Caucci et al.

Vol. 24, No. 12/December 2007/J. Opt. Soc. Am. A B13

Application of the Hotelling and ideal observers to
detection and localization of exoplanets

Luca Caucci,"* Harrison H. Barrett,"? Nicholas Devaney,® and Jeffrey J. Rodriguez’

1Co]]ege of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
®Department of Radiology, University of Arizona, Tucson, Arizona 85724, USA
*Department of Physics, National University of Ireland, Galway, Ireland
*Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA
*Corresponding author: caucci@email.arizona.edu

Received April 12, 2007; accepted June 1, 2007;
posted June 22, 2007 (Doc. ID 82008); published September 25, 2007

The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality as-
sessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection
of planets outside of our solar system with long-exposure images obtained from ground-based or space-based
telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star,
electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the
telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of
adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to
extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the
Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver op-
erating characteristic (ROC) and localization ROC (LROC) curves. © 2007 Optical Society of America

OCIS codes: 010.1080, 110.3000, 350.1260.

1. INTRODUCTION

Science images are ultimately acquired to fulfill a particu-
lar purpose or task. How well the task can be performed
depends on the task itself (which could be a classification
or an estimation task), the device that produced the im-
age(s), and, finally, the way in which the task is per-
formed. A classification task can be carried out by human
observers (for example, a radiologist might look at radio-
graphs and classify them according to the presence of a
tumor), or we may consider computer algorithms or math-
ematical models to make a decision. In the latter case, it
is possible to define an ideal observer that, given the im-
ages produced by the imaging system and the knowledge
of their statistics, achieves the “best” performance on the
task of interest. Thus, assessment of task performance
will provide a figure of merit for the imaging system itself
and also a way to assess the quality of the images it pro-
duces for the particular task of interest. This task-based
interpretation of image quality has recently become very
popular in the medical field for the evaluation of medical
devices. Tasks of interest include the detection of anoma-
lies (such as tumors) and the estimation of clinical param-
eters. Objective assessment of image quality plays a cru-
cial role in many nonmedical applications; examples can
be found in [1]. However, little has been done so far in as-
tronomy in which, many times, the task of interest is the
detection of a weak signal buried in noise or the estima-
tion of some numerical parameters. In this paper, we
show how the concepts of image quality and signal detec-
tion can be applied to the problem of detection of extraso-
lar planets (exoplanets).

To date, more that 240 exoplanets have been discovered
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[2], most of them by indirect detection methods, such as
radial velocity or Doppler shift. However, indirect meth-
ods are not able to provide very much information about a
newly discovered exoplanet. Direct exoplanet imaging is
more attractive and far more could be learned from it. For
example, a direct imaging method could be coupled with a
spectroscopy analysis for the estimation of methane con-
tent. The presence on the planet (or in its atmosphere) of
organic substances (such as carbon dioxide), oxygen, and
liquid water or vapor will provide strong evidence of
life—as we know it—or, at least, that such a planet is
amenable to life. Many indirect methods for exoplanet de-
tection are not even able to find planets that may host
life. Indeed, some indirect methods work well only when
the planet is considerably more massive than the Earth
(for example, ten times the mass of Jupiter), making
these methods unsuited for Earth-like exoplanet hunting.
Adaptive optics (AO) [3,4] has recently made it possible
to perform ground-based imaging of exoplanets [5,6] but,
up to now, only a few planets have been discovered by di-
rect imaging. Consequently, algorithms for direct-imaging
exoplanet detection have mushroomed. Many of these al-
gorithms share a common characteristic: No analytical
way to assess their performances (with respect to a mean-
ingful and objective metric) has been investigated; there-
fore, they do not lend themselves to an image-quality
study. In this paper, we propose a strategy for planet de-
tection for which the proof of optimality among all detec-
tion methods can be provided, leading to a way to assess
image quality in AO [7]. We use the optimal-linear Hotell-
ing detector to solve two problems: simple detection at a
known location and detection with location uncertainty.
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This paper is organized as follows. Section 2 provides
the motivation for this research and emphasizes the need
for a meaningful and well-defined definition of task per-
formance. Section 3 describes the components of an AO
system and justifies the investigation of task performance
for long-exposure AO images. Section 4 reviews some key
concepts from statistical decision theory, describes the
kind of problems with which we are concerned in this pa-
per, and presents the derivations of the optimal observers
for such problems. Section 5 presents the simulation and
comparison results we obtained for the detection tasks.
Finally, Section 6 summarizes our work, presents our con-
clusions, and suggests some possible further studies.

2. WHY DO WE NEED ANOTHER
ALGORITHM?

We begin this section by giving a brief overview of the
standard practice for the detection of point objects on a
random background. After a preprocessing step that usu-
ally makes use of dark and flat-field images to obtain the
observed image from the CCD data, the mean and vari-
ance of the sky (residual) background in the image are es-
timated. Such estimation may be carried out by first
smoothing the image with a low-pass filter. The smoothed
image is then divided into tiles, and the mean and vari-
ance for each tile of the smoothed image are computed.
The sky background is then subtracted from the observed
image, and objects are detected by searching for pixels
whose intensity exceeds the sky background intensity by
a given threshold 7. Usually, the threshold is of the form
r=ko, where o2 is the sky background variance and % is
an integer between 3 and 10. Many variants of this basic
idea have been used in the past.

Although the algorithms for exoplanet detection found
in the literature are very interesting, and the papers in
which they are presented support the design decisions
with strong arguments, most of their authors do not ad-
dress an important point: Among all of the possible detec-
tion algorithms, do the ones described in those papers
maximize the probability of a correct detection for any
value of the probability of a false alarm? If yes, is there a
way to analytically assess their performance (with respect
to this criterion) and prove their optimality? Questions
like these are usually overlooked by the astronomy ex-
oplanet detection community: A formal analytical study—
such as the one in [8]—is the exception, not the rule. In-
deed, a common way to show that a new detection
algorithm outperforms a previous one is to create one or
more test images containing the object(s) that we want to
detect, run both algorithms on such data, and claim that
the new algorithm performs better because it is able to
correctly find more objects than the previous one. This ap-
proach takes no account of false alarms.

Bayesian approaches to object detection (and/or param-
eters estimation) have been proposed as well. For ex-
ample, Hobson and McLachlan [9] presented an approach
that uses Bayesian inference for detecting and character-
izing the signal from discrete objects embedded in a dif-
fuse background. This is accomplished by considering
each possible alternative H; and computing the likelihood
pr(g|H;), where g is the observed noisy data. The alterna-
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tive H; that, for a fixed g, corresponds to the highest value
for pr(g|H;) is the output of the algorithm. This approach
is optimal in the sense that it returns the alternative that
most likely has produced the observed data. A similar ap-
proach can be used for parameter estimation: If the pa-
rameter vector 6 is to be estimated, the likelihood pr(g| 6)

for different 6 is considered and the estimate 6 of § maxi-
mizes pr(g|#) as a function of . Maximum likelihood ap-
proaches have been applied in astronomy for the detec-
tion of cluster galaxies and the estimation of numerical
parameters, such as redshifts [10,11]. Algorithms like
these, however, are nonlinear and require the knowledge
of the probability density functions of the alternatives/
parameters and of the data vector g given the alternative/
parameter. Such densities might be unknown or difficult
to estimate. In [9], the authors use Markov-chain Monte
Carlo (MCMC) sampling [12,13] to evaluate integrals and
compute the values of the likelihood functions. The com-
putational requirements can, however, be very high. A
Bayesian approach has been proposed in [14] as well. In
this paper, the authors analyze the measurement and
noise statistics and devise a second method, based on the
estimation of observation time. Their observation time es-
timates are optimal in the sense that, for a fixed value of
the probability of a false positive detection, the probabil-
ity of a true detection is maximized. Detection occurs
when the signal estimate irradiance exceeds the back-
ground standard deviation by some amount. The prob-
ability of such an event is equated to a desired confidence
value and, from this condition, the optimal integration
time is computed. This can be seen as a first attempt to
design a system/algorithm that is optimized (in a given
sense) for the task of interest. The remarkable result of
[14] is that, for high background intensity, the point-
spread function (PSF) matching filter is the optimal lin-
ear detector.

The problem of exoplanet detection via direct imaging
shares a great deal with the problem of tumor detection.
In both cases, the objects that we want to detect are very
small and dim. In the case of radiology, the smaller the
tumor that can be accurately detected and localized, the
more likely it is that the patient can recover if well
treated. In astronomy, because exoplanets radiate much
less energy than their parent stars, finding them in an
image is not easy. In addition, the images we work with in
both fields are usually noisy and contain other structures
(different organs and tissues in the case of radiology,
nearby stars or other objects in the case of astronomy),
hence it seems reasonable to take advantage of tech-
niques from medical radiology to study direct exoplanet
detection. Even though such methods and techniques for
assessment of image quality and task performance in ra-
diology are general enough that they could be applied in
other areas of imaging as well, they are just beginning to
be applied in astronomy [7].

The goal of this paper is to discuss the use of receiver
operating characteristic (ROC) and localization ROC
(LROC) curves for the study of objective assessment of
image quality and task performance in AO. In particular,
ROC/LROC analysis is applied to the problem of ex-
oplanet detection. Adopting the area under the ROC/
LROC curve as a figure of merit, we devise optimal detec-
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tors and show what improvements over current detection
algorithms can be attained with them.

3. SIGNAL DETECTION WITH ADAPTIVE
OPTICS

Figure 1 shows the typical configuration of an AO tele-
scope. A distorted wavefront coming from a distant source
is reflected by the telescope’s primary and secondary mir-
rors to a deformable mirror, which attempts to reduce the
wavefront distortion due to atmospheric turbulence by
applying an appropriate phase correction. The light re-
flected by the deformable mirror is then split into two dif-
ferent pathways: Some light reaches the imaging camera,
while the remaining light is sent to a wavefront sensor.
The wavefront sensor estimates the instantaneous aber-
rations; these estimates are then sent to the wavefront re-
constructor. The wavefront reconstructor uses one or
more data sets coming from the wavefront sensor to com-
pute the appropriate control signals to be sent to the de-
formable mirror in order to compensate for atmospheric
turbulence. The deformable mirror then applies the de-
sired wavefront correction (specified by the control sig-
nals) to the incoming wavefront. This process repeats in
real-time in a closed-loop fashion. Sequences of science
images—usually in a time scale of the order of a few
minutes—are recorded. As the wavefront reconstructor
accumulates more and more wavefront estimates for dis-
tortion compensation, the signal-to-noise ratio (SNR) in
the science images increases. However, this process is not
perfect: Wavefront estimation is affected by noise in the
wavefront sensor, and the computation and application of
the phase correction takes some time (at least some milli-
seconds). Atmospheric turbulence is rapidly changing
and, because of the computational delay mentioned
above, the applied correction will not be able to perfectly
compensate and cancel the effect of the turbulence. A
more subtle problem is that atmospheric phase aberra-
tions can be mathematically described as elements of an
infinite-dimensional vector space, whereas the finiteness
of the number of control signals supplied to the deform-
able mirror implies that the vector space of phase correc-
tions is finite-dimensional. This dimension mismatch
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Fig. 1. Configuration of an adaptive optics telescope.
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makes it impossible for the deformable mirror to perfectly
match and correct every possible phase distortion. The
overall effect is that the PSF of the science images will
have a residual halo.

In [7], fourth in a series [15-17] of papers on objective
assessment of image quality, the authors derived a very
general formulation for the statistical properties of AO
images, including the effects of measurement noise, ran-
domness in the astronomical scene, and the turbulent at-
mosphere. It presented a fairly complete basic theory, but
it stopped short of being a practical tool that one could use
to assess and optimize the design of systems. A first at-
tempt to provide a practical tool and, at the same time,
overcome the heavy computational requirements for a full
implementation of the spatiotemporal detector presented
in [7] is to estimate the AO long-exposure PSF and apply
such detection techniques to the long-exposure AO image.
Considerable progress has been made in reconstructing
the long-exposure PSF from recorded control-loop data
[18], and this justifies this research on optimal-linear ex-
oplanet detection when the long-exposure PSF is known.
In addition, the quasi-static component of the PSF can be
suppressed with a technique known as angular differen-
tial imaging [19]. In angular differential imaging, se-
quences of short-exposure images with an altitude/
azimuth telescope are taken while the field derotator is
turned off. Therefore, only the field of view (not the PSF)
will rotate with time. The short-exposure images are then
rotated to compensate for field of view rotation and added
together to obtain a long-exposure image: Dim peaks due
to companion objects get smeared, and the resulting long-
exposure image represents the quasi-static component of
the PSF. This component is then subtracted from the ob-
served short-exposure images. It has been reported [19]
that this technique allows quasi-static PSF distortion to
be reduced by a factor of about 5.

4. HOTELLING AND IDEAL OBSERVERS IN
ADAPTIVE OPTICS

The goal of a classification task is to assign the object that
produced an image to one of two or more classes or hy-
potheses. A signal-detection task is a particular case of a
classification task: In a signal-detection task, we have
only two hypotheses that we call here signal absent and
signal present. We will refer to these two hypotheses as
H, and H;, respectively. Given a data vector g, the clas-
sification task performed by an observer (i.e., a binary
classifier [1]) is made by computing a numerical value ¢(g)
and comparing it to a threshold 7. If #(g) < 7, then the ob-
server will assign the object that generated g to the class
H; if ¢(g) > 7, the observer will opt for H; [1].

The threshold 7 controls the trade-offs between the
probability of correctly classifying the signal as present
and the probability of classifying the signal as present
when it is in fact absent. In signal-detection applications,
the first probability is usually called true-positive fraction
(TPF), while the second is called false-positive fraction
(FPF) [1]. The threshold 7 parameterizes a curve on the
TPF-FPF plane; such a curve is called the ROC curve.
Meaningful figures of merit for a detection task include
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the area under the ROC curve (AUC) and some detect-
ability indexes such as d, [1].

A detection task may also include a localization step: If
t(g)> 7 and the signal location is not known, the observer
will return an additional parameter that represents the
estimated location of the signal. In this case, the TPF can
be defined as the probability of correct classification of the
image as signal present and localization of the signal
within a given tolerance ¢ from the true location. A TPF-
FPF plot for a detection and localization problem is called
a LROC curve [1,20]. LROC curves can be seen as gener-
alizations of estimation ROC (EROC) curves [21].

Statistical decision theory is concerned with how a
decision-maker makes decisions and how such decisions
can be made optimal in a well-defined sense. To our
knowledge, statistical decision theory and methodology of
objective assessment of image quality are just being ap-
plied to AO imagery. In a recent theoretical study, Barrett
et al. [7] rigorously extended the theory of image-quality
assessment to temporal sequences of AO images with ran-
dom PSFs and derived general formulations and compu-
tational methods for detection and estimation tasks. The
authors analyzed the structure of the data covariance ma-
trix and showed how it can be rigorously decomposed into
three terms representing the effect of the measurement
noise (Gaussian for electronic readout noise and Poisson
in the case of photon-counting statistics), the random
PSF, and the random nature of the astronomical scene.
Because AO systems deliver sequences of images, we will
denote with G={gW, ...,g"Y)} the complete data set from
the science camera, with F={fV, ... ,f)} the sequence of
continuous-space  objects, and, finally, with P
={p®, ... ,p¥} the sequence of all continuous-space ran-
dom PSFs. Formally, the mean image, given the object se-
quence F and the sequence P of PSF's, can be written as

=(G)gp >, where the notation (...)gp r is understood as
the average over noise for fixed P and F. Likewise, G
=<(_}>P‘F is the mean image (averaged over noise and PSF

randomness) given the object sequence F and, finally, (E;r
=(G)p is the overall mean image averaged over noise,
PSFs, and object variability. The data covariance matrix
K¢ can then be written as [7]

Kg=K¥™ + I_{ESF + °G=bj, (1)
where
K& = ([G - GI[G - G"gp.p)pr)F, (2)
K2 = (G- GI[G-GDppr, (3)
Ky =(G-GIG-GI", )

in which K& is the contribution to K¢ due to the noise,
I_(ESF is the contribution due to the PSFs and, finally, K%’J
is the contribution due to the object being imaged. The de-
composition in Eq. (1) is rigorous in the sense that it does
not require any hypothesis of independence [7]. We re-
mark, however, that in typical AO applications where the
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images can be large, say, 512X 512 pixels, and a sequence
G of noisy images can contain hundreds of such images,
the size of K¢ can be of the order 107 X 107 or more. Han-
dling such huge matrices is clearly a challenge [7]. In this
paper, we avoid such difficulties by considering a prelimi-
nary simplified case. We will assume no object random-
ness (and so K%)J is the zero matrix), and we will assume
that G reduces to just a single long-exposure image g
rather than a sequence {gV, ... g} of J short-exposure
images (we will therefore denote the overall covariance
matrix Kg as Kg). Finally, the assumptions from the sec-
ond part of this section will imply that I_{ESF is diagonal
(or, at least, approximable with a diagonal matrix).

The problem we are concerned with in this paper is the
detection of a planet located at r;, in focal plane coordi-
nates. Generally speaking, a digital image is a 2-D array
of M pixel values. Such data can be arranged in a column
vector of size M X1 by reading (for example, in a raster-
scan fashion) all of the M values in the array and storing
them in a column vector. This rearrangement makes it
possible to work with images using no more than the
usual matrix operations. If we denote with g, the mean
(noise-free) image vector when the planet is not present,
and with g; x, the mean (noise-free) image vector when
the planet is present and at location r,, we can express
the signal we want to detect as s, glr —-go. Further-
more, recalling the meaning of the h§p0theses H,and H,,
we can model the noisy images under these hypotheses as

Hyg=go+n, (5)
Hl,rp:g=§0+srp+n, (6)
—
gl,r

P

where n denotes the randomly distributed zero-mean
noise vector. The mean image vectors g, and g; x, are the
images without noise; such mean vectors can be obtained
by averaging a large number of realizations of g under
the hypotheses H, and H, respectively.

We will denote with 4,,(r) the mth pixel of the raster-
scan ordering of the discretized (pixel-averaged) version
of the long-exposure PSF centered at the focal plane loca-
tion r (at which the long-exposure PSF assumes the value
1); A the postdetection intensity of the star (in electron
units, e~ per pixel); a the postdetection intensity of the
planet in e7; b,, the background intensity in e~ per pixel;
and, finally, Ufn the variance of the readout noise at the
mth detector pixel. If we denote r, the location of the star
and r;, the location of the planet, then the mth pixel of the
mean images under the two hypotheses can be written as

gO,m =Ahm(r*) + bm, (7)

g1m =Ah,(r,) + ahm(rp) +bpms (8)

where, again, the g; ,, are measured in electron units. The
noise in the image g is assumed to be readout Gaussian
noise from the detector and Poisson photon noise from the
star (plus, if present, the planet) and background.

Many authors have studied the statistical properties of
ground-based AO-corrected images [22-26], and it was
noted that ground-based AO observations are limited by
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speckle noise, which is particularly problematic in ex-
oplanet detection [22]. Indeed, one component of speckle
noise, the lowest-order term leading to “speckle pinning”
[23,24,27], can create bright speckles at specific locations
that could look like exoplanets, leading to false positives.
Thus, speckle noise, if not accounted for, reduces the per-
formance of exoplanet detection at or near the diffraction
limit. Many techniques are available to reduce speckle
noise and increase the contrast. Simultaneous differential
imaging (SDI) is a technique that can be used to suppress
or reduce speckle noise. In SDI, pairs of images are taken
simultaneously in two different and adjacent narrow
bands for which the companion planet is expected to be
very dim or absent in one and only one of such narrow
bands. The speckle pattern will be the same in both im-
ages, but the contrast between a star and its companion
planet (if present) will not be the same for the two bands.
In such a case, subtracting one (scaled) image from the
other will reduce the speckle while almost preserving the
intensity of the science object (for example, a planet)
present in the original images [28-32].

In this paper, we are concerned with single long-
exposure images for which additional assumptions make
it possible to derive an analytical expression for Kg. In
some applications, it could be reasonable to assume that
the PSF is nonrandom and known by the observer. This is
the case of space telescopes (such as the Hubble Space
Telescope) or when the long-exposure PSF is recon-
structed from control loop data [18]. For these cases, we
can assume that the actual PSF is known. Another impor-
tant case is the one in which speckle noise has been re-
moved or reduced by applying one of the techniques de-
scribed above.

Let g; ,, denote the mth component of the vector g;. We
note that the g; ,, are measured in electrons (e”), and we
may thus assume g; ,,>1 for all m € {1, ... ,M}. Therefore,
by dint of the central limit theorem, the probability den-
sity functions under the two hypotheses [33] are

1 1/2
pr(g|Ho) = [m}

1
Xexp{- Q(g -80)"K;'(g - §o)} ; )

1 1/2
pr(g|H;,r,) = {m}

1
XeXp|:— Q(g - gO - Srp)TKél(g - §0 - Srp):| 5
(10)

where K, is the covariance matrix of the data vector g.
The matrix Kg is assumed to be the same under both hy-
potheses. This assumption is acceptable provided that the
signal s, is very weak compared to g,. In a general case
and if a spequence of short-exposure images is used, the co-
variance matrix K, cannot be written analytically [7], and
simulation of the whole AO system may be a possible way
to estimate K.
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For the case of astronomy, the sky background can be
estimated either from an image (or sequence of images) of
a source-free field or by assuming that it is spatially con-
stant and by applying a median filter to the actual image
of the object. We will refer to this case as background
known exactly (BKE). The signal can be assumed known
in brightness and location for the pure detection problem
(signal known exactly, or SKE) and only known in bright-
ness for the detection and localization problem. If the
brightness of the signal is not known, we will still talk
about SKE because, as evident throughout the discussion,
the optimality of the observers analyzed here does not de-
pend on the value of the brightness of the signal. As an
alternative, we can consider a hybrid detection and esti-
mation task [1] (the brightness of the signal is the value
being estimated) for which we will obtain the same opti-
mal observers described here. Finally, as we noted, the
PSF can be assumed known [18] for the long-exposure im-
age, and we call this case PSF known exactly (PKE).

With these assumptions and the exact knowledge of the
PSF, the matrix K, is diagonal, and its (m,m’)-th element
can be written as

[Kg]m,m’ = [Ahm(rﬁ) + bm + O-rzn](sm,m” (11)

where &, ,,» is the Kronecker delta function. This expres-
sion for K, ignores the small contribution to the covari-
ance matrix due to the Poisson photon noise from the
planet. We remark that the presence of the uncorrelated
noise makes the matrix K, invertible (because Ky is diag-
onal and [Kg],, ,, >0 for all m). If we substitute Egs. (9)
and (10) into the general expression of the likelihood ratio
[1] and take the logarithm (a strictly increasing function)
of A(g|rp), we obtain the log-likelihood ratio [1]

Mglry) = In[A(g[ry)] (12)

1
=§(g - EO)TKQI(g -8o)

1
— -1 —
- E(g_go_srp)TKg (8-8o-sr) (13)

Note that the matrix K is symmetric (because it is a co-
variance matrix) and so is its inverse K;. Expanding the
matrix products in Eq. (13) and simplifying, we can re-
write the log-likelihood ratio A(g|r}) as

1
-1 - -1 T -1 T -1
)\(g‘rp) =- 5[_ gTKg Srp + gOTKg Srp - serg g+ serg 8o

+ stK;lsEp] (14)

1
T ye-1= T -1 T -1.T
=— E[ZSerg 20— 2serg g+ serg s,p]. (15)

For a fixed r, and g, (as in the SKE case), the first and
third terms that appear in Eq. (15) between brackets do
not vary with g; hence, they can be included in the con-
stant against which )\(g|rp) will be compared. Therefore,
the expression for the logarithm of the likelihood ratio
when the densities are as in Egs. (9) and (10) can be re-
written as
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Mglry) = tya(glr,) = w'g, (16)
where
w= K;ls,rp (17)

is called a template vector [1]. The expression for
tHot(g|rp) in Eq. (16), which requires the knowledge of the
mean vectors and covariance matrix under the two hy-
potheses, is the so-called Hotelling observer [1,7,15,34,35]
and is a linear function of g. As pointed out in [36], the
Hotelling observer is still analytically tractable in realis-
tic cases (for example, when the background can be de-
scribed by a stationary random process), whereas comput-
ing the likelihood ratio in practical cases is, in general, a
difficult problem. The derivation above shows that, if the
data are normally distributed, the Hotelling observer is
equivalent to the likelihood ratio, in the sense that they
differ by an additive or positive multiplicative constant.
Taking into account the particular structure of the matrix
K, [see Eq. (11)] and observing that the components of Sr,
are of the form ah,,(ry), we obtain

M M

ah,,(ry)
tot(gIT,) = m= e
Hot(E[Tp) mzzlwmg ,ElAhm(r*)+bm+o%1g

(18)

The expression in Eq. (18) is ideal in the SKE/BKE/PKE
cases when the location r}, of the planet is known. This ex-
pression shows that the knowledge of the exact value of a
is not required because such a scaling factor can be ab-
sorbed into the threshold against which ty.(g|r,) will be
compared.

If the location of the planet is unknown, we can define a
set T of test locations and introduce scanning observers.
An observer can then be defined by introducing the costs
C;; of opting for the ith hypothesis when in fact the jth
hypothesis is true. Actually, for detection with localiza-
tion, the costs depend—in general—on the values of the
true and estimated planet locations. An optimal detector
can be defined as the one that minimizes the expected
cost associated to the decision. If the expected cost is to be
minimized, the optimal observer takes the form [21,37]

pI‘(g|H1,I‘p)
A(g) =max A(glr,) =max —————

; (19)
rpET l‘pET pr(g|HO)

which is called the generalized likelihood ratio [1]. If the
observer concludes that a planet is present in the image,

its estimated location 1, is computed as

I, = arg max A(g|r,). (20)
rpeT

We still assume that the densities pr(g|H;) and
pr(g|H,,r,) are as defined in Egs. (9) and (10), respec-
tively. Repeating the same process that led to Eq. (18), we
can obtain expressions for the optimal observer and the
estimated planet location when r is unknown. Substitut-
ing Egs. (9) and (10) into Eq. (19) and taking the loga-

rithm, we obtain

Mg) =1In[A(g)] (21)
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1
=max| —~(g - EO)TK;(g -2o)
rpeT 2

1 = Tye-1 —
- 5(3 —8o-s) Ky (8-8Bo-s;) |- (22)
As before, the fact that K, is an invertible covariance ma-
trix allows us to rewrite \(g) as

Ng)g = max[——( gTK Se, +g0K Se, —s! K g
r eT

+s, Kg'Bo+ stthlst)} (23)

_max[——(Zs K, g, - 2sT Kgg+s KlsT)}
ryeT

(24)

This time, however, the quantities s Kg g, and s K
vary as r,, is varied over T; they cannot be 1gn0red be-
cause that will change the location ¥, of the maximum.
The quantity that appears in Eq. (24) in square brackets
is linear (or, more appropriately, affine) in g; therefore,
\(g) is the expression of the scanning Hotelling observer
we were seeking. Again, the particular structure of the co-
variance matrix Ky makes it possible to obtain an expres-
sion for the scanning Hotelling observer ty,(g) similar to
Eq. (18):

ah,,(ry)
t
Hon(E) = ’rn?’r‘mzl Ay (r)+ by + 0

1
X [gm —é_’o,m - Eahm(rp):| > (25)
also,
M

Fp=arg f’?’imzl Ay (r,) + by, + 02,

ahy(ry)

1

X |:gm _go,m - Eahm(rp):| . (26)

5. SIMULATION RESULTS

In this section, we report some simulation results for the
detection at a known location and detection with location
uncertainty. We adopt the area under the ROC/LROC
curve as a figure of merit for performance assessment.
Tests involve both simulated and real data.

A. ROC Curves for Simulated Data

In this test, we consider a detection problem for which the
location of the planet (if present) is known. We use simu-
lated data and assume that the atmospheric turbulence
has been completely and perfectly corrected. This means
that the mean image of the star (before sampling by the
detector array) is an Airy disk. The location of the first
zero of the Airy disk depends on the parameters (such as
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wavelength, size of the aperture, focal length of the tele-
scope, etc.) of the simulation. The images we simulated
were of size 255 X 255 pixels. The Airy disk generated by
the star was located at the center of the images, and its
first zero was about 7.78 pixels away from the center of
the image [see Fig. 2(a)]. The intensity (in electrons e~ per
detector pixel) of the star was set in such a way that the
brightness of the central pixel in Fig. 2(a) is A=107e".
The constant sky background b,,=10 e~ was then added to
the image. We simulated a mean image containing a
planet by adding to the image g, of the star plus back-
ground a copy of the same image but scaled and shifted.
In doing so, we assumed that the intensity of the pixels
outside the region of support of the image was zero. The
amount we shifted the image depended upon where we
wanted the planet to be located. For this test, we assumed
that the planet was 30 pixels to the right and 30 pixels
down from the star. The shifted image was then scaled in
such a way that the intensity of its brightest pixel was
equal to the desired planet intensity a=10 e~. The image
of the planet was then added to the image g;; the result-
ing image g; is shown in Fig. 2(b).

The detector readout noise variance was o2 =100 for all
me{l,...,M}. We simulated 10,000 noisy images of the
star without the planet and 10,000 noisy images with the
planet present. In this test—and in those that follow—the
photon noise for any mth pixel of either g, or g; followed
a Poisson distribution with parameter g ,, or g; ,,,, respec-
tively. For each noisy image g, we computed ¢p,(g) and
stored the values in the 10,000 X 1 vector t, (for the im-
ages where the planet was absent) and in t; (for the im-
ages where the planet was present). By comparing the el-
ements ¢, ; and Z;; to a threshold 7, the FPF and TPF as
functions of 7 were computed as

[{i such that ¢y; > 7, i=1,...,10,000}|

FPF(7) = ,
10,000
(27)
[{i such that ¢,; > 7, i=1,...,10,000}|
TPF(7) = ,
10,000
(28)

where the notation |S| denotes the cardinality (number of
members) of set S. The FPF(7) and TPF(7) were then plot-
ted as an ROC curve.

For this first test, we decided to compare the Hotelling
observer with another linear observer. Because we are as-
suming that the PSF, the background, and the location r,
of the star are known, we may consider an observer that
simply subtracts off the background and the image of the
star and does pixel-based thresholding on the resulting
image. More formally, if £ is an odd integer number and
the test location is r, (in focal plane coordinates), we can
define the set Mr,,k) C{1,...,M} that contains the pixel
indices m of the kX% square neighborhood of the pixel
that corresponds to r, in the image g. Having defined
Mry,k), we can introduce the background-and-PSF-
subtraction observer as follows:
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(a) (b)

Fig. 2. Log-scale simulation of (a) image g, of the star and (b)
image g, of the star and the planet. The intensity of the planet
was set to a=10%e~ only in this figure and to make the planet
location visible.

> [gm-bm-Ah,x)]. (29

me _N'(rp,k)

k
t;u)b(g‘rp) =

As we commented in Section 2, this way to operate—
which gives rise to an affine observer—is one of the first
steps for many state-of-the-art algorithms for point-
source detection. Such algorithms then apply heuristic
strategies which, to the authors’ knowledge, have not
been analyzed in ROC terms. We decided to compare the
Hotelling observer against the background-and-PSF-
subtraction observer defined in Eq. (29) because the latter
embodies the general idea on which many detection meth-
ods used today are based. The notation used in Eq. (29)
underlines the fact that the background-and-PSF-
subtraction observer requires the additional parameter 2
and, as we shall see later, the performance of such an ob-
server is greatly influenced by the value of 2 (we note,
however, that in a practical case, an appropriate value of
k can be estimated from assumptions on the relative size
of the planet to the star, the apparent separation at which
we are looking, and so on). More elaborate state-of-the-art
algorithms for point-source detection may require dozens
of parameters, which represents a major practical draw-
back of such algorithms: Detection performance depends
on such parameters, and it may not always be easy to se-
lect the most appropriate values for a given image.

The Hotelling observer defined in Eq. (16) and the ob-
server defined in Eq. (29) were run on the noisy images
generated from g, [shown in Fig. 2(a)] and from g,
[shown in Fig. 2(b)], and the corresponding values ¢, ; and
t1, for both observers were collected. From these values,
the detectability d4 can be estimated as follows [1]:

(10 = (to,0)i

dy = : (30)

where (...); denotes ensemble average over the index i,
and UtzoL' and o-tzli are the variances of the ¢ ;s and the ¢, s,
respectively. The detectability can also be expressed in
terms of the AUC as [1]

dPV0 =2 erf (2 AUC - 1), (31)

where erf! is the inverse of the error function erf(x)
=27 V2%t dt.
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Table 1. Comparison between #g,(g|rp) and
t(s'l"‘l),o(g|rp) for Simulated Data and Known r,

Test Statistic AUC dlioty dpvo
tralg|Tp) 0.894310 1.765742 1.767459
[ k=1 0.557286 0.203139 0.203775
k=3 0.657921 0.574617 0.575298
k=5 0.739889 0.913945 0.909342
() (gir,) k=17 0.761343 1.099416 1.098470
k=9 0.774432 1.070906 1.065644
k=11 0.747979 0.945965 0.944895
k=13 0.719856 0.824326 0.823657
k=15 0.697693 0.732458 0.732248

1 4

fHot(g | 1p)

8
~2
w
|

s
s
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=
w

0 1/3 2/3
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Fig. 3. (Color online) ROC curves for the simulated data.

Table 1 shows the values of the AUC, dgo’tl), and dAE&AUC)
for the test statistics ¢y (g|r,) and &) (glry) as k is

changed. Based on the values reported isrllleable 1, we se-
lected the values £=7 and k=1 for the ROC curves re-
ported in Fig. 3. The case k=1 is the single-pixel version
of the background-and-PSF-subtraction observer. In this
test, the ratio A/a was 108; if this ratio increases, we
would obtain smaller values for the AUCs for the different
methods, but their rank ordering should be the same. We
also note that, for any test statistic, the values of df:o’tl)
and dgAUc) are very close to each other. That was ex-
pected, as they would be the same for normally distrib-
uted data [1].

B. LROC Curves for Simulated Data

In this test, we consider the performance of the Hotelling
observer for detection with localization. We used again
the image shown in Fig. 2(a) as the image of the star, and
we set A=107e~. We simulated 100 planets located as
shown in Fig. 4(a). The intensity of each planet was a
=20 e". The background intensity and readout noise stan-
dard deviation were set to b,,=100e”~ and o,,=10e", re-
spectively.
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(a) (b)

Fig. 4. Images used for the simulated data case and unknown
r,: (a) locations of the planets for the test with the simulated im-
age (Airy disk) and (b) test locations.

For each location, we simulated 100 noisy images
where the planet was present at the desired random loca-
tion and another 100 noisy images in which the planet
was absent. The noisy images were generated in the same
way as before. We used both the scanning Hotelling ob-
server [see Eqgs. (25) and (26)] and a scanning version of
the background-and-PSF-subtraction observer

t¥h(g=max >, [g,-b,-Ah,r)], (32

rpelm e Ny k)

Fo=argmax >, [g,-b,-Ah,x)].  (33)

el m e Mrp k)

We set k=7 and k=1 for the background-and-PSF-
subtraction scanning observer defined above. The set T of
test locations is shown in Fig. 4(b): For each row or col-
umn, every other pixel location within a ring was in 7.
This means that the tolerance ¢ for the planet location we
must use when we compute the TPF must be at least \5
in pixel units. In our simulation, we set ¢=1.45 pixel units
to avoid biased results due to numerical approximation.

—
L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

=
w
i

tHot(g)

=
w

Probability of detection and correct localization

i{o(g)

(1)
L . ] tsub(g)
0 1/3 2/3 1
False alarm rate

Fig. 5. (Color online) LROC curves for simulated data (A
=10"e", a=20e", b,,=100e", 0,,=10e").
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Table 2. Comparison between #y,:(g) and tgfl)b(g) for
Simulated Data and Unknown r

P
Test Statistic ALROC
t110(8) 0.480074
k=1 0.000667
(k)
Loub8) { k=17 0.160270

For each observer, we obtained 100 LROC curves—one for
each true planet location shown in Fig. 4(a). These LROC
curves were then averaged to obtain the mean LROC
curve for any of the observers considered here. The mean
LROC curves for the Hotelling scanning observer and the
background-and-PSF-subtraction scanning observer are
shown in Fig. 5, and the corresponding areas under the
LROC curve (ALROC) are listed in Table 2. The LROC
curve for the background-and-PSF-subtraction scanning
observer when k=1 shows that, for this observer, the
probability of detection and correct localization is very
close to 0 at any false alarm rate (indeed, the LROC curve

for t(sfl)b(g) almost always overlaps the horizontal axis).

C. LROC Curves for Real Data

For this test, we used a real image of the star GJ 450. The
image was generated by averaging 380 0.3596 s short-
exposure images of GJ 450 taken in the L’ band (central
wavelength N=3.809 um; bandwidth AAN=0.623 um). In
order to reduce the background and subtract glints and
other artifacts due to the telescope and/or the dome, the
short-exposure images were obtained in nodded pairs.
Moving the telescope periodically (nodding) and subtract-
ing the images in each pair reduced the sky background
in the short-exposure images at the expense of doubling
the variance of the pixel intensities. The images were
taken on the night of April 11, 2006 with the Clio 3—5 um
planet-finding AO camera [38] installed on the 6.5 m Mul-
tiple Mirror Telescope (MMT) [39] at the University of
Arizona. It was reported [40] that the Strehl ratio for
the MMT AO system can be as high as 80% in the L’
band. The pixel scale for these images was
0.048574+0.000090 arcsec/pixel. The apparent magni-
tude (in the L’ band) of GJ 450 was determined from the
raw counts using photometric calibration parameters and
ranged from 5.27 to 5.29. Important parameters of the de-
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tector are as follows: approximate well depth 3.3 X 106 e™,
readout noise standard deviation 700 e~, gain 87.6 e /DN
(where DN stands for digital number), and linearity 1%.
The background intensity was estimated from a set of 254
images of the same star with an exposure time of
2.0596 s. This longer exposure time resulted in the detec-
tor elements at the star location being always saturated.
The long-exposure background was 16390 DN, which cor-
responds to about 250680 e~ for the averaged image. This
averaged image is the long-exposure image from which
we obtained the image used in this test.

The central 141X 141 pixel area [see Fig. 6(a)] of the
original averaged 500 X 500 pixel image was used in this
study; this was the image g, for the tests. We decided to
use the central 141X 141 pixel area of the original image
to leave out of the field of view the artifacts due to nod-
ding. The residual background was estimated by averag-
ing the intensities of pixels more than 40 pixels away
from the center of the star. This residual background was
subtracted from the image before further processing: The
resulting image is assumed to be the long-exposure re-
sidual halo. The image of each planet was simulated by
scaling and shifting a copy of the image g, (padded with
zeros outside its support region) and adding it to g, to ob-
tain g;. The intensity of the star was A=3066000e¢",
while the intensity of the planet was ¢ =1533 e~. The mag-
nitude in the L’ band of the planet was about 13.53, while
the magnitude of the star was about 5.28.

We simulated 200 planet locations distributed as
shown in Fig. 6(b). Each of these planet locations had in-
teger pixel coordinates. For each location, we simulated
100 noisy images where the planet was present at the de-
sired random location and another 100 noisy images in
which the planet was absent. We ran the scanning Hotell-
ing observer [see Eqgs. (25) and (26)] and the scanning ver-
sion of the background-and-PSF-subtraction observer [see
Egs. (32) and (33)] on these images. This time, we decided
to include in our tests one of the most commonly used al-
gorithms for point-source detection. We opted for
SEXTRACTOR [41,42], version 2.5.0. To the authors’ knowl-
edge, an ROC performance analysis of SEXTRACTOR has
not been performed yet. We decided to use SEXTRACTOR
because of its wide use for point-source detection, astrom-
etry, and photometry. Implementations of this algorithm
on different architectures have been developed, which has

(a)

Fig. 6.
the planets, (c) test locations.

(b)

(c)

Images used for the real data case and unknown r;: (a) real image g, of the star (plotted on logarithmic scale), (b) locations of
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Table 3. SEXTRACTOR Parameters

Parameter Value

CATALOG_TYPE ASCIT
DETECT_MINAREA 1
THRESH_TYPE ABSOLUTE
FILTER_NAME gauss_5.0 _9X 9.conv

DEBLEND_NTHRESH 64
DEBLEND_MINCONT 0.00001
CLEAN N
SATUR_LEVEL 40000
BACK_FILTERSIZE 10

VERBOSE_TYPE QUIET

contributed to its popularity (see, for example, [43—49]).
SEXTRACTOR is able to perform deblending of overlapping
extended objects and can use a neural network to perform
classification. Therefore, if correctly configured, SEXTRAC-
TOR should perform well on separating and classifying one
or more planets orbiting a star. SEXTRACTOR returns a list
of objects it found in the image along with some informa-
tion for each object. Every time SEXTRACTOR found ex-
actly one object in the image, we assumed that no planet
was found in the image. This is because the star is very
bright, and SEXTRACTOR was always able to find and lo-
cate it. On the other hand, if SEXTRACTOR returned a list
of two or more objects, we assumed that a planet was
found, and its location was that of the second brightest
object SEXTRACTOR found. Configuration parameters
(stored in a file) are required for running SEXTRACTOR. We
started with the default parameters for version 2.5.0 and
changed them to try to obtain the best performance with
respect to the area under the LROC curve. The values of
the parameters that differ from the default are reported
in Table 3. The parameters “DETECT_THRESH” and “ANALY-
SIS_THRESH” were changed to obtain the LROC curves.
Despite our thorough parameter space search, SEXTRAC-

T e m e \
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+

SEXTRACTOR

\'—‘
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Probability of detection and correct localization
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0 1/3 2/3 1

False alarm rate

Fig. 7. (Color online) LROC curves for real data (A
=3,066,000 e~, a=1533 e~ b,,=250,680 ¢~, 0,,=700 ).
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Table 4. Comparison between #y,(g), tgfl},(g), and
SEXTRACTOR for Real Data and Unknown r

P

Test Statistic/Algorithm ALROC

trot(8) 0.711847
= 0.037027

ol {k 1

un®) k=5 0.501799

SEXTRACTOR 0.248950

TOR seemed to perform poorly on the task of interest.

We set k=5 and k=1 for the background-and-PSF-
subtraction scanning observer. The set T' contained 1984
test locations distributed as shown in Fig. 6(c). For this
simulation, we set the localization tolerance to £=1.45
pixel units. For each observer, we obtained 200 LROC
curves—one for each true planet location shown in Fig.
6(b). These LROC curves were then averaged to obtain
the mean LROC curve for any of the observers considered
here. The mean LROC curves for the Hotelling scanning
observer, the background-and-PSF-subtraction scanning
observer, and SEXTRACTOR are shown in Fig. 7. The corre-
sponding values of the ALROC are listed in Table 4. We
emphasize the fact that, for this image, the Hotelling ob-
server markedly outperformed the other methods; in par-
ticular, SEXTRACTOR did not perform well, even if the
planets we simulated had an apparent magnitude of
about 13.53. If the apparent magnitude of the planet in-
creases (i.e., the planet gets dimmer), the values of the
ALROC decrease, but their rank ordering would still be
the same, showing that the Hotelling observer still out-
performs the other methods.

6. SUMMARY AND CONCLUSIONS

In this paper, we addressed the problem of objective as-
sessment of image quality in AO, and we applied statisti-
cal decision theory to the problem of point detection in as-
tronomy. Starting from the optimal (with respect to the
area under the ROC/LROC curves) observers, we rigor-
ously derived the Hotelling observers for both detection at
a known location and detection with location uncertainty.
For Gaussian noise, these observers are also optimal and
are linear (or affine) functions of the data. We applied the
Hotelling observers to long-exposure AO images for which
we assumed that the atmospheric distortions were com-
pletely corrected by the AO system. Our derivations of the
Hotelling observers from the optimal ones used the fact
that, for large parameters, Poisson distributions can be
approximated with Gaussian distributions. For this rea-
son, the Hotelling observers derived here are optimal. A
rigorous approach for assessment of image quality in AO
stems from the application of these optimal observers to
the problem of exoplanet detection.

We compared the Hotelling observers with other ob-
servers and algorithms, including one widely used in as-
tronomy for point detection and photometry. Our tests,
which we carried out on both simulated and real data,
corroborate the theoretical superiority (with respect to
the area under the ROC/LROC curves) of the Hotelling
observers over the other methods. The promising results
we obtained suggest that a similar approach could be
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used to derive optimal estimators, such as the generalized
Wiener estimator, for the estimation of flux in different
wavelength ranges, or physical properties such as tem-
perature, age, or mass. In turn, this will lead to a method
for the assessment of image quality and task performance
for estimation tasks.

The Hotelling observer can be applied to sequences of
short-exposure AO images as well. Spatiotemporal infor-
mation about the statistics of the random PSFs and ran-
dom objects can be incorporated in the Hotelling observer
as additional terms in the expression for the data covari-
ance matrix. We commented that, for a sequence of AO
images, the data covariance matrix can be written rigor-
ously as the sum of three terms, referred to as the noise,
PSF, and object terms. The data covariance matrix will no
longer be diagonal, and the number of elements in it will
increase by the square of the number of short-exposure
images in each sequence. This will require efficient algo-
rithms for the computation of the Hotelling test statistics.
How well the Hotelling observer would perform in the
case of short-exposure AO images is the topic of a future
study.

Finally, we note that these observers are not limited to
the case of AO systems but can also be applied to
diffraction-limited images obtained from space.
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