefront

sensing and control



Telescope vibration sensing and control





| Description                                                                              | Current Capabilities                                                                                                                                                                                        | Needed Capabilities                                                                                                                                                                          |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coronagraph optics and<br>architecture that suppress<br>diffracted starlight by a factor | 3x10 <sup>-10</sup> raw contrast at 10% bandwidth<br>across angles of 3-16 <i>N</i> D demonstrated<br>with a linear mask and an <u>unobscured</u><br>pupil in a static vac lab env't (Hybrid Lyot)          | Coronagraph masks and optics capable of creating circularly symmetric dark regions in the focal plane enabling raw contrasts $\leq 10^{-9}$ , IWA $\leq 3 ND$ , throughput $\geq 10\%$ , and |
| of ≤ 10 <sup>-9</sup> at visible and infrared<br>wavelengths.                            | < 8.8x10 <sup>-9</sup> raw contrast at 10% bandwidth<br>across angles of 3-9 <i>N</i> D demonstrated with<br>a circularly-symmetric mask and <u>obscured</u><br>pupil in a static vacuum lab env't (WFIRST) | bandwidth ≥ 10% on obscured/segmented<br>pupils in a simulated dynamic vacuum lab<br>environment.                                                                                            |











#### **Recent Activities**

Both WFIRST coronagraph masks have achieved <  $10^{-8}$  raw contrast at across a 3-9  $\lambda/D$ symmetric dark hole with obscured pupil.

### Shaped Pupil Mask



Black Si substrate with reflective patterned Al coating

### Hybrid Lyot Mask



Circular mask with profiled Ni layer coated with patterned PMGI dielectric





| Description                                                                                                                               | Current Capabilities                                                                                                                                                                                                                                                                                                                                                                                              | Needed Capabilities                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coronagraph optics and architecture that suppress diffracted starlight by a factor of $\leq 10^{-9}$ at visible and infrared wavelengths. | 3x10 <sup>-10</sup> raw contrast at 10% bandwidth<br>across angles of 3-16 <i>N</i> D demonstrated<br>with a linear mask and an <u>unobscured</u><br>pupil in a static vac lab env't (Hybrid Lyot)<br>< 8.8x10 <sup>-9</sup> raw contrast at 10% bandwidth<br>across angles of 3-9 <i>N</i> D demonstrated with<br>a circularly-symmetric mask and <u>obscured</u><br>pupil in a static vacuum lab env't (WFIRST) | Coronagraph masks and optics capable of<br>creating circularly symmetric dark regions in<br>the focal plane enabling raw contrasts $\leq 10^{-9}$ ,<br>IWA $\leq 3 \lambda$ /D, throughput $\geq 10\%$ , and<br>bandwidth $\geq 10\%$ on obscured/segmented<br>pupils in a simulated dynamic vacuum lab<br>environment. |

#### Possible Steps to Closing Technology Gap

- First demonstration of < 10<sup>-8</sup> coronagraph performance with an obscured pupil in a simulated dynamic environment. (WFIRST; Sept 2016)
- 2. First demonstrations of the PIAA CMC in the HCIT (WFIRST; CY16)
- 3. Demonstrations of next generation coronagraphs at STScI, NASA-GSFC, and the ExEP HCIT (FY16-FY19)
- 4. ExEP Segment Coronagraph Design and Analysis (SCDA) effort (FY16)

#### **Recent Activities**

Both WFIRST coronagraph masks have achieved <  $10^{-8}$  raw contrast at across a 3-9  $\lambda$ /D symmetric dark hole with obscured pupil.

### Shaped Pupil Mask



Black Si substrate with reflective patterned Al coating

### Hybrid Lyot Mask



Circular mask with profiled Ni layer coated with patterned PMGI dielectric



## Coronagraph Architectures in the SCDA Study



- 1. PIAA CMC (University of Arizona/NASA-Ames/JPL)
- 2. APLC/SPC (Space Telescope Science Institute/Princeton)
- Vortex (Caltech/JPL)
- Hybrid Lyot (Caltech/JPL)
- 5. Visible Nulling Coronagraph (NASA–GSFC)



### Reference Apertures Under Consideration in the SCDA Effort







## **Large Aperture Primary Mirrors - Monoliths**



**Exoplanet Exploration Program** 

| Current Canabilities                                                                                                                                                                                             | Needed Canabilities                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Monolith:<br>3.5m sintered SiC with < 3 um SFE (Herschel)<br>2.4m ULE with ~ 10 nm SFE (HST)<br>Depth: Waterjet cutting is TRL 9 to 14", but TRL 3 to<br>>18". Fused core is TRL 3; slumped fused core is TRL 1. | Aperture: 4m - 12m; SFE < 10 nm RMS (wavelength coverage 400 nm - 5000 nm)<br>Wavefront stability better than 10 pm RMS per wavefront control step. |
| <u>Segmented:</u><br>6.5m Be with 25 nm SFE (JWST)                                                                                                                                                               | Segmented apertures leverage 6 DOF or higher control authority meter-class segments for wavefront control.                                          |
| Non-NASA: 6 dof, 1-m class SiC and ULE, < 20 nm SFE,<br>and < 5 nm over 4 hr with thermal control                                                                                                                | Environmentally tested.                                                                                                                             |

#### Possible Next Steps to Closing Technology Gap

- AMTD Phase 2 is currently building a 1.5 meter, 20 cm thick sub-scale model of a 4m ULE mirror to demonstrate lateral scalability of the stacked core process. (FY16-FY17)
  - Will characterize static thermal wavefront error deformation.
- AMTD Phase 2 is currently polishing a 1.2m Zerodur mirror for the purpose of thermal wavefront error characterization. (CY16)
- HabEx/LUVOIR will study range of monolith architectures, conduct trades and modeling. (CY16-17)



### Advanced Mirror Technology Development (AMTD) project (PI Stahl) produced a 43 cm diameter cut-out of a 4m, 40 cm thick mirror ULE using a new five-layer stack and fuse process (5.5 nm rms)

• Preliminary design study conducted by MSFC of 4m monolith on SLS (Block 1)



## **Large Aperture Primary Mirrors - Segmented**



Exoplanet Exploration Program

| Current Capabilities                                                                              | Needed Capabilities                                                                                        |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Monolith:<br>3.5m sintered SiC with < 3 um SFE (Herschel)<br>2.4m ULE with ~ 10 nm SFE (HST)      | Aperture: 4m - 12m; SFE < 10 nm RMS (wavelength coverage 400 nm - 5000 nm)                                 |
| >18". Fused core is TRL 3; slumped fused core is TRL 1.                                           | Wavefront stability better than 10 pm RMS per wavefront control step.                                      |
| <u>Segmented:</u><br>6.5m Be with 25 nm SFE (JWST)                                                | Segmented apertures leverage 6 DOF or higher control authority meter-class segments for wavefront control. |
| Non-NASA: 6 dof, 1-m class SiC and ULE, < 20 nm SFE,<br>and < 5 nm over 4 hr with thermal control | Environmentally tested.                                                                                    |

Possible Next Steps to Closing Technology Gap

- HabEx/LUVOIR concept studies will define the architecture, materials, and operating wavelength range for a segmented telescope; modeling. (CY16-18)
- SCDA effort will identify which coronagraph architectures meet exo-earth imaging requirements on a segmented telescope. (CY16)
  - Possible 2<sup>nd</sup> year added for SCDA adding dynamic disturbances and rigid-body segment errors (FY17)



JWST at MSFC's XRCF

- ATLAST wraps up after several years of design work; HDST report.
- ExEP SCDA effort begun
  - creation of a reference aperture team



### **Ultra-Low Noise Visible Detector**



|                                                                                                               |                                                                                                                                                                                                                                                         | Exoplanet Exploration Program                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                                                                                   | Current Capabilities                                                                                                                                                                                                                                    | Needed Capabilities                                                                                                                                                                                          |
| Low-noise visible detectors<br>for faint exoplanet<br>characterization with an<br>Integral Field Spectrograph | 1kx1k silicon EMCCD detectors provide<br>dark current of 8x10 <sup>-4</sup> e-/px/sec; effective<br>read noise < 0.2 e- rms (in EM mode) after<br>irradiation when cooled to 165.15K<br>(WFIRST).4kx4k EMCCD fabricated but still under<br>development. | Effective read noise < 0.1e- rms; CIC < 3x10 <sup>-3</sup><br>e-/px/fram; dark current < 10 <sup>-4</sup> e-/px/sec<br>tolerant to a space radiation environment<br>over mission lifetime.<br>≥ 2kx2k format |

#### Possible Next Steps to Closing Technology Gap

- 1. Conclude post-radiation performance assessment of the 1kx1k EMCCD (WFIRST; CY16)
  - Incorporate effect of radiation damaged induced traps in the detector model to predict planet yield at end of life.
- 2. LUVOIR and HabEx concept studies will define needed requirements. (CY16)
   EMCCD plan needed to likely exceed WFIRST results

### 3. Follow progress of e2V 4kx4k demonstrations

Radiation test if/when performance requirements are met



### **Recent Activities**

- e2v EM CCD201-20 baselined for the WFIRST; characterized using a NüVü EM N2 camera
  - meets the WFIRST beginning of life performance requirements

### Radiation testing completed

 RN, dark current, CIC results all appear favorable



### **Ultra-Low Noise Infrared Detector**



Exoplanet Exploration Program

| Description                    | Current Capabilities                       | Needed Capabilities                                  |
|--------------------------------|--------------------------------------------|------------------------------------------------------|
|                                | HgCdTe photodiode arrays have read         |                                                      |
|                                | noise <~ 2 e- rms with multiple non-       |                                                      |
|                                | destructive reads; dark current < 0.001 e- |                                                      |
| Near infrared wavelength (900  | /s/pix; very radiation tolerant (JWST).    | Read noise << 1 e- rms, dark current < 0.001 e-      |
| nm to 2.5 μm), extremely low   |                                            | /pix/s, in a <u>space radiation environment</u> over |
| noise detectors for exo-earth  | HgCdTe APDs have dark current ~ 10-20 e-   | mission lifetime.                                    |
| spectral characterization with | /s/pix, RN << 1 e- rms, and < 1kx1k format |                                                      |
| Integral Field Spectrographs.  |                                            | ≥ 2kx2k format                                       |
|                                | Cryogenic (superconducting) detectors      |                                                      |
|                                | have essentially no read noise nor dark    |                                                      |
|                                | current; radiation tolerance is unknown.   |                                                      |

Possible Next Steps to Closing Technology Gap

- 1. HabEx and LUVOIR mission concept studies will define the operating wavelength range (CY16); IR detectors may rise in urgency
  - Plan needed to advance IR detector technology
- 2. Determine limiting noise sources in HgCdTe arrays from JWST and WFIRST arrays (CY16-17)
- 3. Review the results of HgCdTe APD usage on ground-based AO systems (CY16-17)
- 4. MKID array being delivered to SCExAO on Subaru telescope in CV17: PICTURE-C CV19

|               |                   | Visible                                                                                                            | Near-IR                                                                                | Mid-IR                                       |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
|               | Technology        | 350 — <b>9</b> 50 nm                                                                                               | 950 <b>n</b> m — <b>5 µ</b> m                                                          | 5 µm — 8 µm                                  |
| Baselined     | CCD               | Rad. hardness                                                                                                      |                                                                                        |                                              |
| by WFIRST     | CMOS              |                                                                                                                    |                                                                                        |                                              |
|               | EMCCD             | Rad. hardness                                                                                                      |                                                                                        |                                              |
|               | p-channel CCD     |                                                                                                                    |                                                                                        |                                              |
| Being         | Si PIN Hybrid     |                                                                                                                    |                                                                                        |                                              |
| evaluated now | HgCdTe Hybrid     |                                                                                                                    |                                                                                        |                                              |
| $\rightarrow$ | HgCdTe APD Hybrid | Reduce dark current                                                                                                | Reduce dark current                                                                    |                                              |
| 1             | MKID array        | TRL < 5                                                                                                            | TRL < 5                                                                                | TRL < 5                                      |
| Cryogenic     | TES array         | TRL < 5                                                                                                            | TRL < 5                                                                                | TRL < 5                                      |
| detectors     | SNSPD             | Reduce dark                                                                                                        | Reduce dark                                                                            | Reduce dark                                  |
|               |                   | current                                                                                                            | current                                                                                | current                                      |
|               | Si:As Hybrid      |                                                                                                                    |                                                                                        |                                              |
|               |                   | TRL ≥ 6; Sufficiently<br>Promising technolog<br>Promising technolog<br>Cryogenic cooling re<br>May be worth lookin | r mature for pre Phas<br>y, more work needed<br>y<br>equired<br>g into with additional | e-A<br>  in specific areas<br>  optimization |

Rauscher et. al. (2015); SPIE



## **Segment Phasing Sensing and Control** Telescope Vibration Sensing and Control Exoplanet Exploration Program



| Description                                                                                                                                                                  | Current Capabilities                                                                                                                                         | Needed Capabilities                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Multi-segment large aperture<br>mirrors require phasing and<br>rigid-body sensing and<br>control of the segments to<br>achieve tight static and<br>dynamic wavefront errors. | 6 nm rms rigid body positioning error and<br>49 nm rms stability (JWST error budget)<br>SIM and non-NASA: nm accuracy and<br>stability using laser metrology | Systems-level considerations to be<br>evaluated but expect will require less than 10<br>pm rms accuracy and stability. |
| Description                                                                                                                                                                  | Current Capabilities                                                                                                                                         | Needed Capabilities                                                                                                    |
|                                                                                                                                                                              | 80 dB attenuation at frequencies > 40 Hz<br>(JWST passive isolation)                                                                                         | Monolith: 120 dB end-to-end attenuation at frequencies > 20 Hz.                                                        |
| solation and damping of<br>spacecraft and payload<br>vibrational disturbances                                                                                                | Disturbance Free Payload demonstrated at<br>TRL 5 with 70 dB attenuation at "high                                                                            | Segmented: 140 dB end-to-end attenuation at frequencies > 40 Hz.                                                       |
|                                                                                                                                                                              | frequencies" with 6-DOF low-order active<br>pointing.                                                                                                        | End-to-end implies isolation between disturbance source and the telescope.                                             |

#### Next Steps to Closing Technology Gap

- These are systems-level challenges and will require specific point designs enabling specific 1. trades. Both HabEx and LUVOIR will commence architecture studies in CY16.
  - WFIRST coronagraph LOWFS/C results will be important
  - WFIRST telescope disturbance simulator will become available for future coronagraph testbed demonstrations at the HCIT; segmented mirror demonstrator expected in CY17 or CY18



### **Deformable Mirrors**



| Exoplanet Exploration Pro                                                   |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description                                                                 | Current Capabilities                                                                                                                                                           | Needed Capabilities                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Environment-tested, flight-<br>qualified large format<br>deformable mirrors | Electrostrictive 64x64 DMs have been<br>demonstrated to meet ≤ 10 <sup>-9</sup> contrasts in a<br>vacuum environment and 10% bandwidth;<br>48x48 DM passed random vib testing. | 4 m primary: ≥ 96x96 actuators<br>10 m primary: ≥ 128x128 actuators<br>Enable raw contrasts of ≤ 10 <sup>-9</sup> at ~20%<br>bandwidth and IWA ≤ 3 λ/D<br>Flight-qualified device and drive electronics<br>(radiation hardened,environmentally tested,<br>life-cycled including connectors and cables)<br>Large segment DM needs possible for<br>segmented telescopes |  |  |

#### Possible Next Steps to Closing Technology Gap

- flight qualify the drive electronics (WFIRST; FY16-17)
  - re-designing the electronic inter-connectors to the actuators
  - □ miniaturizing the drive electronics
  - □ life test the DM actuators
  - complete environment testing
- MEMS DMS from BMC and Iris AO conducting dynamic testing (TDEMs; FY17)
- LUVOIR/HabEx studies to determine format size need (FY16-17)
  - still need large format development
  - Iarge segmented DMs trade



- 1. Xinetics 48x48 DMs connectorized and driver electronics built for HCIT (WFIRST)
- 2. Two DM configuration used to pass broadband coronagraph demo for WFIRST (<  $10^{-8}$  contrast; 3-9  $\lambda$ /D)
- 3. Demonstrated as part of the coronagraph design serving as a wavefront apodizer (HLC for WFIRST)





| Description                                                                     | Current Capabilities                                                                                                                                                                                                                                                                           | Needed Capabilities                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensing and control of line of<br>sight jitter and low-order<br>wavefront drift | < 0.5 mas rms per axis LOS residual error<br>demonstrated in lab with a fast-steering<br>mirror attenuating a 14 mas LOS jitter and<br>reaction wheel inputs; ~ 100 pm rms<br>sensitivity of focus (WFIRST). Higher low-order modes sensed to 10-100<br>nm WFE rms on ground-based telescopes. | Sufficient fast line of sight jitter (< 0.5 mas<br>rms residual) and slow thermally-induced (≤<br>10 pm rms sensitivity) WFE sensing and<br>control to maintain closed-loop < 10 <sup>-9</sup> raw<br>contrast with an obscured/segmented pupil<br>and simulated dynamic environment. |

#### Next Steps to Closing Technology Gap

- 1. WFIRST LOWFS/C prototype integrated into coronagraph testbed in the JPL HCIT in summer 2016 where it will be tested to sense jitter and other thermally-induced low-order Zernike modes.
  - Testbed will include both a WFIRST telescope pupil and environment disturbances simulator.
- 2. Apply WFIRST LOWFS/C sensing and control technique to LUVOIR and HabEx concepts (FY17).
- 3. Integrate LOWFS/C into a segmented mirror testbed in the HCIT (FY18-19).



- 1. WFIRST coronagraph baselined Zernike wavefront sensor.
- 2. A LOWFS/C testbed was designed and built in the HCIT
- Testbed met WFIRST pointing requirements attenuating 14 mas jitter to < 0.5 mas rms residual in vacuum 18</li>



### **Post-Data Processing**



#### Exoplanet Exploration Program

| Description                                                                                                                             | Current Capabilities                                                                                                                                                                                        | Needed Capabilities                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Post-data processing<br>techniques to uncover faint<br>exoplanet signals from<br>residual speckle noise at the<br>focal-plane detector. | Few 100x speckle suppression has been<br>achieved by HST and by ground-based AO<br>telescopes in the NIR and in contrast<br>regimes of 10 <sup>-4</sup> to 10 <sup>-5</sup> , dominated by phase<br>errors. | A 10-fold contrast improvement in the visible<br>from 10 <sup>-9</sup> raw contrast where amplitude<br>errors are expected to be important<br>(or a demonstration of the fundamental limits<br>of post-processing) |
|                                                                                                                                         |                                                                                                                                                                                                             | Contractive convertion                                                                                                                                                                                             |



#### Possible Path to Closing Technology Gap

- 1. Develop simulated PSF library from the first set of 10% broadband HCIT data from WFIRST coronagraphs (CY16-18).
  - Will include different types of simulations (e.g. telescope rolls) with full photon noise statistics and spurious detector and IFS effects
- 2. Demonstrate algorithm by retrieving simulated planet through PSF subtraction. (CY16-18)

### Working with STScI, the WFIRST team has simulated a full observing sequence (56h):

**Recent Activities** 

 consistently modeled the expected variations of residual speckles fields

---- Raw data

Classical PSF Sub

KLIP with 4 modes

KLIP with 8 modes

Raw data Classical PSF Sub. KLIP with 4 modes KLIP with 8 modes

- applied the KLIP post-processing algorithm to predict final contrast.
- ADI is very promising in its ability to reject background speckles.

### **Starshade Technology Needs**

### Diffraction and Scattered Light Control

Lateral Formation Flying Sensing

Lateral formation sensing

### **Precision Deployable Structures**

Optical demonstration and model validation

Solar glint



Inner disk deployment





- 1. NASA APD has scheduled a gate review (KDP-A) for a Starshade Technology Project to enter formulation phase.
  - Review set for Feb 19
  - Outcome of a favorable review would be a 3-4 yr technology project whose objective would be advancing the technology status of the starshade to TRL 5.
  - Multi-institutional participation during formulation phase
  - Will work with Blackwood and Seager to develop a "science team"
- 2. Starshade working group commencing in January/February 2016.
  - Objective is to identify the optimal path to flight for a starshade mission.
  - Multi-institutional working group and participation



## **Optical Demonstration and Model Validation**



Exoplanet Exploration Program

|                                                           |                                                                                                | · · · ·                                                                                            |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Description                                               | Current Capabilities                                                                           | Needed Capabilities                                                                                |
| Experimentally validate the<br>equations that predict the | 3x10 <sup>-10</sup> contrast at 632 nm, 5 cm mask, and ~500 Fresnel #; validated optical model | Experimentally validated models of contrast to $\leq 10^{-10}$ in scaled flight-like geometry with |
| contrasts achievable with a starshade.                    | 9x10 <sup>-10</sup> contrast at white light, 58 cm mask, and 210 Fresnel #                     | Fresnel numbers ≤ 20 across a broadband<br>optical bandpass.                                       |



- NGAS completed their TDEM-12 (Glassman PI) optical demonstration in a dried lake bed in NV
  - **Reached 9x10<sup>-10</sup> at a petal edge**
  - Modelling results to purposefullyflawed shades need work.
  - Additional tests completed in Nov
- Proof of concept demonstrated using a heliostat at the McMath Solar Observatory

Credit: Northrop Grumman





| Description                                                                                   | Current Capabilities                                                                                                                                                               | Needed Capabilities                                                                                                                                               |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimentally validate the equations that predict the contrasts achievable with a starshade. | 3x10 <sup>-10</sup> contrast at 632 nm, 5 cm mask, and<br>~500 Fresnel #; validated optical model<br>9x10 <sup>-10</sup> contrast at white light, 58 cm mask,<br>and 210 Fresnel # | Experimentally validated models of contrast to $\leq 10^{-10}$ in scaled flight-like geometry with Fresnel numbers $\leq 20$ across a broadband optical bandpass. |

### Possible Next Steps to Closing Technology Gap

- Princeton TDEM demonstration (78m testbed) and modeling validation at flight-like Fresnel
   first light and completion in CY16
- NGAS and Colorado McMath Solar Observatory longer baseline demonstrations (CY16).
  - Targeting Fomalhaut disk
- Additional long baseline demonstrations welcomed; key, however, is model validation.



- NGAS completed their TDEM-12 (Glassman PI) optical demonstration in a dried lake bed in NV
  - **Reached 9x10<sup>-10</sup> at a petal edge**
  - Modelling results to purposefullyflawed shades need work.
  - Additional tests completed in Nov
- Proof of concept demonstrated using a heliostat at the McMath Solar Observatory



### **Solar Glint**



#### Exoplanet Exploration Program

| Description                                                                                                                      | Current Capabilities                                                                                                                                    | Needed Capabilities                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit edge-scattered sunlight<br>and diffracted starlight with<br>optical petal edges that also<br>handle stowed bending strain. | Machined graphite edges meet all specs<br>but edge radius (10 um); etched metal<br>edges meet all specs but in-plane shape<br>tolerance (Exo-S design). | Integrated petal optical edges (1) meet and<br>maintain precision in-plane shape<br>requirements after deployment trials and (2)<br>limit solar glint enabling 10 <sup>-10</sup> contrast at<br>petal edges. |

#### Possible Next Steps to Closing Technology Gap

- JPL will attempt to modify the chemical etching process of amorphous metal to meet the stiffness requirement (CY16)
  - will also revisit several candidate metals (including stainless steel)
  - intend on characterizing the sensitivity of edge scatter performance to dust (CY17)
- NG will identify edge materials that meet env't requirements and complete their scattered light demonstrations in CY16.
- A TDEM-12 milestone led by Kasdin (Princeton) intends to verify solar glint performance fabricating a full-scale petal after testing to all relevant environments (CY17-18)



In-process metal substrates under investigation by Casement TDEM-12.

- NG TDEM-12 (PI Casement) has identified three metal candidates in which it is advancing towards env't testing and scatter modeling.
- Chemically etched thin strips of amorphous metal showed in-plane shape error exceeding the allocated tolerance (JPL)
  - due to the redistribution of internal stresses upon the removal of material



### **Petal Deployment**



#### Exoplanet Exploration Program

| Description                                        | Current Capabilities                                                                               | Needed Capabilities                                                                                                                        |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate petals deploy<br>without edge contact. | Model simulations predict uncontrolled<br>petal unfurling produces edge contact<br>(Exo-S design). | Full-scale controlled petal deployment<br>mechanism demonstrated to secure petals<br>throughout launch and deploy with no edge<br>contact. |



#### Possible Next Steps to Closing Technology Gap

- Roccor to design and fabricate a full-scale petal unfurling testbed to demonstrate latching and petal interface. (CY16)
  - Petal spines will be full-scale (7m)
  - NGAS to review designs; possible architecture trade
- Roccor funded to upgrade the petal unfurling testbed to demonstrate controlled unfurling of full-scale petals (CY17)

**Exo-S unfurling deployment** 



NG radial boom deployment

#### **Recent Activities**

SBIR partner Roccor and JPL produce preliminary design for unfurling and petal restraint mechanisms.



### **Lateral Formation Sensing**



Exoplanet Exploration Program

| Description                                                                                                                     | Current Capabilities                                                                                                                                                                                                       | Needed Capabilities                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Demonstrate lateral formation<br>flying sensing accuracy<br>consistent with keeping<br>telescope in starshade's dark<br>shadow. | Centroid star positions to ≤ 1/100 <sup>th</sup> pixel<br>with ample flux. Simulations have shown<br>that sensing and GN&C is tractable,<br>though sensing demonstration of lateral<br>control has not yet been performed. | Demonstrate sensing lateral errors ≤ 0.30m<br>accuracy at scaled flight separations (mas<br>bearing angle).<br>Estimated centroid positions to ≤ 1/40 <sup>th</sup> pixel<br>with limited flux from out of band starlight.<br>Control algorithms demonstrated with scaled<br>lateral control errors corresponding to ≤ 1m. |  |  |

#### Possible Next Steps to Closing Technology Gap

- Cash TDEM to demonstrate a pupil plane imaging sensor in the same Nevada dry lake bed as Northrop Grumman used. (FY16-17)
- Kasdin TDEM to demonstrate a focal plane imaging sensor using same 78m testbed as with their optical performance demonstrations. (FY16-17)



Two TDEMs for conducting scaled test demonstrations for lateral sensoring were awarded to Web Cash and Jeremy Kasdin.





| Description                                                                                                                                         | Current Capabilities                                                                                                                                  | Needed Capabilities                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate that a starshade<br>can be autonomously<br>deployed to within its<br>budgeted tolerances after<br>exposure to relevant<br>environments. | Petal deployment tolerance (≤ 1 mm)<br>verified with low fidelity 12m prototype and<br>no optical shield; no environmental testing<br>(Exo-S design). | Demonstrate deployment tolerances are met<br>with flight-like, minimum half-scale inner disk,<br>with simulated petals, optical shield, and<br>interfaces to launch restraint after exposure<br>to relevant environments. |







NGAS starshade deployment concept

- 10m inner disk testbed was completed in 2014.
- 2m testbed completed for demonstrating origami shield designs in 2015.
- TDEM-14 awarded for optical shield design and integration into 10m inner disk testbed (Mark Thomson/JPL).

## Inner Disk Prototype Deployment Trial at JPL



## Optical Shield Prototype Deployment Trial at JPL





### **Inner Disk Deployment**



#### Exoplanet Exploration Program

| Demonstrate that a starshade<br>can be autonomously<br>deployed to within its<br>budgeted tolerances after<br>Detal deployment tolerance (≤ 1 mm)<br>verified with low fidelity 12m prototype and<br>no optical shield; no environmental testing | Capabilities                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| exposure to relevant (Exo-S design). to relevant environments.                                                                                                                                                                                   | ment tolerances are met<br>um half-scale inner disk,<br>, optical shield, and<br>restraint after exposure<br>ents. |



10m Inner Disk Testbed at JPL

Next Steps to Closing Technology Gap

- NGAS/JPL review of Exo-S design
- Integrate optical shield into 10m inner disk testbed (TDEM-14; FY16-17)
  - 5m optical shield testbed will allow larger prototype development (FY16)
- Verify inner disk deployment tolerances (FY17)
- Conduct env't testing (FY18)



2m Optical Shield Testbed at JPL

- 10m inner disk testbed was completed in 2014.
- 2m testbed completed for demonstrating origami shield designs in 2015.
- TDEM-14 awarded for optical shield design and integration into 10m inner disk testbed (Mark Thomson/JPL).



### **Petal Shape**



#### Exoplanet Exploration Program

| Description                                                                                                                                | Current Capabilities                                                                                                                                                                                                                | Needed Capabilities                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate a high-fidelity,<br>flight-like starshade petal<br>meets petal shape tolerances<br>after exposure to relevant<br>environments. | Manufacturing tolerance (≤ 100 µm) verified<br>with low fidelity 6m prototype and no<br>environmental tests.<br>Petal deployment tests conducted but on<br>prototype petals to demonstrate rib<br>actuation; no shape measurements. | Demonstrate a flight-like, full-scale petal (~<br>7m) fabricated to within 200 µm rms of shape<br>tolerances and maintains shape after<br>multiple deployments from stowed<br>configuration. |

#### Next Steps to Closing Technology Gap

Kasdin TDEM-12 will complete the detailed petal design, produce a flight-like, full-scale prototype with optical edges and optical shield, and test it to relevant environments. (CY17-18)

 The petal shape will be verified multiple times with deployment testing from a stowed configuration in between.



In 2015, a TDEM-12 activity led by PI Kasdin

and JPL co-I's developed a new preliminary petal design that incorporates flight-like :

- optical edges
- optical shield
- interfaces to launch restraint and deployment control mechanisms.





## **Backup Slides**

# Coronagraph Technology Gap Prioritization

| <u>Gap ID</u> | <u>Gap Title</u>                        | Impact | Urgency | <u>Trend</u> | <u>Total</u> |
|---------------|-----------------------------------------|--------|---------|--------------|--------------|
| CG-2          | Coronagraph Architecture                | 4      | 4       | 3            | 11           |
| CG-1          | Large Aperture Mirrors                  | 4      | 2       | 4            | 10           |
| CG-8          | Visible Ultra-Low Noise Detector        | 4      | 3       | 2            | 9            |
| CG-9          | NIR Ultra-Low Noise Detector            | 4      | 2       | 3            | 9            |
| CG-6          | Segment Phasing Sensing & Control       | 4      | 2       | 3            | 9            |
| CG-7          | Telescope Vibration Control             | 4      | 2       | 3            | 9            |
| CG-5          | Deformable Mirrors                      | 4      | 2       | 2            | 8            |
| CG-3          | Low-Order Wavefront Sensing and Control | 4      | 2       | 2            | 8            |
| CG-4          | Post-Data Processing                    | 4      | 2       | 2            | 8            |





| <u>Gap ID</u> | <u>Gap Title</u>                      | <u>Impact</u> | <b>Urgency</b> | <u>Trend</u> | <u>Total</u> |
|---------------|---------------------------------------|---------------|----------------|--------------|--------------|
| 6.2           | Optical Performance Demonstration and | 4             | А              | 2            | 11           |
| 3-2           | Optical Modeling                      | 4             | 4              | 5            | 11           |
| S-1           | Control Edge-Scattered Sunlight       | 4             | 4              | 3            | 11           |
| S-6           | Petal Unfurling                       | 4             | 3              | 3            | 10           |
| S-3           | Lateral Formation Flying Sensing      | 4             | 3              | 2            | 9            |
| S-5           | Inner Disk Deployment                 | 4             | 3              | 2            | 9            |
| S-4           | Petal Shape                           | 4             | 3              | 1            | 8            |





| Imnact:  | 4: Critical and key enabling technology - required to meet mission concept objectives; without                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| impact.  | this technology, applicable missions would not launch                                                                                    |
|          | 3: Highly desirable - not mission-critical, but provides major benefits in enhanced science                                              |
|          | capability, reduced critical resources need, and/or reduced mission risks; without it, missions                                          |
|          | may launch, but science or implementation would be compromised                                                                           |
|          | 2: Desirable - not required for mission success, but offers significant science or implementation                                        |
|          | benefits; if technology is available, would almost certainly be implemented in missions                                                  |
|          | 1: Minor science impact or implementation improvements; if technology is available would be                                              |
|          | considered for implementation in missions                                                                                                |
|          |                                                                                                                                          |
| Urgency: | 4: In time for the Decadal Survey (2019); not necessarily at some TRL but reduced risk by 2019                                           |
|          | 3: LD < 10 yr (< 2025)                                                                                                                   |
|          | 2: LD < 15 yr (< 2030)                                                                                                                   |
|          | 1: LD > 15 yr (> 2030)                                                                                                                   |
|          |                                                                                                                                          |
| Trend:   | 4: Very large perceived risk of not being ready in time: (a) no ongoing current efforts (b) little                                       |
|          | 2: Large perceived rick of not being ready in time: (a) others are working towards it but little                                         |
|          | results or their performance goals are very far from the pood. (b) funding unclear, or (c) time                                          |
|          | frame not clear                                                                                                                          |
|          | 2: Medium perceived risk of not being ready in time: (a) others are working towards it with                                              |
|          | encouraging results or their performance goals will fall short from the need, (b) funding may be<br>unclear, or (c) time frame not clear |
|          | 1: Small perceived risk of not being ready in time: (a) others are actively working towards it with                                      |
|          | encouraging results or their performance goals are close to need, (b) it's sufficiently funded,                                          |
|          | and (c) time frame clear and on time                                                                                                     |



### **Contrast vs Angular Separation**



