Stochastic Descriptions
of Objects and Images

There are many random, unpredictable physical effects that influence the structure
of images. The inherent randomness that occurs in photoelectric detection and the
noise limits imposed by basic thermodynamics inevitably make images noisy or
stochastic (Greek stochos, aim, guess, chance). Additional randomness can arise
from a variety of mechanisms in real image detectors. A full description of imaging
systems requires analysis of all of these processes. Moreover, any imaging system
will be used for a variety of objects, and the randomness of the objects themselves
must be taken into account for many purposes.

The natural stochastic description for a digital image is as a finite-dimensional
random vector, where each component corresponds to the gray value of a single
pixel or to an individual measurement. Objects, on the other hand, are more accu-
rately described as functions of continuous spatial or temporal variables (hence as
vectors in an infinite-dimensional vector space); when these functions are stochastic
in nature, they are called random processes. In either case, a stochastic model is
at least a partial description of the statistics of the random vector or process.

Stochastic models have many uses in image science. They are needed for com-
puting simple statistical descriptors such as moments and autocorrelation functions;
they allow realistic computer simulation of typical images, and they provide the
framework for pattern recognition, image analysis and data compression. In image
reconstruction, it is useful to incorporate prior information about the object, and
this information is often statistical in nature. Furthermore, as we shall see in detail
in Chap. 14, objective assessment of image quality necessarily requires knowledge of
the statistical properties of images, and these in turn are sensitive to the statistical
properties of the objects being imaged.

It is our objective in this chapter to lay the groundwork for discussing all
of these manifestations of randomness. As a starting point, we assume that the
reader has a good grasp of the basic concepts of probability and random variables
as surveyed in App. C. In Sec. 8.1 we discuss multivariate probability and vector
random variables in general terms, though without reference to specific probability
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laws. Random processes are treated in similar generality in Sec. 8.2. In Sec. 8.3
we discuss an important class of specific probability laws, the Gaussian or normal
distributions, as applied to random vectors and random processes. In Sec. 8.4, we
introduce a few of the many stochastic models that have been used for random
objects, and in Sec. 8.5 we extend the discussion to images (as opposed to objects).

A notable omission in this chapter is any discussion of the Poisson distribu-
tion, which plays a crucial role in stochastic modeling of many imaging systems;
that omission will be remedied in Chap. 11.

The assistance of Robert F. Wagner in formulating and writing this chapter is
gratefully acknowledged.

8.1 RANDOM VECTORS

In Sec. C.2.1 of App. C, a random variable was defined as a function that maps
the sample space S of some experiment onto the set of real numbers. That is, each
experimental outcome ¢ in S is associated with a real scalar g(¢). To generalize
this idea to a random vector, we need only consider a vector-valued function g(¢).

For example, suppose we want to measure the irradiance of a light beam at
some location. We can insert an appropriate photodetector at that location, and
the detector output is a scalar random variable. If the beam consists of white light,
however, we might want to know the irradiance in each of three color bands. In
that case we can use three photodetectors and an arrangement of beamsplitters
and filters so that each measurement yields three scalars, which we can regard as
components of a three-dimensional (3D) random vector.

Repeated scalar measurements can also be arranged as a vector. If we measure
the irradiance at some location K times with a single photodetector, it is often useful
to think of the result as a K-dimensional (KD) random vector. Alternatively, we
might be interested in the spatial distribution of light in some image plane. We
can use an array of M photodetectors and measure the irradiance at M different
locations simultaneously, regarding the result as an MD random vector.

Finally, complex scalar random variables can be regarded as 2D vectors. If we
measure the amplitude A and phase ¢ of an electromagnetic wave received on an
antenna, these quantities can be regarded as two components of a vector. We can
also use A and ¢ to compute the real and imaginary parts of a complex number
g = ¢’ +ig”, and the components ¢’ and ¢” are naturally depicted as Cartesian
coordinates of a random vector in the complex plane. Equivalently, we can think
of g as a complex random scalar if that is convenient. If we measure M complex
numbers, we can display the results as either a vector with M complex components
or one with 2M real components.

It is the goal of this section to establish notation and procedures for dealing
with all of these manifestations of random vectors.

8.1.1 Basic concepts

A real M'D random vector, denoted g, can be formed from any collection of M real
scalar random variables {g,,,m = 1,..., M}. For definiteness, the elements will be
arranged as a column, so g is a column vector or M x 1 matrix.
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An MD complex random vector g has components g,, = g, + igl,. It can be
represented by the M x 1 column vector of complex random values (g1, g2, -, gar) 7,
or as the 2M x 1 column vector (g}, g5, -, ghs> 915 95, -, g%;)T. Hence it is equiva-
lent to think of an MD vector of complex numbers as residing in either CM or R?M.
Therefore, the treatment in this chapter is often given in terms of real random vec-
tors, with the understanding that the complex case can be obtained by doubling
the number of components in the random vector to include both real and imaginary
parts as separate elements.

The probability law for a random vector is nothing more than the multivariate
probability law for all of its components. Like any other random variable, each
component of a random vector is either discrete-valued or continuous-valued. If
each component can take on only a finite set of values, or at most a countably
infinite set, then we refer to the random vector as discrete-valued. The probability
law of a discrete-valued random variable specifies the probability associated with all
possible combinations of values for all components. If all of the components of an
MD random vector g are continuous-valued random variables, the full probability
law is a multivariate probability density function (PDF) pr(g¢1, g2, ..., gar)-

The cumulative distribution function for a random vector is defined analo-
gously to that of a scalar random variable [¢f. (C.26)]:

F(c)=Pr(g1 <c1,92 < ¢,y gm < Cur) (8.1)

where c is a vector with components {c;}.

If g is a continuous-valued random vector, F(c) is a continuous function of
each ¢;. Then, in a generalization of (C.29), the PDF on g can be defined in terms
of partial derivatives of F(g):

pr(g) = O"F(g)

= " 8.2
091092 - - - Ogmr ( )

If we integrate (8.2) we retrieve the cumulative distribution function:

g1 , g2 , am , ,
F(g)=/ dgl/ d92"'/ dgyr pr(g') - (8.3)

o0

A more compact vector notation for (8.3) is

rg - [ My pre). (8.4)

The corresponding expression for a discrete-valued random vector would in-
volve multiple sums in place of the continuous integrals in (8.4), one for each of the
components of g.

Marginal probability densities We are often interested in the statistical behavior of
a subset of the components of a random vector regardless of the behavior of the
others. The statistical description of a single component g,, of the random vector
g is called the marginal probability density function on g,,. To determine the
marginal probability density of g,,, we integrate the joint density of g over all other
components:

pr(gm) = /OO dgy - - /OO dgm—l/oo dgmt1 - /OO dgnr pr(g) - (8.5)

— 00 — 00 — 00 — 00
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We can also determine the marginal density of the (M — 1)-dimensional subvector
g = (91,92, -, gm—1)", which is given by

i) - [ " dgas pr(g) (8.6)

— 00

Equation (8.5) gives the marginal density of one component of the random vector
g; (8.6) gives the marginal density of the random vector g’ formed from all but one
component of the random vector g. The marginal density of any other subset of the
components of g is similarly obtained by integrating over all variables not included
in the subset.

A simple geometric construction can be used to visualize computation of a
marginal. If we compute pr(zg) by integrating pr(zg,y) over y, we can write that
integral as

pr(zg) = / d:v/ dy pr(z,y) d(z — x0) . (8.7)

The delta function is nonzero on a line parallel to the y-axis, and only values of
pr(z,y) along that line contribute to the integral. The PDF of z( is essentially a
1D projection of the 2D joint PDF on (z,y).

Conditional probability densities All of the relations given in Sec. C.4 for joint and
conditional probabilities and densities hold for random vectors with minor nota-
tional changes. For example, given two random vectors f and g, Bayes’ rule [cf.
(C.17)] becomes

pr(flg) pr(g)
pr(f)
Two random vectors f and g are statistically independent if the value of one

of them has no influence on the other, that is, pr(f|g) = pr(f). When two random
vectors are independent, their joint PDF factors:

pr(g|f) = (8.8)

pr(f,g) = pr(g) pr(f) . (8.9)

It can be shown that the cumulative distribution function of two independent ran-
dom vectors also factors.

8.1.2 Expectations

Discrete-valued random vectors Expectation values of discrete-valued random vec-
tors are defined by summing over the possible combinations of the components
weighted by the corresponding probabilities. Consider, for example, the MD vec-
tor g, where each component g,, can take on any of J values z;, j = 1,...,J. By
extension of the discussion in Sec. C.4, the expectation of an arbitrary function of
the components is given by

<h(917927"'7gM)>
J J J
= Z Z T Z h(xjm Loy ‘TjM)Pr(gl =Ty 92 = Ljos ooy M = ij)'

J1=172=1 jm=1

(8.10)
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This notation is cumbersome, but we can shorten it to

(h(g)=>_> > h(g)Pr(g), (8.11)

g1 g2 gm

where it is understood that each sum runs over the possible values of the component.
An even more compact notation with the same meaning is

(h(g)) =Y _ hl(g) Pr(g), (8.12)

where the sum over a vector index signifies a multiple sum over all components
running over all possible values.

As in App. C, we shall use the notations (h(g)) and E{h(g)} interchangeably,
and we shall also use an overbar to denote expectation. Thus, g = (g) = E{g}.

Continuous-valued random vectors Given a continuous-valued random vector g, the
expectation of an arbitrary function h(g) is written as

<h(91792,.--,gM)>=/ dgl/ dgz---/ dgnr h(g1, 925 - 9nr) PY(G1, G2, s G01) -

(8.13)
There is no loss of generality in the infinite limits since the density might be zero
except on a finite support. In more compact notation, (8.13) becomes

(h(g)) = / d"g h(g) pr(g) . (8.14)

where the subscript oo on the integral sign indicates that it runs over an infinite
range for each of the M variables of integration.

We have not specified the nature of the function h(g). It could be a scalar-
valued or a vector-valued function of the random vector g. It could even be g itself,
in which case (g) is the mean vector § The components of this vector are given
by

I = (gm) - (8.15)

For complex vectors, the mean is defined separately for real and imaginary
parts. Thus g = g’ + ig” implies g, = g, + ig/, and § = g + ig’, which means
that g,, =g, + ig,, for all m.

8.1.3 Covariance and correlation matrices

It is often of interest to know whether two different components of a random vector
covary, that is, whether fluctuations in one are statistically related to fluctuations
in the other. To quantify this concept, we define the covariance matriz K. For an
MD random vector g, K is an M x M matrix with elements given by

Kij = ((9: —=9:)(9; = 9,)") » (8.16)

where the asterisk indicates complex conjugate, allowing for the possibility that
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components of g might be complex. It is easy to see from this definition that K is
Hermitian, i.e., K;; = K7;.
For the special case where g; and g; are statistically independent, we can write

Kij=((9i=9))((9; =g,)") =0,  i#j. (8.17)

Any random variable covaries with itself. The diagonal elements of the covari-
ance matrix are the variances of the components:

Kj; = Var{g;}. (8.18)

Another way of expressing the covariance matrix is as an outer product, as
discussed in Sec. 1.3.7. With the notation of (1.53), (8.16) is equivalent to

K={(g-8(g—8") =(AgAg'), (8.19)

where Ag =g — 8.
A related matrix is the correlation matriz R, defined as

R=(gg!). (8.20)

By unscrambling the outer-product notation, we see that R;; = <gig]’7>, so R is the
matrix organization of the second moments of the random vector. As a generaliza-
tion of a well-known relation for two random variables, (C.85), we have

K=R-gg'. (8.21)

For zero-mean random vectors, therefore, R and K are identical.
When two or more random vectors are involved in the same problem, we shall
add appropriate subscripts to K and R. Thus Rg = <g gT> and Ry = <ffT>.

Positive-definiteness Every covariance matrix K is positive-semidefinite, as defined
in Sec. A.8. To demonstrate this point, consider an arbitrary quadratic form as in
(A.115):

Qx(x) = x'Kx = x| <AgAgT> X = <xTAgAng>

- <‘X+Ag‘2> , (8.22)

where x is a nonrandom vector and we have used elementary properties of scalar
products and norms from Chap. 1. Since |x'Ag|? is never negative, its expectation
is never negative, so the quadratic form Qi (x) is never negative and K is positive-
semidefinite (nonnegative-definite) by definition.

Moreover, it is rare that covariance matrices are not strictly positive-definite.
From Sec. A.8 we know that an M x M positive-semidefinite matrix is positive-
definite if its rank R equals its dimension M, and from Sec. A.3 we know that the
rank is the number of linearly independent rows or columns. Thus the only way
we can have R < M is if at least one of the columns of K can be written as a
linear combination of the other columns. One way in which this can happen is if
not all components of g are measured independently, but instead one component
is computed as a weighted sum of the others. Barring such unusual circumstances,
however, it is reasonable to assume that R = M.
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Cross-covariance and cross-correlation The cross-covariance matrix and the cross-
correlation matrix for two random vectors g and f are defined analogously to (8.19)
and (8.20), respectively. They are related by an expression analogous to (8.21):

Ryr = (gf') = Kgr + BT (8.23)

The random vectors g and f are said to be uncorrelated if their cross-correlation

matrix factors as
Ree = (g)(f1) =g, (8.24)
or, equivalently, if their cross-covariance matrix is identically zero.

Since the PDF of two independent random vectors separates into the product
of their individual PDFs, we have the immediate result that independent random
vectors are uncorrelated. No general statement can be made to the converse, but
we shall see later in this chapter that uncorrelated normally distributed random
vectors are statistically independent.

Two random vectors are said to be orthogonal if

Rye = <ng> - 0. (8.25)

Note that this stochastic definition involves the outer product whereas the deter-
ministic definition of orthogonality of two vectors involves the inner product. From
(8.23) we see that if the mean of either g or f is zero, the cross-correlation and the
cross-covariance matrices are equal; in that case orthogonal random vectors are also
uncorrelated.

8.1.4 Characteristic functions

The characteristic function g (§) of a random vector can be defined as the natural
generalization of the characteristic function of a scalar random variable (see Sec.
C.3.3). For areal M x1 random vector g (column vector), the characteristic function
is defined as

Vg(€) = (exp(—2mig'g)) , (8.26)

where £ is a real 1 x M vector! (row vector) and hence £'g is the scalar product
of g and €.
For the case of a continuous-valued random vector, (&) can be written as

e(€) = / dMg pr(g) exp(~2rit's) (8.27)

This integral is the MD Fourier transform of the PDF, so the properties of Fourier
transforms from Chap. 3 can be used in its manipulation. In particular, since any
PDF is nonnegative and normalized to unity, it is in L;; thus g (&) is finite for all
&, is continuous everywhere, and vanishes at infinity [see (3.65) and (3.66)]. The
PDF on g is given by the inverse Fourier transform of ¢)g(&):

pr(g) = / 0VE g (€) exp(2mit's) (.28)

1One should not confuse ¢ with the & component of spatial frequency, denoted ¢ in other chapters.
The vector ¢ used here is a frequency in the sense that it is a variable in a Fourier transform, but
it is not a spatial frequency.
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The characteristic function of a random vector is unique, in that two random
vectors have the same characteristic function if and only if they have the same
probability distribution. And, as in the univariate case, two random vectors are
independent if and only if their joint characteristic function can be written as the
product of their marginal characteristic functions.

Moments The characteristic function has great utility not only for deriving PDFs
but also as a shortcut to obtaining the moments of a random vector. This property
follows from the definition (8.26) by expanding the exponential in a power series
before taking the expectation value. This leads to a series of terms involving increas-
ingly higher moments of the random variable g. These moments can be isolated by
differentiation of the series and then setting € = 0, where 0 is the vector with all
elements equal to zero. Alternatively, one can simply differentiate the characteristic
function directly. For example, if we take the gradient we obtain (in the notation

of Sec. A.9.2)
9g(€)

e = ((—2mig) exp(—2mit'g)) . (8.29)
On setting € = 0, this yields
_ -1 [ OYg(€)
(g) = (—2mi) [ D€ }E_O . (8.30)
Differentiating twice yields the second moment:
_ (gg') = (—2mi)~? M]
R = (gg') = (—2mi) { peoe |y (8.31)

Higher-order moments can be determined using the following general expression:

8k1+k2+“'+kM¢g(€)
agiﬁagé@ . agﬁu

k k k y “es
E{glngQ'_'g]\}l} — (—27T’L)k1+k2+ Fhas [

] . (8.32)
£=0

Complex random vectors The characteristic function of a complex random vector
g can be written

Ve(§)= (exp[-2niRe(¢')]) = (expl-mi(¢'g +8'¢)])

= (exp [-27i(& gy +&/9) + -+ Engnr + Engnn)) (8-33)

where now £ is an MD complex vector & = & + &

We see that the scalar product in the exponent of (8.33) is the sum of 2M
real terms, rather than the M terms of (8.26). Another avenue for obtaining this
expression is to make use of the fact that complex vectors can be considered to lie in
either CM or R?M. Thus we could have chosen to represent the M D complex random
vector g by the 2MD vector of real components (g}, gh, .., Ghss 95+ 955 - gh)" and
similarly represent &€ by the vector of real components (£1, &5, ..., &0, &1, &5, .., &)
The use of (8.26) with these real vectors would give an expression for the charac-
teristic function identical to (8.33).

The moments of g can be determined by differentiation of 1(g) if we mind the
rules for differentiation with respect to complex vectors given in Sec. A.9.5. The
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mean of the random vector g is found by taking the derivative of g (&) with respect
to the complex vector &:

o .0

5o + (g | vs(6) = ((-2mig ewl-mil€g 4 O]y . (83

Vipg(§) = {
where we have made use of (A.159) and (A.160). When we set € to zero we find
(g) = (=27m1) " [Vihe ()] - (8.35)
The second moment is found from the generalized Hessian (A.165):
R = (gg) = (—2m) 7 [VV ug(6)] o, - (8.36)

Higher-order moments can be derived using successive differentiation, similar
to the case of real g.

8.1.5 Transformations of random vectors

Section C.3.1 gives rules for transforming PDFs of scalar random variables. A
bivariate extension of these rules is presented in Sec. C.4.5. In this section we extend
these rules further so that they apply to random vectors of general dimension. Our
treatment is limited to real vectors; the extension to complex vectors can be done
by converting the complex vectors to real vectors with double the dimension as
described above.

Suppose the random vector g is related to the random vector f through the
general nonlinear relationship g = Of. The mapping from f to g is discrete-to-
discrete even though the components of the vectors are continuous valued. If we
assume that this mapping is differentiable (with respect to the component values)
and also one-to-one and onto, then the inverse mapping f = O~ '(g) exists. The
PDF of g is then obtained from the known PDF of f by recognizing the equivalence
of the probability spaces used to describe random events in terms of either f or g:

prg(g) d'g = pre(f) dVf. (8.37)

The random vector g must have the same dimensionality as f if the mapping from
f to g is invertible. From (8.37) we obtain

prg(g) = pre (O 'g)|det J| (8.38)

where J is the Jacobian matrix of partial derivatives relating the components of f
and g [¢f. (C.102)]:
afi

J’L" = ’
99,

(8.39)
and |det J| is the absolute value of its determinant.

Linear transformations If the random vector g is generated as the output of a linear
filter acting on the random vector f, we can characterize the linear transformation
by an M x N matrix H. Then we can write the M x 1 output vector g in terms of
the N x 1 input vector f as

g = Hf. (8.40)
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If M = N and H™! exists, the PDF of g can be written in terms of the PDF
of f as a special case of (8.38):

pre(g) = pre(H 'g) |det H™'. (8.41)

Characteristic function of the transformed vector If H is not invertible, we cannot use
(8.41) to relate the PDF for g to the PDF for f, but we can relate the corresponding
characteristic functions. With (8.40), (8.26) becomes

Vg (€) = (exp(—2mi€'HE)) = (exp [-2mi(H'¢)'f]) , (8.42)

where the last step has used the definition of the adjoint, (1.39). (Since we are
considering real matrices here, adjoint is the same as transpose.) Comparison of
the last expectation in (8.42) with (8.26) shows that

bg(€) = v (H'E), (8.43)

so knowledge of v¢ and H immediately gives 1)g. As an exercise, the reader can
show that (8.43) and (8.38) are equivalent if H™! exists.

The PDF on g can in principle be found by taking an inverse MD Fourier
transform of (8.43). Formally, we can write

pr(g) = / dMg e(H'E) exp(2rit'g) (8.44)

but in practice the integral might not be easy. The problem is that we are integrating
a function of an ND vector over an MD space.

Alternative approach Another way to derive an expression for the PDF of g, when
g = Hf, is to use the multivariate counterpart of (C.77) to write

prie) = | 7 pr(glt) pr(t). (5.45)
Here the notation pr(g|f) is a bit tricky: g is defined as Hf (not Hf + n here), so

once f is given, g is no longer random; it is just Hf. Nevertheless, we can still use
(8.45) if we let pr(gl|f) be the MD delta function, §(g — Hf ). Then we have

prie) = [ a7 o~ HO)pr(). (8.46)

This form is, in fact, equivalent to (8.42). If we take the MD Fourier transform of
both sides of (8.46), we find

b(€) = Fur {pr(g)} = / My / 0N §(g — HE) pr(f) exp(~2mit'g).  (8.47)

The delta function allows us to perform the integral over g, and we obtain
g (&) = / d"f pr(f) exp(—2mig ' HF ) = (exp(—2mig HF)) . (8.48)

This equation is the same as (8.42), and (8.43) follows as before.
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Although (8.43) and (8.46) are equivalent, the latter may be easier to in-
terpret geometrically. Suppose M < N. Then the integral is over an ND space
but the delta function is nonzero only on an MD hyperplane defined by g = Hf.
Only vectors f that lie on this hyperplane make any contribution to the integral for
a particular g. This is similar to the geometric construction we presented for the
computation of a marginal in (8.7).

Transformation of the mean and covariance When g = Hf, all moments of g can
be derived by differentiating (8.43), but often we are interested in just the mean
or covariance matrix. From the linearity of the expectation operator, we have
immediately for the mean of g,

g = (g) = (Hf) = H(f) = Hf. (8.49)
The covariance matrix of g is found as

K, = (AgAgh) = ((Hf - HF)(Hf — Hf)') = H <AfAfT> H' = HK:H', (8.50)

where Af = f — f. The same results can, of course, also be found from (8.43).
These rules for transforming means and covariance matrices will recur often in
this book.

8.1.6 Eigenanalysis of covariance matrices

A covariance matrix is Hermitian, and we saw in Sec. 1.4.4 that eigenvectors and
eigenvalues of Hermitian matrices have many nice properties. The eigenvalues are
real, and the eigenvectors can be chosen to form a complete, orthonormal set in
the domain of the matrix. Expansion of a random vector in eigenvectors of its
covariance matrix is a valuable tool in statistical analysis.

Let Kg be the M x M covariance matrix for a random vector g. The eigenvalue
equation for this matrix is

Kgh, = i@,  m=1,..,M, (8.51)

where ¢,, is an M x 1 eigenvector and p,, is the corresponding eigenvalue. (Note
that the subscript on ¢,,, denotes a particular eigenvector, not a component.) Since
K, is Hermitian, p,, is real even if K4 is complex.

We showed above that Kg is at least positive-semidefinite, so p,,, > 0 for all
m. For convenience we assume that the eigenvalues are labeled by decreasing value:

M1 > p2 > 2> ur >0, (8.52)

where R is the rank. We know from Sec. 1.4.3 that the rank is also the number
of nonzero eigenvalues, so pr is the smallest nonzero eigenvalue. We also argued
above that the rank of K is likely to be the dimension M, in which case there are
no nonzero eigenvalues. Then Kg is positive-definite and hence nonsingular (see
Sec. 1.4.3).

We know from Sec. 1.4.4 that the eigenvectors of K can always be chosen as a
complete, orthonormal set. The orthonormality can be expressed in inner-product
notation as

O D = On s (8.53)
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where qS;fn is the row vector obtained by transposing the column vector ¢,, and tak-
ing an element-by-element complex conjugate. The completeness of the eigenvectors
is expressed by the closure relation,

M
> bndh =1, (8.54)
m=1

where quqbin is an outer product (see Sec. 1.3.7) and I is the M x M unit matrix.
From the discussion in Sec. 1.4.5, we know that the eigenvalue problem (8.51)

can also be expressed as
K ® = ®M, (8.55)

where ® is a matrix formed by arraying the column vectors ¢,, side by side and
M is a diagonal matrix with the m*" diagonal element equal to j,,. (Note that M
is capital p.) From (8.53) and (8.54), it follows that ® is a unitary matrix, i.e.,
®~! = &' From this property, we immediately find a useful representation of the
covariance matrix [cf. (1.85)]:

Ky = ®M&'. (8.56)

This representation can also be expressed in terms of outer products [cf. (1.86)] as

M
Ke= Y im0, (8.57)

m=1

This expression is the spectral decomposition of the covariance matrix.

Discrete Karhunen-Loéve expansion Since the eigenvectors of a Hermitian operator
form a complete, orthonormal set in the relevant space, any M x 1 vector g can be
expressed as

M
g=Y B, (8.58)
m=1
where the coefficients are given by

B = b8 (8.59)

We can express these relations in matrix-vector form by defining an M x 1
vector B with components {3,,}. Then

g=®3, p=2g. (8.60)

These equations are quite general, holding for any g and any orthonormal basis
vectors. If, however, g is a random vector and the vectors {¢,, } are eigenvectors of
its covariance matrix, then the coefficients {3,,} are uncorrelated random variables.
It is easy to demonstrate this point. In component form, the covariance matrix for
B is given by

(a.as;) = ([#hae] [ohae] ) = (¢l Asreis,,)

= ¢! (AgAg') b, = ¢! K, = tim®l b = 1m S (8.61)
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where AB,, = Bm — (Bm) and we have used the eigenvalue equation (8.51) and the
orthonormality of the eigenvectors (8.53). In matrix form, (8.61) reads

Kg=®'K,® =3 dM®'® =M, (8.62)

where we have used (8.56), (8.60) and the unitarity of ®.

Expansion of a random vector in eigenvectors of its covariance matrix is known
as Karhunen-Loéve or KL expansion. The key feature of a KL expansion is that
the coefficients are uncorrelated (since Kg is diagonal). A similar expansion for
random processes will be presented in Sec. 8.2.7.

The KL expansion enables us immediately to find a useful representation of
the inverse of a covariance matrix. Since ® is a unitary matrix, i.e., & ! = <I>T, we
can use (8.62) to write the covariance matrix Kg as

Ky = ®M&'. (8.63)
The inverse of K is then given by
-1 _ —1gt
K, =M™ &', (8.64)

where M~! is also diagonal, with the m*" diagonal element given by 1/u,,. Thus
the same matrix that diagonalizes Kg also diagonalizes Ko 1

Whitening As we have just seen, the KL expansion results in a vector 8 with
uncorrelated components. It is often useful to go further and force the components
all to have the same variance. The concept of a square-root matrix, discussed in
Sec. A.8.3, provides us with the tool to accomplish this goal.
By analogy to (A.118), we can define the square root of the covariance matrix
of g by
) M
Kg = Vitm G- (8.65)
m=1

If K is nonsingular, as it usually is, we can write the inverse of the square-root

matrix as
M
_1
2

-3 \/%cbmcbin- (5.66)

To verify that this is the correct form for the inverse, one can multiply (8.65) by
(8.66) and use the orthonormality relation (8.53) to obtain (8.54).
We now define the vector y by

_1 _
y=Kg*(g-8). (8.67)
With this construction ¥ = 0, and its covariance matrix is given by
_1 _1
Ky = (yy') = Kg*KgKg* =1, (8.68)

where we have used the definition of the square-root matrix from (A.117) and the

_1
fact that covariance matrices are Hermitian, so that Kg * is its own adjoint.
Thus the transformation (8.67) always results in a random vector y such that

<ynym> = 5nm . (869)
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By analogy to white noise (a topic discussed further in Sec. 8.2.6), this transfor-
mation is referred to as whitening; it is also called prewhitening when it precedes
other signal processing. As we shall see in Chap. 13, prewhitening plays a key role
in signal-detection theory.

Simultaneous diagonalization We have shown that a Hermitian matrix can always
be diagonalized by a unitary transformation. It can be shown that two different
Hermitian matrices can be diagonalized by the same unitary transformation if and
only if they commute. If the different Hermitian matrices do not commute, they can
be simultaneously diagonalized by a linear transformation, but the transformation
matrix will not be unitary (Fukunaga, 1990). Details of the procedure were given
in Sec. 1.4.6.

8.2 RANDOM PROCESSES

8.2.1 Definitions and basic concepts

We now generalize the concept of a random variable further by assigning to every
experimental outcome ( a spatial or temporal function, real or complex, according
to some rule (Wentzell, 1981). In the spatial case the function will be denoted
f(r,¢), where r is a position vector, and in the temporal case it will be denoted
by f(t,{), where t is the time. We now have a family of functions referred to as
a stochastic or random process. The words stochastic and random will be used
interchangeably here. If the spatial (or temporal) variable r (or t) is a continuous
one, the family is referred to as a continuous stochastic process; if the variables are
taken as discrete, for example by sampling in space or time, the family is referred
to as a discrete stochastic process, or a random sequence. A random process or
sequence is said to be continuous-valued or discrete-valued according to whether
the underlying random variables are continuous- or discrete-valued.

A spatial random process is a function of two variables, r and (. Depending
on the context, f(r, () can refer to (Papoulis, 1965; Middleton, 1960):

1. The family of spatial functions, referred to as the ensemble; in this case, r
and ¢ are variables.

2. A single realization or sample of the spatial functions; in this case, r is variable
and ( is fixed.

3. The random variable at a single point; in this case, r is fixed and ( is variable.
4. A single number; in this case, r is fixed and ( is fixed.

The intended interpretation will usually be clear from the context.

Some notational issues require attention here. First, it is frequently cumber-
some to carry along the index (, so we shall usually refer to the random process
simply as f(r). Second, we usually make no notational distinction between the
random process per se, understood as the ensemble of all possible functions f(r)
(interpretation 1), and a specific realization or sample (interpretation 2). This prac-
tice is in accord with our conventions on random variables as set out in Sec. C.2.1 of
App. C. Occasionally a specific realization will have to be designated, and in those
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cases we shall either reinstate ¢ or use primes, subscripts or other typographical
devices. Finally, the variable r will be understood to be a general g-dimensional
position vector unless otherwise stated.

Square-integrable random processes We shall say that a random process lies in some
Hilbert space if all sample functions [i.e., f(r,() as a function of r for all (] lie in
that space. In particular, we shall often be concerned with random processes in
L2 (RY) where each sample function is square-integrable.

In many physical problems, |f(r)|? can be interpreted as an energy density
(energy per unit area or volume). For example, that interpretation works when
f(r) is an electric field or the amplitude of an acoustic wave. In those cases, the
integral of |f(r)|? is the total energy, and a square-integrable function is one with
finite energy. This terminology is used more broadly, and any square-integrable
function can be called a finite-energy function without regard to interpretation as
a physical energy.

Finite-power random processes For temporal random processes, however, the as-
sumption of finite energy is frequently not warranted. Consider, for example, the
thermal noise produced by a resistor. The duration of this noise is completely in-
definite. So long as the resistor exists, there will be a fluctuating voltage across it.
In this example, ¢ designates a particular resistor and f(t, () is the noise voltage,
and there is no reason to assume that the integral of |f(¢,()|? over —oo < t < 00
is finite. We could get around this problem by imposing some artificial boundary
conditions, e.g., the resistor is manufactured at t = —T and destroyed at ¢t = T, but
we are not really interested in when the resistor was manufactured.

A more natural approach is just to give up on the restriction to finite en-
ergy. The noise voltage across a resistor has finite power (energy per unit time).
Mathematically, we can state this condition for the random process f(t,() as

N )
O<Tlgnooﬁ/Tdt [f(t, Q) < for all ¢. (8.70)

A random process for which this condition is satisfied will be called a finite-power
random process. Note that a finite-energy (or o) random process cannot simul-
taneously be a finite-power one because of the left-hand inequality. If the function
is in Lo, then the integral is finite as ' — oo, but the factor of 1/27T drives the
product to zero. It is only when the integral is asymptotically linear in T" that (8.70)
is satisfied. As we shall see, finite-energy and finite-power random processes require
rather different mathematical treatments.

Generalized random processes We shall also have occasion to use random processes
constructed with delta functions or other generalized functions. Such constructs
are mathematically very convenient, even though no physical process is exactly de-
scribed by them. We shall refer to random processes where the sample functions are
generalized functions as (not surprisingly) generalized random processes (Kanwal,
1983). These processes are not in Ly but instead define a space of tempered distri-
butions (see Chap. 2). If the generalized function in question is a delta function,
the generalized random process has neither finite energy nor finite power.
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8.2.2 Averages of random processes

We consider here a scalar random process f(r) that is a function of position vector
r. The generalization to a vector random process is straightforward using mul-
tivariate PDFs. The random process may in principle be either continuous- or
discrete-valued, but we shall illustrate the concepts with continuous-valued random
processes. The discrete-valued case proceeds via a parallel approach but with sums
over discrete values replacing integrals over continuous values.

For fixed r, f(r) is simply a random variable (interpretation 3), and its ex-
pectation is defined just as for any other random variable. As before, we use the
notations E{-}, (-} and overbar interchangeably to indicate an expectation, and we
can write

E{f(x)} = (f(r)) = f(x) = /_Oo df (r) f(r) pr(f(r)]. (8.71)

Computation of this expectation requires only the univariate PDF pr[f(r)]. Note
carefully that the integral is over f(r), not r, so E{f(r)} can be (and usually will
be) a function of r.

Moments and variance Moments of f(r) are defined easily. For example, the ;"
moment is given by [¢f. (C.38)]

(irewy= [ O; af(x) [ prlf (). (8.72)

The resultant, ([f(r)}7), can still be a function of r; again, the integral is over f(r),
not over r.

Having defined moments, we can also define the variance of a random process.
In the general complex case, the variance is given by

Var{f(r)} = E{|f(0)] = B{f(r)} I’} = E{[f(x)*} — [E{f(x)} [

= [ arw 15w \ [ aw rowliw)] s

Note that this definition works equally for finite-energy and finite-power processes.
It is possible for a random process to have a finite variance at all points, yet not be
square-integrable.

Multiple-point expectations We are often interested in two-point expectations or
joint second moments of the form E{f(r;)f(r2)}. The usual definitions for joint
expectations stand us in good stead here, and we can write

B{/e) ()} = [ ) / T df(r) F(m) fe) prlf(e). fle)]. (8.74)

Here, f(r;) and f(rp) must be regarded as two distinct random variables and
pr[f(r1), f(rz)] is their joint density. Only in very special circumstances will it be

possible to write pr(f(r1), f(r2)] as pr[f(r1)] pr[f(r2)].
A general two-point moment is defined by

E{[fx)]™ [f(x,)]"} = / df (r1 /_O;df(rz) [f(e0)]™ [f(x2)]" pr[f(r1), f(r2)] .
(8.75)
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Moments involving more points are defined similarly. Any moment involving the K
points rq,ra,...,rgx can be computed if pr[f(r1), f(r2),..., f(rk)] is known. If this
K-fold joint density is known for all values of each of the rg, the process is said to
be fully characterized to order K (Snyder and Miller, 1991).

Density of the process Expressing N-fold joint densities using notation of the form
pr[f(r1), f(ra),..., f(rn)] is cumbersome at best and quite inadequate when we want
to define expectations of general functionals ®{f(r)}, which can depend on f(r) at
all points r. We now introduce an alternative approach, which works at least for
finite-energy random processes (or vectors in Ly). Our objective is to give meaning
to an expression like pr(f), where f is the Hilbert-space vector corresponding to
f(r). We saw in Chap. 1 that L, is a separable Hilbert space, which means simply
that it is spanned by a denumerably infinite set of basis functions. Each sample
function of a random process in La(R?) can be written as

Fr,0) =" a;(Q)wy(r), (8.76)
j=1

where the set {¢;(r)} is any orthonormal basis for the space. We can also express
this same concept as

J
flr) = Jim ; aj iy (r) . (8.77)
We have dropped the index ¢ with the understanding that the equation holds for
any f(r, () so long as the corresponding expansion coefficients o ({) are used on the
right. The convergence of (8.77) is in the sense of Ly(R?) (see Sec. 3.2.2); if we use
the truncated series in place of the original function f(r), the Ly norm of the error
converges to zero as J — oco. The expansion of the sample function f(r) given in
(8.77) is exactly the same form that was used in (7.8) to represent a deterministic
object.

Expansion (8.77) provides a convenient way of defining averages involving ran-
dom processes. Each coefficient «; is a random variable, and the set of them
{aj,j =1,...,J} can be regarded as a random vector o, with J components. In
the limit J — oo, the vector o, completely defines f(r), and averaging over f(r) is
equivalent to averaging over all components of c. For finite J, the requisite density
can be written as pr(e,) or pr(asg, ag, ..., ). In the limit,

pr(a) = JH_,H;O pr(a,), (8.78)

and this density is operationally equivalent to pr(f).

When f(r) is approximated by the truncated series, any functional ®{ f(r)} is
also a function of a,; call it ®;(cx,). If the functional is continuous, in the sense
defined in Sec. 1.3.2, then the limit of the functional is the functional of the limit,
and we have

/() = Jim B(ar,). (8.79)

Moreover, expectation is also a continuous functional, so we can write

B{O[/(0)]} = Jim B{&y(a,)} = Jm [ @ dya,)prla,).  (880)
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For notational convenience, we write this expectation as

B(8(f())} = [ dt B[] (). (851

L2

Here fis f(r) regarded as a vector in the Hilbert space, and the integral is really
a denumerably infinite multiple integral? over all basis functions in the space; in
other words, (8.81) must be realized operationally by (8.80).

Example: Linear functionals To clarify how (8.81) works in practice, consider a
linear functional that depends on f(r) at K points:

K K J
B{f(e0), oo frR)} =D Buf (k) = lim Y B gy (r) - (8.82)
k=1 k=1 j=1

The random variables here are the coefficients {a;}. Using (8.80) and invoking the
linearity of the expectation operator, we find

K J
E{®[f(r1),...., f(rr)]} = JILH;OZﬁk Z%(m)/ d’a ajpr(a,) . (8.83)
k=1 j=1 o0

In the J-fold multiple integral, we can immediately integrate out all of the variables
except a;. By (C.75), the result is the marginal density on «;, so

K J
B(B(f(e0)s e fri0)]) = Jim Y60 Y s(e) [ day ayp(ay)
k=1  j=1

K J
= lim > B Z ¥, (ry) E{ay}. (8.84)
k=1  j=1
Thus, for a linear functional of the form (8.82), and by extension any linear func-

tional,
({f}) = o{(f)}. (8.85)

Integrals of random processes An integral of a random process f(x), sometimes
called a stochastic integral, is another random process, the realizations of which
are obtained by integrating corresponding realizations of f(z). For example, the
statement

g(z) = /00 dx’ f(z') h(z, ") (8.86)

—0o0
means that

o0 = | " d (&, 0) ha, o) (8.87)

— 00

2We have customarily denoted volume elements by italics rather than boldface, e.g., d3r rather
than dr, on the theory that volume elements are scalars. To preserve a distinction between integrals
over Euclidean spaces and ones over Hilbert spaces, however, we use df (along with the subscript
L) to indicate a multiple integral with an infinite number of dimensions.
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for all ¢ and some fixed kernel h(z,z’). A similar definition holds for derivatives of
a random process.

Since g(z) is a functional of f(a’), its average at any fixed = can be computed
by (8.81) as

(g(x)) :/L df g(x)pr(f) :/]L df/_OO da’ f(z') h(z,z") pr(f). (8.88)

It is often useful to interchange the order of these two integrals, but most books
gloss over issues of the validity of this step. Middleton (1960) puts it thus: “The
condition on the interchangeability of integration and expectation is, of course, the
existence of the resulting integral” (emphasis added).

When the interchange can be justified, (8.88) becomes

— 00 — 00

(@) = [ ao’ i [t st = | T b, ) (f@)) . (8.89)

In other words, the average of a linear integral transform of a random process is
the same linear transform of the average of the random process (but only under
conditions that we haven’t yet stated clearly).

When is the interchange legal? The classical theorem that states when interchange
of the order of two integrals is allowed is Fubini’s theorem (Lang, 1993). In essence,
this theorem tells us that

/_Zdu/_o;dv k(u,v)z/_idu {/_O:Odv k(u,v)} z/_O;dU [/_Zduk(u,v)]

(8.90)
provided |k(u,v)| is integrable over the product space, here the u-v plane.

There are two difficulties in directly applying Fubini to (8.88). First, we often
want to assume that the integrand is in Ly rather than in L, and we know from
Sec. 3.3.2 that a function in Ly need not be in L (the prime example being sinc ).
One way around this problem is to consider only random processes where all sample
functions are absolutely integrable as well as square-integrable. Another way is to
consider a finite interval, sa; —%X <z < %X . This allows use of Fubini with Ly
functions since Ly(—1 X, $X) is a subspace of L1(—3 X, £ X).

The second difficulty is that Fubini’s theorem can be extended to higher-
dimensional multiple integrals, but (8.88) in its most general form requires an
infinite nested set of integrals. Fubini’s theorem can still be used in this case,
but it must be justified with advanced measure-theoretic arguments (Lipster and
Shiryayev, 1977). A more elementary argument can be given by using the theory
of distributions.

Retreat to distributions Much of the discussion above has hinged on the assumption
that the random process lies in a separable Hilbert space. For finite-power processes,
we do not have this luxury, and even with Lo processes, we ran into some problems
justifying the interchange of integration and expectation. The solution to these
difficulties is the theory of distributions® as outlined in Chap. 2. The thing we have

3At least three distinctly different meanings attach to the word distribution in connection with
random processes. A probability distribution is, loosely speaking, any probability law, such as the
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going for us is that sample functions of a random process may be badly behaved
but kernel functions in integral transforms like (8.86) are usually good functions.

Let ¢(z) denote a good function and f(xz, () be a sample function of a random
process. This random process defines a distribution,

B ()} = [ dotlo) £.0) = 6(0). (891)
Note that ¢(¢) is a random variable. It is proved by Kanwal (1983) that this random
variable has finite variance if f(x,() is continuous (in the sense that f(z +¢,{) —
f(z,¢) in the limit that e — 0) and has finite variance at all z. With these mild
restrictions, any random process defines a distribution mapping good functions to
finite-variance random variables.

By the Schwarz inequality, the finite variance of ¢(¢) implies that ¢(¢) has
finite mean. The expectation E{¢(()} is defined conventionally by

B{O(O)} = B{@ )]} = [ do ovr(o). (5.92)

But this is just a linear combination of distributions, which by (2.15) is another
distribution. Thus

o0

E{®[t(z)]} = Prs{t(r)} = / dx t(z) B{f(z,{)}, (8.93)
where ®p{t(z)} is a distribution defined by using E{f(z,()} as the generalized
function. Equation (8.93) is just what one would obtain by interchanging the ex-
pectation operation and the integration over z.

Thus the issue of interchangeability is resolved once we have established that
the random process defines a distribution (in the Schwartz sense), and Kanwal did
this for us with mild restrictions.

8.2.3 Characteristic functionals

Characteristic functions for scalar random variables were introduced in App. C and
extended to random vectors in Sec. 8.1.4. Now we shall extend the concept further
to random processes. In a formal sense, the extension is straightforward; all we
have to do is to pay attention to the dimensionality of the vectors involved.

As defined in (8.26), the characteristic function of an M'D random vector is a
function of an MD frequency vector €. In the case of a random process, each sample
function corresponds to a vector f in an infinite-dimensional Hilbert space, so the
frequency vector £ in (8.26) must be replaced by an infinite-dimensional vector s
in the same Hilbert space as f. That means that s describes a function s(r), so the
characteristic function becomes a characteristic functional We{s(r)} or Ue(s) for
short. It is defined by

Ue(s) = (exp[—2mi(s, T)]), (8.94)

Poisson distribution. The distribution function refers specifically to the cumulative probability
distribution function defined in Sec. C.2.3. In the present context the word is used in the Schwartz
sense defined in Chap. 2.
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where (s, ) is the usual Ly scalar product. Note that we use ¥( - ) for characteristic
functional and ¢(-) for characteristic function.

The characteristic functional of a random process can be related to the char-
acteristic function of any random vector derived from the random process by a
linear operator; the calculation is a simple generalization of one performed in Sec.
8.1.5. For example, if g = Hf, where H is a continuous-to-discrete (CD) operator
as discussed in Secs. 1.2.4 and 7.3, then (8.26) becomes

g(§) = (exp[—2mi(§, HI)]) = (exp[-2mi(H'E, )]) (8.95)

where the second step follows from the definition of the adjoint, (1.39). Comparison
of (8.94) and (8.95) shows that

Vg(€) = Ve (H'E), (8.96)

which is the generalization of (8.43) to random processes.

Thus, if we know the characteristic functional for f, we immediately have the
characteristic function for Hf. We shall exploit this relation in Sec. 8.3.5 when we
discuss normal random processes.

8.2.4 Correlation analysis

The autocorrelation function R(ry,rs) of a random process f(r) is defined by

R(r1,r9) = (f(re) f*(r2)) , (8.97)

which is the two-point expectation defined in (8.74), with the minor modification
of the complex conjugate on the second factor [irrelevant if f(r) is real].
The autocovariance function K(ry,rz) is defined by

K(r1,r2) = ([f(r1) = (f(x0))] [f"(r2) = (f"(r2))])

= R(ry,r2) — f(r1) F (r2). (8.98)

The autocovariance function is thus the two-point moment that is the generalization
of the variance; it reduces to the variance when ro = r; =r, i.c.,

K(r,r) = R(r,r) — [f(r)* = Var{f(r)} (8.99)

from (8.73).

When two or more random processes occur in the same problem, their auto-
correlation and autocovariance functions will be distinguished with subscripts, e.g.,
Ry(ri,rz). It is frequently convenient to define zero-mean random processes such
as

Af(r) = f(r) — f(r). (8.100)
With this definition, (A f(r)) = 0 and

RAf(I‘l, 1‘2) = Kf(rl, 1‘2) . (8101)

The autocorrelation and autocovariance functions play a fundamental role in
the theory of random processes since they specify how far apart two points must be
for their fluctuations to be uncorrelated. If Kr(rq,rs2) is zero, the random variables
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f(r1) and f(r2) do not covary; colloquially, they are said to be uncorrelated, though
in fact the autocorrelation function Ry(ry,re) may be nonzero because of the mean
values.

Cross-correlation and cross-covariance functions can also be defined. Consider
two functions f(r) and g(r’), where r and r’ are not necessarily in the same space.
The cross-correlation or mutual correlation function is defined by

Ryqg(r,x’) = (f(r) g"(r')) . (8.102)

Similarly, the cross-covariance function is

Kpg(r,x') = ([f(r) = (F) [g" (") = (g"('D)]) = Rpg(r,x') — F(r)g"(x') . (8.103)

Two random processes f(r) and g(r') are said to be uncorrelated if Ry,(r,r') =
f(r)g(r") for all r and r’. They are orthogonal if, for all r and r/, R, (r,r’") = 0.

Properties of the autocorrelation function From the definition (8.98), we obtain the
symmetry property
R(I‘l,rg) = R*(I'Q,I'l) . (8104)

In particular, for ry = ry =r, (8.104) shows that R(r,r) or Var{f(r)} is real.
It follows from the Schwarz inequality that

|R(I‘1, I‘2)|2 S R(I‘l, I'1) R(I‘Q, I'Q) . (8105)

It can also be shown (Mandel and Wolf, 1995) that R(ri,ry) is positive-
semidefinite, meaning that [cf. (8.22)]

/ dirq w*(rl)/ diry R(ry,r2) w(re) >0, (8.106)

for all functions w(r). We shall exploit this property in Sec. 8.2.7 when we discuss
the Karhunen-Loéve expansion of random processes.

Another way to think about R(ri,rs) is that it is the kernel of an integral
operator R. With this view, the inner integral of (8.106) is recognized as the
function [Rw](ry), and the double integral is the scalar wiRw. An autocovariance
operator IC can be defined similarly, with the autocovariance function as the kernel.

Temporal stationarity Temporal random processes often have a statistical character
that is independent of time, even though any individual realization is a randomly
fluctuating function of time. An example is a steady beam of white light, where
the electric field fluctuates rapidly, yet there is no preferred origin in time as far
as the statistics are concerned. Such processes are said to be stationary. Glauber
(1965) has phrased it this way: “The term ‘stationary’ does not mean that nothing
is happening. On the contrary, the field is ordinarily oscillating quite rapidly. It
means that our knowledge of the field does not change in time.”

A temporal random process f(t) is said to be stationary in the strict sense if,
for any K, its K-point PDF pr[f(t1),- - -, f(tx)] is such that

prif(t), - fltw)] = prlf(ts + 7). ftx +7)] (8.107)

for any 7. In particular, this requires that the single-point density function be
independent of time,

pr(f ()] = pr[f(t +7)], (8.108)
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and therefore the mean of the random process is also independent of time,

(f(B)) = {(f(t+7)) - (8.109)
Similarly, the two-point density function must be independent of time,
pr(f(ty), f(t2)] = prlf(tr +7), f(t2 + 7)], (8.110)
and so the autocorrelation function R(t1,t2), is also independent of time,
R(t1,t2) = (f(t) f*(t2)) = (f(t1 +7) [*(t2 + 7)) . (8.111)

The only way (8.111) can be satisfied for all ¢; and ts is if R(t1,t2) is really a
function of only ¢; — t5. We shall denote this function by R(¢; — t2), but the reader
is cautioned that R(t; — t2) is not the same function as R(t1,t2); it could not be
since the latter has two arguments and the former has only one. With this notation,
we have (for a stationary random process),

R(t1,t) = R(t; — t2) = R(AL), (8.112)

where At = t; — to. The shift At is frequently called the lag of the autocorrelation
function.

Continuing on in this way, we see that strict stationarity requires that all K-
point moments of the process be independent of absolute time. A process is said to
be stationary to order M if (8.107) is true only for K < M.

A process is said to be weakly stationary, or stationary in the wide sense, if its
expected value does not depend on absolute time ¢ and its autocorrelation depends
only on At:

(f(t)) = const, (ft+ At) f*(t)) = R(AY). (8.113)

If a process is stationary to second order, then it is wide-sense stationary; how-
ever, a wide-sense stationary process is not necessarily stationary to second order
because the former involves only the first two moments while the latter involves
the entire PDF. One case where we can make a more definitive statement is with
normal or Gaussian random processes, to be discussed in Sec. 8.3.5. If a process is
normal and stationary in the wide sense, then it is also stationary in the strict sense
since the statistical description of a normal process is completely specified once its
mean and autocorrelation are specified.

Stationarity is closely connected to the concept of a finite-power random pro-
cess, introduced in Sec. 8.2.1, but the distinctions should not be overlooked. The
finite-power designation applies to individual sample functions of the random pro-
cess, while stationarity applies to averages. A stationary random process might
not have finite power, since it is conceivable (though pathological) that an individ-
ual realization could diverge but the average not. Of more practical importance,
a process can have finite power yet not be stationary; examples of this situation
are discussed below. On the other hand, a nontrivial stationary temporal random
process certainly cannot have finite energy.

Properties of the stationary autocorrelation function The general properties of auto-
correlations given above specialize in the stationary case as follows: The symmetry
property of (8.104) becomes

R(AL) = R*(~At). (8.114)
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In particular, for At =0, (8.114) shows that R(0) is real.
The Schwarz inequality shows that

|R(A%)| < R(0). (8.115)

The condition that R(At) is positive-semidefinite now means that

/OO dt /OO dt’ w*(t) R(t — t" ) w(t') > 0, (8.116)

for all functions w(t).

Spatial stationarity The spatial counterpart of the wide-sense stationarity condition
(8.112) is
R(ry,r2) = R(r; —ry) = R(Ar), (8.117)

where Ar =r; — rs.

This condition cannot be exactly satisfied? by spatial processes representing
real objects or images since they have finite support, but it might be a useful
mathematical description within a certain boundary. That is, we might be able
to assume that R(rj,r2) = R(Ar) provided r; and ry lie inside the borders of an
image. An example would be a piece of x-ray film with a uniform exposure, where
the only deviation from stationarity comes from the finite size of the film.

If f(r) vanishes outside the boundary, this kind of stationarity is expressed
mathematically by

R(ry,r2) = R(Ar) W(ry) W(rs), (8.118)

where W(r) is a window function that is unity for r inside the boundary, zero
outside.

Quasistationarity In optics and imaging we often encounter spatial random pro-
cesses whose autocorrelation function can be approximated as a product of two
factors—a slowly varying contribution due to slow variations in overall intensity
and a short-range function describing correlation between neighboring points. As
a simple example, consider a ground glass illuminated nonuniformly with a laser
beam. If the statistical character of the ground glass is the same at all points, then
we can describe the complex amplitude (see Chap. 9) of the wave emerging from
the ground glass by a spatial autocorrelation function of the form,

R(r1,r2) = a(Ar) b(ry), (8.119)

where
ro = 3(r1 +r2), Ar=r; —r1;. (8.120)

We shall refer to rg as the center coordinate (analogous to center of mass) and Ar
as the relative coordinate or difference coordinate. Since the transformation from
(r1,ra) to (rg, Ar) is unique and invertible (with Jacobian = unity), we always have
a choice of which coordinate system to use for any function of two variables, but we

4The stationarity condition cannot be exactly satisfied by real temporal processes either. The
difference is that we usually do not observe the beginning and end of a temporal process; we
almost always observe the boundaries of an object or image.
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won’t always find that the function can be factored as in (8.119). The factorization
is particularly useful if b(rg) is slowly varying, in which case the random process is
said to be quasistationary. If b(rg) is a constant and the mean is also constant,
the process is wide-sense stationary.

The short-range contribution, a(Ar), is usually normalized to be unity at zero
shift or lag (Ar = 0).

Time averages and ergodicity 'We have seen that statistical descriptors of a random
process, like the mean and autocorrelation function, are determined by averaging
over the ensemble of realizations. Knowledge of the ensemble is equivalent to knowl-
edge of the full PDF that describes the random process. However, suppose we are
presented with data derived from a single realization of a temporal random process.
It is natural to ask how this single data realization might be related to the statisti-
cal descriptors of the random process from which it was drawn. The answer to this
question rests in the theory of ergodicity, a subject that traces its origins to classi-
cal statistical mechanics and the works of such luminaries as Maxwell, Boltzmann,
Clausius and Gibbs (Ter Haar, 1955).

A random process is said to be ergodic if each realization of the process carries
the same statistical information as every other realization. The practical ramifica-
tion of this feature is that when a process is ergodic it becomes possible to derive
statistical information about the entire ensemble based on knowledge of a single
realization.

In order for a random process to be ergodic, it must first be stationary. The
degree of stationarity of the process influences the degree to which the process is
ergodic. For example, only wide-sense stationarity is necessary (though not suffi-
cient) for a process to be ergodic in its mean and autocorrelation.

We now present criteria for a random process to be ergodic with respect to
its mean and autocorrelation. A more complete development can be found in Pa-
poulis (1965). Let f(¢,(o) denote a particular realization of a random process. Its
finite-time average is then given by

1T
GGl =7 [ de1(e.G). (s.121)

2

where (), denotes a finite-time average over period T. In general this finite-time
average is itself a random variable that depends on the particular realization under
consideration as well as the interval T.

The time average of the sample function f(¢,(p) is found by taking the limit
of (8.121) as T' — oc:

1
2

.1 2T
(oo = Jim 7 [t fit.Go). (.122)

-iT

The result in (8.122) is independent of time but depends in general on the realization
Co- Thus the notational distinction that this average refers to realization {, must
be maintained.

A process is said to be ergodic in the mean if the time average of a single
realization equals the ensemble average (f(t)). We already know that a stationary
process has a mean that is independent of time. It can be shown (Papoulis, 1965)
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that (f(¢,Co))r approaches this same constant as T’ — oo if and only if

it
lim %/ dAt R(At) = (f(t))” (8.123)

T 1

where R(At) is the ensemble autocorrelation function of the stationary random
process [cf. (8.112)]. In words, (8.123) states that ergodicity in the mean requires
the time average of the autocorrelation function of f(t) to be equal to the square
of the ensemble mean. When this is true, the variance of the random variable that
is the outcome of (8.121) approaches zero as the period T goes to infinity.

As Khinchin (1949) and others have noted, ergodicity in the mean is equivalent
to the law of large numbers. In his discussion of ergodicity in statistical mechanics,
Khinchin defines an ergodic process as: “On average, a system, whose evolution
in time is governed by the equations of motion, remains in different parts of a
given manifold of constant energy for fractions of the total time interval which are
proportional to the volumes of these parts. Therefore, if we observe any physical
quantity associated with a given system over a definite time interval, the arithmetic
average of the results of a sufficiently large number of measurements will, as a rule,
be close to the (theoretical) statistical average.” He goes on to say that it is “hard to
prove ergodicity in classical systems and impossible in principle to do so in quantum
mechanics.”

Multiple-point expectations of one realization of a temporal random process
(see Sec. 8.2.2) can also be considered. For example, the finite-time autocorrelation
function of one realization with itself is given by

T ) 1

i
Re(atGo) =7 [ dt 0+ ALG) £ (0.Go). (5.124)

A random process is said to be ergodic in autocorrelation if Rr(At, () ap-
proaches the ensemble quantity R(At) as T'— oo. We can see that the ensemble
average of the sample quantity Rr(At,(y) is equal to the ensemble autocorrelation
function:

1
B{Rr(ALG) = 7 [ dB{f(+ALG) £ (G} = RAD, (8129

2
where the last step follows since R(At) is independent of the integration time T. It
is more difficult to demonstrate that the temporal average of Rr(At, () approaches
R(At) in the limit as T becomes infinite. While a test for ergodicity of the mean
requires knowledge of the ensemble mean and autocorrelation function, Papoulis
demonstrates that knowledge of fourth-order moments is required to test for ergo-
dicity of the autocorrelation function.

In general, demonstration of higher levels of ergodicity requires increasing
knowledge of the density function that describes the random process. One ex-
ception, however, is the special case of the Gaussian random process. We shall see
in Sec. 8.3.5 that in that case a straightforward criterion for complete ergodicity
can be stated.

Ergodicity comes into play in optics when we consider the output of a detector
sensing a rapidly fluctuating optical field. The period of integration in the finite-
time average (8.121) is directly analogous to the detector response time. If the field
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fluctuates rapidly enough that fluctuations in the random process are not evident in
the detector output, the random process can be said to be ergodic, and the detector
can be assumed to sense an ensemble average.

We have deliberately discussed ergodicity in terms of temporal rather than
spatial random processes. Remember that the first condition for ergodicity is that
the random process be stationary, but as we stated earlier in this section, the phys-
ical boundaries of objects and images make spatial stationarity rarely a plausible
assumption. Nevertheless, ergodicity is often assumed in the image-processing com-
munity to determine, for example, noise statistics at a single location in an image
(an ensemble quantity) based on the characteristics of the fluctuations in a spatial
region of that single image.

8.2.5 Spectral analysis

The Fourier transform is an important tool in the analysis of signals in general,
and random signals are no exception. The Fourier transform of one sample func-
tion of a random process is defined just as for any other function, and all of the
properties given in Chap. 3 are applicable. In some cases, particularly finite-power
random processes, it may be necessary to consider the sample function as a gener-
alized function and compute its Fourier transform by use of the theory of tempered
distributions, but this presents no essential difficulty. With the background on gen-
eralized functions presented in Chaps. 2 and 3, we should have no qualms about
issues of existence of the transform.

On the other hand, the Fourier transform of a random process is another ran-
dom process, and we are usually more interested in averages than in properties of
individual samples. In particular, with finite-power processes, we often want to
know how the average power is distributed as a function of frequency. The branch
of stochastic theory that addresses this question is called spectral analysis, and a
frequency-domain description of the average power is known as a spectrum, power
spectrum or power spectral density.

We shall give a brief overview of the historical development of spectral analysis
and then give two equivalent definitions of power spectral density. Initially the dis-
cussion will consider stationary processes in the time domain, but then we make the
transition to the space domain as we see how the theory can be applied to processes
that are not exactly stationary.

A brief history of spectra The early history of spectral analysis was motivated by
a desire to understand white light (Gouy, 1886; Rayleigh, 1903; Schuster, 1894,
1904, 1906). Gouy’s work was based on the Fourier series, while Lord Rayleigh
used the newly developed Plancherel (L) interpretation of the Fourier transform.
Wiener (1930) marvels (though not without a touch of irony) at these forays: “In
both cases one is astonished by the skill with which the authors use clumsy and
unsuitable tools to obtain the right results, and one is led to admire the unfailing
heuristic insight of the true physicist.”

Wiener’s own pioneering treatise, Generalized Harmonic Analysis
(Wiener, 1930), was built on the work of Sir Arthur Schuster. Schuster used a
windowed or truncated function defined by

fr(t) = f(t)rect(t/T), (8.126)
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with a Fourier transform defined by

[N

T
Fr(v)= / . dt f(t) exp(—2mivt) . (8.127)

2

Schuster proposed specifying the spectrum of f(¢) by the periodogram, defined
by

.1
SP(V)ZJ%TWT(V)F. (8.128)

By (3.135), |Fr(v)|? is the Fourier transform of the deterministic autocorrelation
integral (not to be confused with the statistical autocorrelation function) of fr(t).
Thus (8.128) is equivalent to

Sp() = Jim ZF{[frx fi (@) | (8129)

where F is the Fourier operator and, by (3.115),

e B0 = [ dt jr+1) 550, (8130)
Wiener’s approach was slightly different. He defined
1 37
Ruwr) =7 [© b fa+0) 110, (3.131)
_1l7

2

which differs from (8.130) mainly in the fact that the truncation is on the limits
rather than on both functions separately; there is also a factor of 1/7T built into the
definition.

The only requirement placed on the function f(¢) is that Ry, r(t) < oo for all
t, but this turns out to be a very useful mathematical condition (Champeney, 1987).
The special case t = 0 shows that these functions must be finite-power functions as
defined in (8.70). For such functions, Wiener defined a spectrum by

Sw(v) = lim F{Rwr(t)}. (8.132)

Note that neither S, nor Sy, involves any statistical average; both Wiener and
Schuster took a functional or deterministic viewpoint and did not invoke ensembles
of any kind. Thus their spectra apply to a single realization of the random process,
albeit one of infinite length. For any function for which Sy is finite, Sy and S,
are identical (Champeney, 1987).

Convergence issues In practice, one might think that a reasonable approximation
of S, or Sy could be obtained by using a single periodogram of finite length and
just omitting the limit T — oo in (8.128) or (8.132). It might also be expected that
this approximation would get better as T' gets larger. In fact, however, the Fourier
transform of a single sample function of a random process is a very poor spectral
measure.



RANDOM PROCESSES 391

Fig. 8.1 Three sample functions of a random process (top) and their peri-
odograms (bottom). The random process was created by calling a uniform
random-number generator independently at each of 1024 sample points, then
performing a discrete convolution with a Gaussian to produce a random pro-

cess with a Gaussian power spectrum. The sample functions were windowed as
shown, and the periodograms were computed by discrete Fourier transforms.

This point is illustrated in Fig. 8.1, which shows three sample functions of
different length of a stationary random process, along with the corresponding finite-
length periodograms. Note that the periodograms do not smoothly approach a limit
as T — oo but instead oscillate ever more rapidly.

One way to deal with the rapid oscillation is to average the periodogram by
convolution with some smooth function. In fact, this average can be built in by
windowing the samples with the Fourier transform of the smoothing function. This
approach smooths out any fine details that might be present in the spectrum but
provides better convergence as T gets large. Some additional approaches to this
problem will be discussed briefly in Sec. 8.4.4.

Power spectra as statistical averages Another way to fix the convergence problems
associated with S, and Sy is to use not one but many independent realizations
of the random process and to average the resulting periodograms. In the limit of
an infinite number of realizations, this approach, pioneered by Khinchin, amounts
to incorporating a statistical average in the definition of the spectrum. Khinchin’s

definition was
o0

Sac(v) = F{R(At)} = / dAt (f(t+ At) f*(t)) exp(—2mivAt) , (8.133)
where the subscript ac indicates that this version of the spectrum is derived from
the autocorrelation function R(At) of a stationary random process. The spectrum
defined this way is well behaved mathematically and universally used. Equation
(8.133) is often referred to as the Wiener-Khinchin theorem, though it is really a
definition rather than a theorem.

Expected periodogram Another way to incorporate an ensemble average into the
definition of the spectrum is to take the expectation of the periodogram,

Sepl) = Jim = (IFr (7). (8.134)
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Unlike Sqe(v), Sep(v) is defined for nonstationary as well as stationary random

processes, though they have to be finite-power processes for Se, to be nonzero. For

stationary processes, however, Se,(v) is equivalent to S,.(v), as we shall now show.
From the definition of Frr(v), we can write

Sep(v) = lim %/_Z dt /_O:O dt’" (f(t) f*(t')) rect (%) rect (%) exp[2mi(t' —t)v].

T—o00
(8.135)
Now we make the change of variables (¢,t') — (¢, At), where At = ¢ —t’. With the
assumption that (f(¢) f*(t')) = R(At) and a little algebra, we find

o0

Sep(v) = lim dAt R(At) tri (%) exp(—2mivAt), (8.136)

T—o0 — s

where the function tri(-) is defined in (3.139).
We can now use the convolution theorem (3.132) along with (3.142) to write

Sep(v) = lim_Sac(v) * T sinc®(Tv). (8.137)
But we know from (2.87) that T'sinc?(Tv) is a valid limiting representation of §(v).
From Sec. 3.3.6 we also know that convolution of S,.(v) with 6(v) reproduces S,.(v)
if that function is either a good function (defined in Sec. 2.1.2) or a generalized
function of compact support (defined in Sec. 3.3.6). The support can be chosen
arbitrarily large, or we can argue as in Sec. 2.3.1 that any generalized function can
be approximated arbitrarily closely by a good function.

Thus, with essentially no restrictions beyond stationarity, we have

Sep() = Sac(v). (8.138)

Because of this equivalence, we shall delete the subscripts henceforth and denote
the power spectral density simply by S(v). Either definition, (8.133) or (8.134), will
be used as convenient.

Spatial power spectra Stationary spatial random processes were discussed in Sec.
8.2.4. If this model is used, the spatial version of the Wiener-Khinchin theorem,
(8.133), is

S(p) = / d?Ar R(Ar)exp(—2mip - Ar). (8.139)

Stochastic Wigner distribution function A general way of applying Fourier analy-
sis to nonstationary random processes is to make use of the Wigner distribution
function, defined in Sec. 5.2.1. For a spatial random process f(r), we define the
stochastic Wigner function by [cf. (5.54)]

Wi (ro, p) = / d?Ar (f(ro+ 3Ar) f*(ro — 3Ar))exp(—2mip - Ar).  (8.140)

This expression should be compared to the Wiener-Khinchin theorem for a station-
ary random process, (8.139), which can be written in symmetrized form as
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S(p) = / dAr (f(r+ Ar) f*(r)) exp(—27ip - Ar)

= / d"Ar (f(ro+ 1Ar) f*(ro — 3Ar)) exp(—2mip - Ar), (8.141)

where the second equality follows since the autocorrelation function is independent
of shifts of the coordinate system for a stationary process. Thus, if the process is
stationary, the stochastic Wigner function is independent of ry and is precisely the
power spectral density.

For nonstationary processes, however, Wy(ro, p) is a function of ry as well as
p; it can be interpreted as the spectral content associated with point ro. This
interpretation is reinforced by examining the quasistationary case. From (8.119)
and (8.140) we can write

Wi (ro, p) = b(ro)/ d?Ar a(Ar) exp(—27ip - Ar) = b(rg) A(p) . (8.142)
Here the Wigner distribution function is just the Fourier transform of the short-
range part of the autocorrelation function, modulated by the shift-variant strength
of the slowly varying component at ry.

8.2.6 Linear filtering of random processes

We now derive the autocorrelation function of the output process that results from
linear filtering of a given random process. We shall consider stationary and nonsta-
tionary random processes and shift-invariant and shift-variant filters.

Nonstationary process, shift-variant filter We first consider the case where a random
process g(r) is generated as the output of the transformation of an input random
process f(r) by a linear shift-variant filter whose impulse response is denoted h(r,r’).
The output of the filter at positions r and r + Ar can be written, respectively, as

g(r) = / d%’ h(r,r’) f(r'), (8.143)
g(r+ Ar) = / d%’ h(r + Ar,x’) f(r'). (8.144)

By direct substitution of these expressions into the definition, (8.97), we obtain for
the autocorrelation of the output process at positions r and r + Ar:

Ry(r + Ar,r) = (g(r + Ar) g*(r))
- < /OO ' hr + Ar,t') F() /OO 4o h* (x,1") f*(r”)>

= / dqr'/ di" h(r + Ar,r’) Ry(r/,x") h* (r,x") . (8.145)
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The corresponding expression for the autocovariance is
Ky(r+ Ar,r) = Ry(r + Ar,r) — (g(r + Ar)) (¢"(r))

= / dqr’/ di" h(r + Ar, ") K (r/,r") h* (r,2") . (8.146)

This is the most general form for the autocovariance after linear filtering. It is the
continuous analog of the discrete result given in (8.50), as one can see by rewriting
it in operator form:

Kg =HK:HT, (8.147)

where KC¢ is the autocovariance operator, i.e., the integral operator with kernel
K¢ (r,r’), and similarly for ICq, while H describes the filter. There are no restric-
tions on ‘H in this equation, except that it must be a linear operator. It even applies
to linear CD operators, though in that case the left-hand side is a covariance matrix
rather than an autocovariance operator.

Nonstationary process, shift-invariant filter We consider next the case where the
random process g(r) is generated as the output of the transformation of a general

input random process f(r) by a linear shift-invariant filter with impulse response
h(r). The processes g(r) and f(r) are now related by convolution:

o) = [ ) 1) = ) 1), (8148)

where the notation of Sec. 3.3.6 has been used.
We can obtain the autocorrelation of the output process g(r) from that of the
input process f(r) by substituting (8.148) into (8.145):

Ry(r + Ar,r) = (g(r + Ar) g"(r))

= </OO d%" h(r + Ar —1') f(r') /OO A" h*(r — ') f*(r”)> ) (8.149)

Alternatively, we have

Ry(r + Ar,r) = </OO d%" h(r'") f(r + Ar — r’)/ dir" h*(x") f*(r — r”)>

o0

= / d?r’ h(r") / dir" h*(r")Rg(r + Ar —r',r — ") (8.150)
We can use convolution shorthand to write this equation as
R,(r+ Ar,r) = h(r + Ar) * Ry(r + Ar,r) * h*(r), (8.151)

where the notation indicates that the first convolution is evaluated at the position
r + Ar and the second is evaluated at the position r.
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Stationary random process, shift-invariant filter For the special case of a stationary
input process, the input correlation function in (8.150) can be written solely in
terms of the difference vector as

Re(r+Ar—r'r—1r")=(f(r+ Ar—1') f*(r —1")) = Ry(Ar—r' +1"). (8.152)

Then (8.150) can be written
R,(Ar) = / dr’ h(r’)/ dir" W (") Rp(Ar — ' + 1) . (8.153)

This equation is often written in a shorthand notation as (Papoulis, 1965)
R,(Ar) = (g(r + Ar) g*(r)) = h(Ar) * Ry (Ar) « h*(—Ar). (8.154)

This notation refers to the fact that the first operation is an ordinary convolution,
but the second is actually a correlation. In this shorthand a correlation is written
using the convolution notation with a change of sign of the argument. Alternatively,
one can use x to represent the correlation integral:

Ry(Ar) = (g(r + Ar) g*(r)) = [h * Ry x h™] (Ar). (8.155)
Fourier transformation of (8.155) yields the important formula

Sq(p) = Sy(p) |H(p)|?, (8.156)

where H(p) = F,{h(r)}. Thus, when a stationary random process is filtered by
a linear shift-invariant filter, the power spectral density on the output of the filter
is the power spectral density on the input times the squared modulus of the filter
transfer function. This result should be compared to the familiar result for shift-
invariant filtering of a deterministic signal. From (3.132) we know that

G(p) = H(p) F(p). (8.157)

In the context of stationary random processes, (8.157) applies to individual sample
functions while (8.156) applies to the power spectral densities.

Filtering of delta-correlated processes We are often concerned with random processes
where the correlation has such short range that Raf(r,r’) can be approximated by
b(r)6(r — r'). A prime example, the Poisson random process, will be discussed in
detail in Chap. 11. Another example is white noise, a stationary process that has
a flat power spectrum and hence a delta-function correlation. We now investigate
the effect of linear filtering on delta-correlated processes.

With delta correlation, the general space-variant filter equation, (8.144), leads
to

Rag(r+ ax) = [t/ hir+ Aex') [t o) o0 =) o)

o0 o0

/ d%" h(r + Ar,v’) b(r') h*(r,1’) . (8.158)
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For shift-invariant filters, where h(r,r’) = h(r — r’), this equation reduces to

Rpg(r + Ar,r) = / d%’ h(r + Ar — ') b(r') h*(r — 1’)

= b(r) * [h(r + Ar) h*(r)] . (8.159)

The shorthand here requires a brief comment. For purposes of the convolution, the
function [h(r + Ar)h*(r)] is to be regarded as a function of r for fixed Ar. As
shown by the integral in (8.158), this product function is then convolved with b(r),
and the convolution is repeated for different Ar to get the full dependence of the
nonstationary autocorrelation Raq(r + Ar,r).

Even though f(r) is uncorrelated for any finite lag, the filtering results in a
correlation on g(r). Suppose h(r) has a width w in each dimension, i.e., h(r) drops
to zero if the magnitude of any component of r exceeds 2w. Then [h(r + Ar) h*(r)]
drops to zero for all r if the magnitude of any component of Ar exceeds w. The
correlation in g(r) thus has a width in Ar determined by the width of the point
spread function.

If b(r) is the constant by, so that Ras(r—r’) = by é(r —r’), then we are dealing
with stationary white noise and a frequency-domain description is appropriate. The
power spectral density of A f(r) is just the constant by, and by (8.156) that of Ag(r)
is given by

Sag(p) = bol H(p)[? . (8.160)

The corresponding autocorrelation function is obtained by inverse Fourier
transformation:
Rag(Ar) = bolh x h*](Ar) . (8.161)

Thus the statistical autocorrelation function for filtered white noise is proportional
to the deterministic autocorrelation integral of the impulse response.

8.2.7 Eigenanalysis of the autocorrelation operator

In Sec. 8.1.6, we discussed the eigenvectors and eigenvalues of a covariance matrix.
In particular, we showed how a random vector could be expanded in a series with
uncorrelated coefficients by using eigenvectors of the covariance matrix as basis
vectors. This expansion was called the Karhunen-Loeve or KL expansion.

In this section we carry out a similar analysis for a random process, substituting
the continuous autocovariance or autocorrelation function for the discrete covariance
matrix. One result will be a continuous version of the KL expansion—a linear
transformation that will render a correlated process uncorrelated for any finite shift.

To maintain parallelism with Sec. 8.1.6, we restrict attention initially to finite-
energy random processes (thus ruling out stationarity), but later we extend the
analysis to finite-power processes and in particular to wide-sense stationary ones.
In that case we shall find that KL expansion is just Fourier analysis.

Autocorrelation operator 1t is arbitrary whether we develop KL analysis based on
the autocorrelation or autocovariance function; from (8.98) we can easily convert
between them. We choose the autocorrelation since we shall eventually make con-
tact with the Wiener-Khinchin theorem (8.133) or (8.139), which defines the power
spectral density as the Fourier transform of the autocorrelation function.
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For a general, nonstationary, spatial random process f(r), where r is a ¢D po-
sition vector, the autocorrelation function R(r,r’) is defined by (8.97). For now we
restrict attention to square-integrable random processes, so we can regard R(r,r’)
as the kernel of an integral operator R that maps Lo(IRY) to itself. Operating on
an arbitrary square-integrable function ¢(r), the operator R has the form

(Rt (x) = / o' R(r,v') H(r') (8.162)

Inspection of (8.97) shows that [R(r,r')]* = R(r/,r), so R is Hermitian (see Sec.
1.3.5).

Moreover, as we shall now show, R is compact. By the discussion in Sec. 1.3.3,
an integral operator is compact if its kernel satisfies the Hilbert-Schmidt condition
(1.33), which in the present multidimensional case generalizes to

/ dqr/ 4o’ R (r,1)[2 < 00 (8.163)

Denoting this integral by Iy s and inserting (8.97), we can rewrite this condition as
Ins = / dir / dir' [ (F() () |2 < oo. (8.164)

Now, for any random variable # we know from App. C that | (z)|? < (Jz|*). With
x = f(r’) f*(r'), this implies that

Ius < [ i [ (17 @) (8.165)

As discussed in Sec. 8.2.2, we can interchange expectation and integration, yielding

Lus < </OO dir |f(r)|2/oodqr'|f(r’)|2> . (8.166)

Every sample function f(r) is assumed to be square-integrable, so each integral in
(8.166) is finite. The output of the expectation operation is therefore finite and
Ixs < oco. Thus we have shown that R satisfies the Hilbert-Schmidt condition and
is therefore compact.

As discussed in Sec. 1.4.4, a compact Hermitian operator has a denumerable
set of eigenfunctions and real eigenvalues. Thus R satisfies an eigenvalue equation
of the form

Rn(r) = pndn(r). (8.167)

We noted in (8.106) that R is nonnegative-definite, so p, > 0. It is convenient to
order the eigenvalues by decreasing value:

> s > > > 0. (8.168)

Except in very special cases, none of these eigenvalues will be zero, so R has infinite
rank.
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Karhunen-Loéve expansions Since the eigenfunctions of a Hermitian operator can
be chosen to form an orthonormal basis, any function f(r) in the domain of R, i.e.,
L2 (RY), can be expanded in the form

f(I‘) = Z an¢n(r) s (8169)
n=1

where the coefficients are given by scalar products of the form

an = (¢n(r), f(r)). (8.170)

If f(r) is a sample function of a random process, then the coefficients «,, are
random variables. If f(r) is drawn from the ensemble described by R, then these
coeflicients are uncorrelated, as we shall now demonstrate. The cross-correlation of
two coefficients, a,, and a,,, is given by

(omar,) = ((@n(r), f(r)) (dm(x), f(x)7) . (8.171)

Writing out the scalar products as integrals and again interchanging integration and
expectation, we find

(@) = [ e [ 66 600) (106) 5760 (8.172)
By (8.97) and (8.167), we have

(@) = o [ 17 6,0) (), (8.173)
and the orthonormality of the eigenfunctions yields, finally,
(ana) = tn O, - (8.174)

Thus the expansion in (8.169) generalizes the Karhunen-Loéve expansion of random
vectors, as discussed in Sec. 8.1.6, to random processes.

Stationary random processes The derivation above of the KL expansion is not di-
rectly applicable to stationary random processes since their sample functions are
not, square-integrable. Hence the autocorrelation operator is not compact and its
eigenvalues are not denumerable.

Since the discrete index n on ¢, (r) and pu,, is no longer appropriate, we shall
leave off any index until we discover what to use. The eigenvalue equation for a
stationary random process is then

/ dr' R(r — ') ¢(r") = po(r). (8.175)
A simple change of variables yields

/ d' R(r') ¢(r — ') = po(r). (8.176)
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Direct substitution shows that the solution of this equation is

¢(r) = exp(2mip - 1), (8.177)

w= / d%' R(r") exp(—2mip - ') = F{R(r)} = S(p), (8.178)

where S(p) is the power spectral density as defined in (8.139). Thus, for a stationary
random process, the eigenfunctions of the autocorrelation operator are Fourier basis
functions (or plane waves), and the eigenvalues are given by the power spectral
density. The problem is mathematically equivalent to singular-value decomposition
of a linear, shift-invariant system as discussed in Sec. 7.2.5

The eigenfunctions and eigenvalues are distinguished by a continuous vector
index p (the spatial frequency), rather than by a discrete index n. Thus we denote
the eigenfunction in (8.177) as ¢,(r) and the eigenvalue as p,. With this notation,
the KL expansion (8.169) becomes

106 = [t Fp)o,0) = [ Flp)expizrip ). (.179)

By analogy with (8.170), the expansion coefficients F(p) are given by

F(p) = / d?r f(r)exp(—2mip-r). (8.180)

Formally, (8.179) states that the KL expansion is simply the representation of a
sample function of the stationary random process by its inverse Fourier transform,
while (8.180) says that the expansion coefficient is the Fourier transform of the
sample function. In this sense, KL expansion reduces to Fourier analysis in the
stationary case. In a strict mathematical sense, however, this interpretation raises
some problems. If f(r) is a sample function from a stationary random process, it
must have the same mean value at all points in the infinite domain R% Hence it
is not square-integrable or absolutely integrable, and the classical Fourier existence
and convergence theorems do not apply.

We can fix these problems in one of two ways. One approach is to presume
that each sample function is truncated by a window function of finite size, and then
let this size go to infinity as in Sec. 8.2.5. A neater approach is simply to regard
f(r) as a generalized function related to a tempered distribution. This requires only
that the sample function be integrable when multiplied by a good function such as
a Gaussian, which is an easy condition to satisfy. From the discussion in Sec. 3.3.4,
we know that F(p) is also a generalized function in that case. For example, if f(r)
has a nonzero mean f (which must be independent of r because of the stationarity),
then F(p) must contain a term f §(p).

From the viewpoint of generalized functions, we can now discuss the correlation
properties of the expansion coefficients F/(p). A derivation paralleling the one that
led to (8.173) shows that

(F(p) F*(p')) = S(p)é(p—p'). (8.181)

Just as in (8.173), the KL expansion coefficients are orthogonal for a stationary
random process, but now orthogonality is defined with a Dirac delta rather than
a Kronecker delta. Thus Fourier transformation of a stationary random process
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results in a delta-correlated random process. We shall make use of this result in the
next chapter on Poisson random processes.

Another important conclusion from (8.181) is that the second moment (|F(p)[?)
is infinite for a stationary random process. Since the mean of the Fourier transform,
(F(p)), is the same as the Fourier transform of the mean, F{(f(r))}, we would not
expect | (F(p)) | to be infinite (except possibly for p = 0), so (8.181) implies that
the variance of the Fourier transform of a stationary random process is also infinite.

8.2.8 Discrete random processes

As we discussed in Chap. 7, digital images are discrete vectors, and it is often useful
to model actual, physical objects as discrete vectors also. When we analyze the
stochastic properties of digital images or discrete object models, then, they become
random vectors. The general treatment of random vectors from Sec. 8.1 is applicable
here, but there is also an additional structure we can exploit. If a random vector
g represents an image and each component of the vector represents a pixel, we are
interested above all in the relationship between the values at different pixels. If we
shuffled the pixels into a different arrangement, they would not represent the same
image.

A similar situation occurs in discussing random temporal signals, where the
temporal ordering of the signal values is key. For example, if a random analog
waveform f(t) is sampled at regular time points for further digital processing, the
sequence of values {f(t,)} constitutes a random vector in which the order of the
elements must be maintained.

We shall use the term discrete random process® to mean a random vector in
which crucial information is contained in the temporal or spatial arrangement of the
component values. Loosely, a discrete random process is a random vector endowed
with a topology. For temporal processes, the term random sequence is often used,
and some books adopt this term for the spatial case as well.

Discrete stationarity in 1D Suppose the sequence {f,} is obtained by sampling a
stationary temporal random process f(t) at regular intervals ¢t = ¢, = nAt. The
sampling could be simple point sampling where f,, = f(¢,), but a more general
form is -
fn :/ dt f(t)s(t, —1). (8.182)

The sampling function s(t) is a delta function for point sampling, but in general it
is unrestricted in what follows. Note that (8.182) is in the form of a convolution,
so fy, consists of point samples of the random process [f * s](t).

If f(t) is wide-sense stationary, so is [f * s](¢). It then follows that the
covariance matrix of the samples { f,,} satisfies [cf. (8.112)]

Ko = ke - (8.183)

Note that the left-hand side of this equation has two indices but the right-hand side
has just one; if there are N elements in the sequence {f,}, there are N? elements

5Note that the elements of the random vector need not be discrete random variables; the term
discrete here refers to the temporal or spatial variable.
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in the matrix K but only N independent ones. Each row of the matrix is a shifted
version of every other row. Matrices with this structure are said to be Toeplitz.

Circulant covariance matrices We encountered Toeplitz matrices in a deterministic
context in Chap. 7. Specifically, we saw in Sec. 7.4.4 that a considerable mathe-
matical simplification resulted if we could approximate the Toeplitz matrix by a
circulant one, where the difference n — n’ in (8.183) is interpreted modulo N, with
N being the total number of samples. For example, if n and n’ run from 0 to 255,
then the pairs (n = 10,n’ = 5) and (n = 2,n’ = 253) have the same value for n —n’
modulo 256 and hence the same correlation if K is a 256 x 256 circulant matrix.
Physically, of course, this makes no sense; elements 5 and 10 of the sequence are
close together and might be expected to be correlated, but elements 2 and 253 are
widely separated, and there is no reason to believe that they should have the same
correlation as elements 5 and 10.

Nevertheless, the circulant approximation to a Toeplitz covariance matrix is
often used, just as is the circulant approximation to a discrete convolution [see Sec.
7.4.4, especially (7.344)]. The error might be tolerable if the kernel (k,_, in the
stochastic problem or h,,_, in the deterministic problem) is compact and our in-
terest does not extend to the extreme elements in the sequence. Some vigilance is
required to be sure that we do not fall into a trap when we assume that a Toeplitz
matrix is approximately circulant.

The reason we might want to make this approximation was laid out in Sec.
7.4.4: a circulant matrix is diagonalized by a DFT [see (7.352)]. For the deter-
ministic DD problem considered in Sec. 7.4.4, that meant that the DFT basis was
essentially the SVD basis when the system was described by a circulant H matrix.
In the stochastic context of this chapter, the DFT basis is the KL basis when we
can use the circulant form for the covariance.

Discrete spatial stationarity Circulant stationarity is even more suspect than contin-
uous stationarity in imaging applications, but for completeness we state the math-
ematical results explicitly. If we consider an image g to be a gD discrete random
process, then the elements of the image can be denoted by ¢, where m is a gD
multi-index as introduced in Sec. 3.4.6. If each component m,; of m runs from 0 to
M —1, then circulant stationarity means that [Kg|mm’ depends on m; —m/ modulo
M for all 7. In that case, as discussed in Sec. 7.4.4, the circulant covariance matrix
is diagonalized by a ¢gD DFT, and the basis vectors in this transform comprise the
KL basis.

The cyclic character of the covariance matrix becomes less objectionable as
the array gets larger if the correlation length is constant. In the limit as M — oo,
the distinction between Toeplitz and circulant vanishes. In that case, the
Toeplitz/circulant matrix is diagonalized by the discrete-space Fourier transform
(DSFT) introduced in Sec. 3.6.4, and the KL basis vectors form a continuous basis
indexed by the spatial-frequency vector p. To use this basis, however, we must
now make two unphysical assumptions: an infinite amount of data and discrete
stationarity over an infinite domain.
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8.3 NORMAL RANDOM VECTORS AND PROCESSES

Among the many probability laws for continuous random variables, the normal prob-
ability law is certainly the most commonly encountered. The fundamental reason
for this is that when statistically independent random variables are added together,
their sum asymptotically follows the normal distribution. (We shall provide a more
rigorous treatment of this principle later in this section.) The second reason for
the popularity of the normal law is that, as we shall soon see, its structure leads
to straightforward and well-understood manipulations. The third reason follows
from the first two: a great collection of practically useful statistical tools develop
as elaborations upon the normal probability law.

The normal law is frequently named for C. F. Gauss (1777-1855), whose The-
ory of the Combination of Observations (1823) has earned him this eponymity.
We shall use the terms normal and Gaussian interchangeably.

8.3.1 Probability density functions

For simplicity we consider here only real random variables and vectors, but the
complex case is treated in Sec. 8.3.6. The PDF of a real normal random variable g
is given (see App. C) by

pr(9)=[ : reXP [—M] , (8.184)

2702 202

where § is the mean of the random variable and o2 is its variance. To indicate that
a random variable g is drawn from a normal distribution with parameters g and o2
we write g ~ N (g,0?).

A multivariate normal random vector is a straightforward generalization of the
univariate or scalar case. If each component of an MD random vector g is a normal
random variable, the full probability law on g is a multivariate normal PDF pr(g),
given by

pr(g) = [(2m)" det(K)]exp [~ (g &) K (g -8)] . (8.185)
where g is the mean vector and K is the covariance matrix of g as defined in Sec.
8.1.3. As shown in that section, K is an M x M, positive-semidefinite Hermitian
matrix. The diagonal element K,,,, of the covariance matrix is the variance of the
m*" component of g, and the off-diagonal elements of K are related by K, = Kpn
for real vectors. We denote an M x 1 random vector drawn from a multivariate
normal distribution with parameters g§ and K by g ~ Ny, (g, K). Its density func-
tion is seen from (8.185) to be the exponential of a quadratic form in the random
vector.

Diagonalization of the covariance matrix of a Gaussian random vector In Sec. 8.1.6
we showed how the KL expansion of a random vector in terms of the eigenvectors
of its covariance matrix results in uncorrelated components. We now revisit the KL
expansion procedure for the particular case of Gaussian random vectors. We shall
show that, for a multivariate normal, the KL transformation yields a vector with
uncorrelated components that are also statistically independent.
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From (8.64) we know we can express the inverse of the covariance matrix K
as

K'=&M &', (8.186)

where again ® is the matrix formed from the eigenvectors ¢, of K, and M is a
diagonal matrix with the m!" diagonal element equal to the eigenvalue ji,,,. We can
use (8.186) to rewrite the quadratic form of (8.185) as

(g-8)'K'(g-8 =(@g-8'®M '@/ (g—7g)

- |2'(e- )| VS @le-2)], (8.187)

where we have used the unitarity of ®. We define the random vector AG3 by [cf.
(8.60)]

AB=dl(g—g). (8.188)

Combining (8.187) and (8.188), we obtain

[@T(g - E)} "M [qﬂ(g - g)] =ABM ' AB = ]ij AB2 . (8.189)

From (A.73) in App. A, we know that the determinant of K is the product of
its eigenvalues. Using this fact and (8.189), we can rewrite (8.185) as

M
exp (_% 3 %>

m=1 Hom

M
pr(g) = (2m)~M/? lH Nm]

M
T @) 2 esp (—% AM—B’Q"> — (3.190)
m=1 m

where the last step is valid since the transformation from g to @ is unitary and
hence the Jacobian is unity.

Thus, when the quadratic form is diagonalized, the Gaussian multivariate PDF
can be written as a product of univariate PDFs, which means that the new variables,
A, are statistically independent. While the components of the random vector
g may covary (as represented by the elements of the covariance matrix K), the
components of the random vector AfJ are uncorrelated, with diagonal covariance
matrix M, and statistically independent. The mean of each component Ag,, is 0
and its variance is simply . The product form of the PDF in (8.190) also makes
the normalization of the multivariate Gaussian density readily verifiable.
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Fig. 8.2 Contours of constant probability density for a multivariate normal,
before and after diagonalization.

Figure 8.2 depicts contours of constant probability for the multivariate normal
PDF before and after the diagonalization of K. Following the diagonalization oper-
ation the surfaces are found to be ellipsoids whose axes have lengths proportional to
the square root of the corresponding eigenvalues .,,,. The diagonalization operation
rotates the coordinate axes to coincide with the eigenvectors of K.

When does uncorrelated imply independent? We have just seen that a normal ran-
dom vector with uncorrelated components also has statistically independent com-
ponents. The converse always holds —statistically independent components must
be uncorrelated — but it is only the normal law for which uncorrelated components
are statistically independent.

8.3.2 Characteristic function

The diagonalized form of the PDF given in Sec. 8.3.1 provides an easy way to derive
the characteristic function of a multivariate normal random vector. From (8.188)
and the unitarity of ®, we can write g as

g=®AB+E. (8.191)

Thus the characteristic function for g is given by

Ug(€) = (exp [~2mi€' (®AB +7)]) = exp(~2mig'g) (exp |—2mi(@7¢)'AB] )
(8.192)
where we removed a constant factor from the expectation and used the definition
of adjoint, (1.39), to get the last form. Using (8.190) for the PDF and writing out
the expectation in detail, we find
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M
Vg(€) = H (277/Lm)_1/2 exp(—2mi&m G, )

m=1

X /OO dAB,, exp <—% A,uﬂ?n) exp {—27ri(<I>T£)mA6m} . (8.193)

—c0 m

Now we have a product of 1D integrals, each of which is just the Fourier transform
of a Gaussian; by (3.180) we have

M
Ug(€) = [ exp(—2micng,) exp |—27%um (@1€)2] - (8.194)

m=1

From (8.186) we can see that

M
> i (®76)7, = ¢'K¢, (8.195)
m=1
so we have, finally,
g(€) = exp(—2mig'g) exp (—2m7¢'KE) (8.196)

For § = 0, we obtain exp(—2m2¢"K¢), which is easy to remember since it is
Gaussian in the Fourier domain with spread inverse to that in the domain of the
random variable (i.e., K occurs in place of K~1). The complete form, (8.196), may
then be recalled by invoking the Fourier shift theorem (3.108).

Moments We can use the characteristic function given in (8.196) to determine the
moments of a multivariate normal random vector. If we apply (8.30) and (8.31) to
(8.196), we obtain (g) = g and (gg'’) = K +gg'. If g = 0, then (gg') = K. By
continuing along this path we find that all odd moments of this distribution are
zero for g = 0, and all even moments are expressible in terms of K.

We shall find that we frequently need fourth moments of the form (g;g,9x9:),
where the g;, etc., are components of a four-dimensional vector g distributed as
N4(0,K). We can obtain the desired result, referred to as the Gaussian moment

theorem, by using the rules for differentiation with respect to a real vector given in
Sec. A.9.2. We find that

0" g(§)
3G == = KK+ Ky Ky + K Kj; . 8.197
<g g_]gkgl> (8€la§kagja§l -0 gkl + 7k l + kg1 ( )
For the case where i = j = k =, we find (g} ) = 307}, which is a familiar result for
univariate normals given in (C.112).

8.3.3 Marginal densities and linear transformations

In this section we derive various descriptors of the behavior of subsets and transfor-
mations of the components of a multivariate Gaussian random vector. We start by
analyzing the behavior of a single component, regardless of the behavior of the other
components, as described by the marginal PDF. We then discuss the behavior of a
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random vector obtained from linear transformation of a Gaussian random vector.

According to (8.5), the marginal PDF on component g; of an MD vector g is
obtained by integrating the multivariate PDF over all g,, except for m = i. From
the central-ordinate theorem of Fourier analysis, (3.104), we know that integrat-
ing a function over (—oo,00) is equivalent to setting the frequency to zero in its
Fourier transform. Thus the univariate characteristic function for g; is related to
the multivariate characteristic function for g by

With (8.196), we have

g, (&) = exp(—2mi&g,) exp(—2m Kif]) . (8.199)

This is just the characteristic function for a univariate normal with mean g, and

variance K;;. Perhaps surprisingly, the form of the marginal on g; does not depend

on K, for i # m, even though g; may be correlated with the other components.
Similarly, the bivariate characteristic function for g; and g; is given by

1/}.%79;' (§i5 g]) = 1/}g(05 07 sy gia ceey gja ceey O)
= exp (—27riét§) exp [—271'2?12%} , (8.200)
where £ = (¢,£;), € = (7,,7,)" and

- K. K.
K= " Y } . 8.201

[ Kij  Kjj (8:200)
Inverse Fourier transformation of (8.200) yields a bivariate normal PDF with the ex-

pected mean and covariance. Again, we do not need to know covariance components
other than the ones represented in the marginal of interest.

Other linear transformations of normal random vectors Computation of a marginal
is equivalent to finding the PDF for the output of a linear transformation of a
random vector. For example, the component g; can be singled out by computing
the scalar product of g with an 1 x M row vector having a one in the i** column
and a zero in all others. Similarly, the 2D vector (g;, g;) results from applying a
2 x M matrix operator with ones in positions (1,%) and (2, j) and zeros in all other
locations. We now compute the PDF for a random vector formed from a general
linear transformation.

Consider the random vector y = Og, where y is a K x 1 vector, O is a real
K x M matrix and g ~ N(g,K). The characteristic function for y follows from
(8.43) and (8.196):

Yy (€) = 1g(0'€) = exp(—2mi&' OF) exp (—272£'OKO'E) . (8.202)

By inspection, then, y ~ N (Og, OKO"). Thus any linear transformation of a
normal random vector leaves it normal.

In fact, the converse of (8.202) also holds: An M x 1 random vector is normal if
and only if its scalar products with all M x 1 vectors are univariate normal (Mardia
et al., 1979).
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8.3.4 Central-limit theorem

In this section we show that the sum of a large number of random variables tends
to be normally distributed. This property, known as the central-limit theorem, is
one of the reasons for the prominence of the Gaussian law in probability theory.

We shall introduce the central-limit theorem in stages. Initially we consider
i.i.d. (independent and identically distributed) scalar random variables, where all
moments are finite. These assumptions allow an elementary derivation, though one
with restricted validity. Next we discuss the case of i.i.d. random variables where
some of the higher moments may be infinite. Then we allow the variables to have
different variances and some degree of statistical dependence. Finally we comment
briefly on the vector case.

Independent and identically distributed random variables Consider a set of J i.i.d.
random variables u;, 1 < j < J, with means u and variances o2 First we define
standardized (zero-mean, unit-variance) random variables by

;= . (8.203)

Then we construct a new random variable z, defined by

J
1
z= ﬁzxj. (8.204)
j=1

Because the variance of a sum of J i.i.d. random variables is J times the individual
variances, and the variance of x;/ ViJis 1 /J, z has unit variance. Moreover, since
z is a sum of zero-mean random variables, it also has zero mean. We want to show
that as J — oo the PDF on z tends toward a standard normal distribution, from
which it follows readily that the sum of the u; is normal with mean Ju and variance
Jo?

The derivation proceeds most easily with the aid of characteristic functions.
We shall denote the characteristic function of z; as 1,(§); no index j is needed
since the characteristic function has the same form for all of the z;. If we assume
initially that all moments of z; are finite, we can expand 1,(£), in a Taylor series:

V2 (&) = (exp(—2mi&x;)) = 1 — 2mi&{x;) — 42i|§2 <I§> + ...

4 2
—1- %52 T (8.205)

where the second line follows since (z;) = 0 and (z7) = 1.
The characteristic function of z is given by

J
¢z<5>—<exp<—2m5z>>—<exp “ori (%)Z >
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where the independence of the x; has been invoked on the second line to write the
expectation of a product as the product of the expectations, and the fact that the
x; are identically distributed is the key to the last step.

We can now insert the Taylor expansion (8.205) into (8.206), yielding

27.‘.252

J
m):[l— +RJ<5>] , (8.207)

where R ;(€) is the remainder if the Taylor expansion is truncated with the quadratic
term. By Taylor’s theorem (Rade and Westgren, 1990), R;(€) tends to zero (for any
fixed &) at least as fast as J~3/2 when J — oo. Thus, in spite of the J* power, these
higher terms vanish in the limit. The quadratic term must be retained, however, so
that y oy

Jim () = Jim (1 i ) — exp(—27%€?), (3.208)

which is the characteristic function of a standard-normal random variable. It then
follows from the celebrated continuity theorem of Paul Lévy (see Loéve, 1963) that
z~N(0,1).5

It is straightforward to go from (8.208) to the probability law for the sum of
the original random variables u;. Defining

J
s;=Y uj, (8.209)
j=1

the reader may show that s; ~ N'(Ju, Jo?)

We have therefore seen that an infinite sum of independent, identically dis-
tributed random variables follows a normal distribution, at least when the individ-
ual characteristic functions admit of a Taylor expansion. It must be emphasized,
however, that the central-limit theorem guarantees normality only asymptotically;
it might not be a good approximation for large but finite J. Often the convergence
to normality is rapid, requiring as few as perhaps 5—10 terms, but we should be
cautious about finite sums of skewed or otherwise long-tailed PDFs. An extreme
example is the case of sums of log-normal distributions, which converge very slowly
to the central limit (Barakat, 1976).

Infinite moments There are common PDFs where some of the higher moments
are infinite. In Sec. C.5.10, we encountered the Lévy family of distributions, and
we noted that the mean was zero but the variance was infinite. A special case
of the Lévy distribution is the Cauchy distribution, where pr(z) x (a? + 2?)7% a
well-known and broadly useful PDF of infinite variance. On the other hand, if we
consider pr(z) o< (a? + 22)~2% then the variance is finite but the fourth moment is
infinite. The common feature of these examples is that the characteristic function
is not differentiable to all orders and hence cannot be expanded in a Taylor series.
Therefore we need to inquire whether it is possible to derive a central-limit theorem.

SThanks to Jack Denny for calling our attention to this theorem.
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The key is a theorem proved in Shiryayev (1984). If (|z|™) exists for some
n > 1, then the k" derivative of 1, (¢), denoted @[Jg(ck) (€), exists for every k < n, and

~ i)k &)™
bale) = 30 TS oy, CRE" (), (3.210)

n!

where [e,(£)| < 3(|z[") and €,() — 0 as & — 0. So long as {|z;|*) is finite,
this theorem justifies the steps from (8.205) to (8.208), even when the full Taylor
expansion for 1, (£) does not exist.

For the examples given above, <|xj |3> is infinite for the Lévy and Cauchy PDFs,
so the limiting PDF is not normal; in fact, a sum of any number of Lévy random
variables is still a Lévy random variable. For pr(z) o« (a? + 2?)~2 however, (|z;|*)
is finite and there is a normal central limit.”

Independent but not identically distributed random variables Now suppose that the
random variables u; are independent but have different means and variances. Let
the mean of u; be denoted by @, and the variance by 0J2-, and define

Uj — ’U,j
J 2
Ej:l gj

The extra subscript is needed since the denominator depends on J. Note that

iy = (8.211)

J
(xj7) =0 and Z Var(z;;) =1. (8.212)
j=1
Now we can define a standardized random variable z by

J
2= . (8.213)
j=0

If the means and variances are independent of j, this definition of z reduces to
(8.204).

Shiryayev (1984) discusses various sufficient conditions under which z will tend
to a standard normal as J — oo. They all amount to saying that the variables x;;
are asymptotically infinitesimal, in the sense that <x§J> — 0as J — oo, or
equivalently that, for every e,

Pr(|lzjs| >€) — 0 as J — 00. (8.214)

This condition is plausible in most practical circumstances because of the denomi-
nator in (8.211); so long as the variances sz do not themselves tend to zero rapidly
as j gets large, the sum of the variances will increase as the number of terms in-
creases, so xj7, which is normalized by this sum, must get smaller in virtually any
sense.

Thus the central-limit theorem states that a sum of asymptotically infinitesi-
mal, zero-mean random variables tends to a standard normal, so long as the sum

"We thank Dana Clarke for helpful discussions on these examples.
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of their variances is normalized to unity (Shiryayev, 1984). From this statement,
it is again straightforward to show that the sum of the original variables u; is
also asymptotically normal. Specifically, as J — oo, s; becomes distributed as

NJ[E]‘ Uy Ej Var(u;)].

Sums of dependent random variables Though the central-limit theorem is usually
stated for sums of independent random variables, strict independence is not re-
quired. For a detailed discussion, see Shiryayev (1984).

Sums of i.i.d. random vectors Central-limit theorems can also be stated for random
vectors. We mention here only the simplest case of i.i.d. random vectors where all
moments exist.

Let u; be an M x 1 random vector with mean @ and covariance K, both
independent of j, and assume that u; is independent of uy, for j # k. Also let

J
sj=) uj. (8.215)
j=1

Then, as J — oo, s; ~ Ny (Ju,JK,). The proof of this statement involves
multivariate characteristic functions and the multivariate Taylor expansion (A.179).
With this hint, the reader should be able to retrace the steps leading up to (8.208).

8.3.5 Normal random processes

As we shall see in more detail in Sec. 8.4.3, we can sometimes apply the central-limit
theorem and argue that the random process representing an object or image is nor-
mal. In preparation for that discussion, we examine here some of the mathematical
properties of normal random processes. We initially adopt a rather unconventional
starting point and define normal random processes in terms of characteristic func-
tionals, but then we shall show that this definition is equivalent to a more common
one.

Characteristic functional and linear operators The general form of the characteristic
function of a normal random vector is given in (8.196); it can be extended to random
processes by use of the characteristic functional, as introduced in Sec. 8.2.3. By
analogy to (8.196), we define a real-valued normal random process by requiring
that its characteristic functional be given by

e (s) = exp(—2mis'f) exp(—2n%sTK¢s) (8.216)

where K¢ is the autocovariance operator, i.e., the integral operator with kernel
K (r,r').

From (8.216) and (8.96) we can readily show that all linear functionals of a
normal random process are normal. If we let g = Hf, where H is a linear CD
mapping (see Sec. 7.3) defined by

Im = / dir hpy(r) f(r), m=1,.,M, (8.217)

then (8.96) becomes
V(&) = exp(—2mistHT) exp(—272sTHKCHs) . (8.218)
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By comparison with (8.196), we see that g is an MD random vector with mean Hf
and covariance HIC¢H.

Exactly the same conclusion holds when H is an integral operator. Linear
filtering of a normal random process yields another normal random process. Since
normal processes are fully determined by their mean and autocovariance (or auto-
correlation) function, the formulas given in Sec. 8.2.6 are all we need for a complete
statistical description of the output of a linear filter if we know that the input is a
normal process.

Multipoint densities and autocovariance functions One way of defining a normal
random vector is to require that all of its marginals must be normal (Sec. 8.3.3).
Similarly, a normal random process can be defined as one for which all univariate
or multivariate marginals are normal. In that approach, a random process f(r) is
normal if all M-point PDFs, pr[f(r1), f(r2), ..., f(rar)] for all M, are normal. We can
use (8.218) to show that defining a normal random process by (8.216) is equivalent
to requiring that all multipoint densities be normal. Evaluating the random process
at the M points {r,,,m = 1,..., M} is a CD mapping with

h(r) =6(r — 1) . (8.219)

Thus g, = f(rm), and it follows at once from (8.218) that pr[f(r1), f(r2), ..., f(rar)]
is an MD normal density. An explicit form for this density can be stated most
compactly by defining an M x 1 vector fp; with m*" component given by f(r,,).
For simplicity we assume that f(r) is real. Then the M-point PDF is given by

pr(f(r1), f(r2), ..., f(rar)] = pr(far)
= (27T)_%M| det K]ul_% exp [—%(fM —?M)t K]T/Il (fM — ?M)} 5 (8220)

where fy; is the M x 1 mean vector, with components (f(r,,)), and Ky is the
M x M covariance matrix, with components given by

(Kat] gy = ([F (0m) = (fem))] [ (0n) = (f(xn )]) - (8.221)
Comparison with (8.98) shows that
Kl = K (T, r0) - (8.222)

Thus the covariance matriz in an M-point PDF for a normal random process is
fully determined by the autocovariance function of the process. Knowledge of this
function and (f(r)) is therefore sufficient to specify all M-point densities and hence
to fully characterize a normal process.

For completeness, we next show that (8.222) also follows from the transforma-
tion rule, Kg = HICHT With K¢ = K/, and the kernel of H as given by (8.219),
we can write

Kyl = [Hicfw]

= / dqr/ A" §(r — ) Ke (v, 1) 5(r' — 1) = Ke(vpm,10), (8.223)

where the last step has used the sifting property of delta functions.
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Ergodicity and stationarity ~Stationarity is defined for normal random processes just
as for any other random process. A useful simplification, however, is that we do
not have to distinguish wide-sense and narrow-sense stationarity in the normal case.
Since the full statistics are inherent in the mean and autocovariance function, wide-
sense stationarity (stationary mean and autocovariance) implies narrow-sense or
strict stationarity (Papoulis, 1965).

For stationary Gaussian random processes, a straightforward criterion for er-
godicity can be stated. Cornfield et al. (1982) show that such a process is ergodic if
and only if its power spectral density is continuous. From (3.107) and the Wiener-
Khinchin theorem (8.133), an equivalent statement is that a stationary Gaussian
random process is ergodic if and only if its autocorrelation function vanishes at
infinity. Since many physical processes are Gaussian as a result of the central-limit
theorem, we can quite often invoke ergodicity on the basis of this theorem.

8.3.6 Complex Gaussian random fields

It is often useful to describe a wave by its complex amplitude. If the wave is regarded
as random, perhaps because it has been scattered from a random object, then the
wave amplitude u(r;) at any point ry is a complex random variable. Similarly, the
set of amplitudes at K different points, {u(ry),k = 1,..., K}, is a KD complex
vector, and u(r) itself is a complex random process. Moreover, a wave amplitude
is usually computed as a diffraction integral or some other linear superposition. If
different elements of this superposition are linearly independent random variables,
then the central-limit theorem will lead to normal distributions, so we often en-
counter complex Gaussian random fields.

In one sense, there is nothing new about complex Gaussian random fields; we
can describe them with the tools already developed for real Gaussian fields just by
considering the real and imaginary parts separately. For example, a K x 1 complex
vector can also be written as a 2K x 1 real vector, where the first K components
are the real parts and the second K are the imaginary parts. The covariance matrix
in the first case is a K x K Hermitian matrix with complex off-diagonal elements,
and in the second case it is a 2K x 2K real, symmetric matrix.

Random phase If the complex variables result from random waves, the physics
of wave propagation may allow us to impose some additional restrictions, thereby
simplifying the mathematics. The phase of a wave relates to the total optical path-
length from a radiation source to the point at which the phase is measured. The
natural unit of this pathlength is the wavelength, and typically the paths are very
long compared to a wavelength. That means that if we alter the pathlength by a
small fraction in absolute terms, it may nevertheless change by several wavelengths,
and each change of one wavelength alters the phase by 27w. Now, the pathlength
(in units of wavelength) may be random for many reasons: we may consider an
ensemble of objects with different positions and different rough surfaces, or we may
interpose random phase-altering elements such as diffuse reflectors or ground-glass
screens, or we may consider a broad spectrum of wavelengths. The result is that
it is frequently an excellent approximation to assume that the phase is completely
random.

To state this approximation more mathematically, we denote the wave am-
plitude (at some unspecified point) by u = Ae'® = x + iy, where x = Re(u) and
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y = Im(u) and A is a real number. We do not need to consider phase angles ¢
outside the range [0,27) since €*? is periodic. The phase randomness implies that
the PDF on ¢ is constant in this range. The constant can be fixed since the PDF
must be normalized to unity, and we can write

pr(¢) = % ,  0<¢<orm. (8.224)

We assume that this PDF on ¢ is valid for all A, so pr(¢|A) = pr(¢), and ¢ and A
are statistically independent.

We can use this density to deduce some important properties of u even without
specifying the statistics of A. Since the real and imaginary parts of v are given by

x=Acoso, y= Asing, (8.225)
we see that (8.224) implies
(x) = (Acos¢) =0, (y) = (Asing) =0. (8.226)

Thus z and y are both zero-mean, and hence so is the complex wu.
The variances of x and y must be equal since

(2?) = (A2cos? ¢) = 1 (A2) | (47) = (AZsin?g) = L (A%).  (8.227)

The marginal PDFs on z and y must also be the same, regardless of the PDF of
A, since sin ¢ and cos ¢ have the same PDFs if ¢ is uniform. (As an exercise, the
reader can determine what this PDF is.) Moreover, x and y are uncorrelated since

(zy) = (A cos psing) = 0. (8.228)
We can summarize the last two equations in complex form by writing
(W) =(W?) =0,  (w’)=(u"u) = (A%) #0. (8.229)

Invocation of the central-limit theorem If we now assume that the wave amplitude
at any point is the sum of contributions from many independent sources (perhaps
points on an illuminated rough surface), then the real and imaginary parts are nor-
mal by the central-limit theorem. That means that x and y are not only uncorrelated
but also statistically independent; we say that « and y are i.i.d. (independently and
identically distributed). Their joint density is given by

2 2
Ty > , (8.230)

1
PY(I,ZJ):WGXP T T 9,2

where 02 is the common variance of x and y. Contours of constant PDF in the z-y
plane are circles (see Fig. 8.3), so u is referred to as a circular Gaussian random
variable.
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Fig. 8.3 Surfaces of constant probability density for a circular Gaussian ran-
dom variable.

Other useful PDFs Since A = /22 +y? and ¢ = tan~!(y/z), we can convert
pr(z,y) in (8.230) to pr(4,¢) by means of (C.104). The result is the Rayleigh
distribution, given in (C.140) as

pr(A, ¢) = —2 exp< A2>. (8.231)

2mo? 202

We shall see in Chap. 11 that the irradiance I = |u|? plays a key role in
photodetection and photon counting. If pr(x,y) is given by (8.230), the PDF on I
and ¢ is

1 -1

1 9) = 2.7 &P (7) ; (8.232)

~

pr(

where T = 202 The PDF on I alone, obtained by omitting the 27 in (8.232), is a
chi-squared PDF with two degrees of freedom (see Sec. C.5.5). In general, a chi-
squared random variable with N degrees of freedom is the sum of the squares of N
i.i.d. normal random variables; here N = 2 since I = 22 + y2.

Two-point densities for circular Gaussians Next we examine two-point PDF's involv-
ing a complex circular Gaussian random process u(r) at points r = ry and r = ro.
For notational simplicity, we write u(r1) = w3 = 21 + iy1 = Ajexp(i¢), and
similarly for u(rs). One way we could specify the two-point density would be to
construct the real 4D vector U = (z1, 22, y1, y2)" and give the 4D PDF for it. If u(r)
is to be circular Gaussian, this PDF has to satisfy some constraints. For one thing,
if we want u; and us to be individual circular Gaussians, the marginals on (x1,y1)
and (22, y2) must both satisfy (8.230), possibly with different variances. In addition,
the joint density on all four variables must be consistent with the autocovariance
function of the process,

Ku(ri,re) = (wul) =k =k +ik” . (8.233)
These conditions lead to

(zr2) = (1y2) = 3K, —(21y2) = (y1w2) = 3K” (z1y1) = (2292) = 0.
(8.234)
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All of these conditions are satisfied if U ~ N (0, Ky), where

ot L 0 -k
W o3 W 0

Ky = . (8.235)
0 ik o} LK
S 0 W o3

The redundancy in the elements of this matrix should be noted. A general 4 x 4
covariance matrix would have 10 independent elements, but only four real numbers
(02,02, k" and k") are required to specify K. This redundancy is required in order
to represent a circular Gaussian as opposed to a more general complex Gaussian
random vector.

Two-dimensional formulation To go from the covariance in (8.235) to the PDF for
U requires inverting Ky and computing the quadratic form UtK{JlU. The algebra
is not terrible, but a simpler approach, and one that extends more readily to higher
dimensions, is to use a 2D complex vector rather than a 4D real one. If we define
a 2D vector u with complex components u; and us, its covariance matrix is

202k
K, = . (8.236)
k* 203
The inverse covariance, which is what we need in the PDF, is given by
) 1 203 —k ( :
K, =———F> . 8.237
4 2.2 k|2 y
ooy — |kl —k* 202

The quadratic form in the PDF is thus

T K=lu = 203 uy|? + 202 |us|? — kufus — k*ubuy
- 1073 AP ’

(8.238)

and the corresponding PDF is given by (Neeser and Massey, 1993; Mandel and
Wolf, 1995)

1
w2 det(Ky)

The reader might have expected a factor of % in the exponent and a different
normalizing factor [cf. (8.185)], but (8.239) is correct as written. One way to make
it plausible is to assume there is no correlation, so k = 0, so that (8.237) becomes

pr(u) = exp (—u'K 'u) . (8.239)

L0
207
1
K ! = : (8.240)
1
O E
Hence, (8.239) becomes
1 Caityl w3+

= — 8.241
pr(u) 47202 o2 exp 203 203 ’ ( )
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which is just what one would get with the 4D real formulation, using (8.235) with
k = 0 and (8.185). The reader may check that the 2D complex and 4D real for-
mulations also agree when k # 0. (The 4D determinant must be evaluated by
minors.)

Complex Gaussian vectors Most authors use the 2ND real formulation to deal with
ND complex random vectors, but there is a significant literature on the complex
formulation. The classic text by Doob (1953) discusses the problem, and Wooding
(1956) first derived a form like (8.239).

Later authors, however, recognized some surprising features of the complex
case (Reed, 1962; Goodman, 1963; Neeser and Massey, 1993). For example, we
must revisit the familiar statement that the PDF for a Gaussian random vector
is fully determined by its covariance matrix. For a complex random vector, the
covariance is defined by K, = {(u — u)(u — u)"), but the most general PDF for
a Gaussian random vector also involves the pseudocovariance ((u —u)(u — w)?t),
with a transpose in place of the adjoint.

As defined by Neeser and Massey (1993), a complex random vector is said to be
proper if its pseudocovariance vanishes identically. Any subvector of a proper ran-
dom vector is proper, but two individually proper random vectors are not necessarily
jointly proper. These authors also show that any linear or affine transformation of
a proper random vector is another proper random vector, and that a real random
vector can be proper if and only if it is a constant.

The condition that the pseudocovariance of a complex vector vanish can be
restated in terms its real and imaginary components. If we write u = x + iy, then
u is proper if and only if

(x-X)(x-%)") =(y-NF-9") and (x-F)(y-5)") =—(x-X)(y-5)")".

(8.242)
Thus x and y must have identical autocovariance matrices, and their cross-covariance
matrix must be skew-symmetric.

For optical applications, we are often interested in zero-mean proper Gaussian
random vectors and processes, for which the term circular Gaussian is commonly
used. To be explicit, an ND complex vector u will be said to obey a circular
Gaussian law if all marginals are normal, all components have zero mean and the
conditions in (8.242) hold; these conditions can be stated in complex form as

(Untm) = (upuy,) =0,  1<n,m<N (8.243)

and
(unul) = (Umul)™ = Ko, - (8.244)

The intuition behind (8.243) is that u,, can be written as |u,|exp(i¢y, ), where
¢, is uniformly distributed over (0, 27) but possibly correlated with ¢, for n # m.
The expectation (u,u,,) is zero because exp[i(dy, + ¢ )] takes any value on the unit
circle with equal probability. One can think of choosing a ¢,, from the conditional
density pr(¢,|¢m,) and then choosing ¢,, from the uniform density; no matter what
¢n is chosen in the first step, the second choice means that ¢, + ¢, (modulo 27)
is equally likely to be anywhere in (0,27). On the other hand, (u,u},) depends
on expli(¢, — ¢m)], and this average is not zero if ¢, and ¢,, tend to fluctuate
together; the second choice tends to undo the first.
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The PDF of an ND circular Gaussian random vector is a generalization of
(8.239):
B 1
1V det(Ky)

Thus the only change in going from 2D to ND is the power of 7. It is proven in
Bellman (1995) that this density is properly normalized, and the reader can check
it by considering the basis in which K, is diagonal.

The characteristic function for complex random vectors is defined in (8.33);
for an ND circular Gaussian it is given by

Yu(§) = exp(—17¢'K,€) (8.246)

where £ is an ND complex vector. Note the absence of a factor of 2 in the exponent
when compared to the corresponding expression (8.196) for a real Gaussian random
vector.

pr(u) exp (—u'K 'u) . (8.245)

Moments The characteristic function can be used to derive all moments of a ran-
dom vector. For complex random vectors, the rules for complex differentiation given
in Sec. A.9.5 must be used. The reader may use these rules to verify that (8.246)
is consistent with the second moments stated in (8.243) and (8.244).

Higher moments are also of interest in many problems. For circular Gaussians,
all odd moments vanish, as do all even moments where the number of factors with-
out the complex conjugate is not equal to the number with the conjugate. All other
even moments can be expressed in terms of components of the covariance matrix
via the complex Gaussian moment theorem, first derived by Reed (1962) and
discussed by Goodman (1985) in terms of real components and by Osche (2002) in
complex form. Osche’s statement of the theorem is

<un1 unz e unt u:nl u:m T urnt > = Z<unl u;ﬁnw(1)><un2 u:nw(2)> e <unt u:nﬂ,(t)> ’
K

(8.247)

where 7( - ) is a permutation of the set of integers {1, 2, ---, t}, and the sum is over

all possible permutations. Some useful special cases are:

(Jui|*™)y = n! (Jui|?)™ = n!o?™; (8.248)
((wiu3)"™) = n!(uul)" = nl K% (8.249)
(wisugs) = (wud)usus) + (uguidusud) = KKge + KK, (8.250)

This latter equation should be compared to the corresponding real result in
(8.197); the complex expression has a sum of two covariances while the real expres-
sion has three. We see that <|u1|4> = 20?‘, but for a real, zero-mean, Gaussian ran-
dom variable, < gf> = 30}. The reader can verify this result by writing u; = z; +iy;
and using the real Gaussian moment theorem.

Circular Gaussian random processes A complex random process u(r) will be said to
be circular Gaussian if all N-point PDFs are multivariate circular Gaussian random
vectors. We can specify this process, as in Sec. 8.3.5, by its characteristic functional,
given by [cf. (8.216)]

Wy(s) = exp(—m?sTKys), (8.251)



418 STOCHASTIC DESCRIPTIONS OF OBJECTS AND IMAGES

where s is a square-integrable function and /C¢ is the autocovariance operator, i.e.,
the integral operator with kernel Ky(r,r') = (u(r) u*(r’)). We shall make good use
of (8.251) in Chap. 18 when we discuss speckle.

8.4 STOCHASTIC MODELS FOR OBJECTS

We argued in Chap. 7 that an object was best described by a function f(r) (where r
is usually a position vector); now we shall regard this function as a sample function
of a random process. The random process is the collection of all possible objects of
a given category that might be presented to the imaging system. For example, in
computed tomography of the brain, a particular object f(r) is one patient’s brain
at the time of one imaging procedure, but we can imagine an infinite ensemble of
brains from which this one object is drawn. Ideally we would like to specify the
full, infinite-dimensional, probability density function (PDF) of the process. As we
shall see in Sec. 8.4.1, however, a full PDF is seldom possible, even in principle, and
we must make do with less complete models.

The literature on stochastic models in image science is rich and varied, but of-
ten the distinction between an object model and an image model is not clear. Many
papers claim to address the statistics of images but leave out any consideration of
measurement noise or system blur. Moreover, these papers often treat the image as
a function of continuous spatial coordinates rather than as a discrete array. Thus
they really apply more to objects than to real-world images. On the other hand,
if we want to verify our theories by measurements, all we have access to is images,
and there is a gap in the current literature on how one can verify stochastic models
of objects from observations on noisy, blurred, discrete images.

Another confusing aspect of much of the literature has to do with the meaning
of probability. First, there is an unfortunate emphasis on ergodic models where it is
assumed, often tacitly, that probabilistic statements can be made for a single object
or image. Thus a gray-level histogram of a single image is treated as a probability
distribution for pixel values. At best the histogram is an estimate of the probability
law for an ensemble of similar images, and then only if ergodicity and hence station-
arity are assumed. Except for relatively contrived situations, stationarity is unlikely
to hold over the full expanse of an object or image (though local stationarity may
be more defensible).

Closely associated with the emphasis on stationarity is the use of loosely de-
fined Fourier measures called power spectra. Often this term refers to nothing
more than the square modulus of the Fourier transform of a single image. With an
assumption of ergodicity this quantity is an estimate of the power spectral density,
defined in Sec. 8.2.5 as the Fourier transform of the statistical autocorrelation func-
tion. We know from Fig. 8.1, however, that the estimate is poor, and in any case
the implicit statistical ensemble is seldom specified, and the underlying stationarity
assumption is almost never justified.

Another issue is the conflict between Bayesian and frequentist interpretations
of probability, introduced in the Prologue. For many purposes, we want models that
emulate reality, in the sense that the model predictions can be verified in principle
by measurements on real objects, so we are using a frequentist interpretation of
probability. Bayesian interpretations of probability are often useful, however, espe-
cially in drawing inferences from images when we have some degree of prior belief
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about the structure of the object but the frequentist information is incomplete (as it
always is). The use of Bayesian priors will be explored further in Chaps. 13 and 15,
but the emphasis in this section is descriptive: What can we say about collections
of real objects?

In practice, even the very concept of a real object must often be expanded.
Computer simulations are becoming ever more realistic and ever more essential in
image science, and we do not rule out collections of simulations as the ensemble of
objects for which we seek a stochastic model.

To state clearly the focus of this section, then, we are considering an ensemble
interpretation of probability as applied to objects regarded as sample functions of
a random process. The sample function can, in principle, be an actual object f(r),
but in practice it may be some approximate representation f,(r) as introduced in
Sec. 7.1.3, and the object can be simulated rather than real.

We begin in Sec. 8.4.1 with a general discussion of just what we mean by the
probability density function for an object class and how we might approach the
problem experimentally. Included in this section is an introduction to the impor-
tant concept of independent components.

In Sec. 8.4.2 we revisit the discussion from Sec. 8.2.2 on multipoint densities,
but now specifically for objects. Again the focus is on experimental determination
of stochastic models.

In Sec. 8.4.3 we do what all statisticians do when problems get difficult: we as-
sume normality. Some implications of the central-limit theorem are discussed, and
Gaussian mixture models are introduced. Surprisingly, Gaussian mixture models
turn out to account for the highly non-Gaussian character of many filtered images.

In Sec. 8.4.4 we turn to the widely studied but loosely defined topic of texture.
For purposes of this section, a texture is regarded as any random field with some
degree of stationarity. We discuss here ways of synthesizing sample textures as well
as mathematical models for the PDFs.

Sec. 8.4.5 is prelude to the discussion of signal detection in Chap. 13. We
make a distinction between signals and backgrounds, and we look at how various
assumptions about the signal affect the overall object PDF.

8.4.1 Probability density functions in Hilbert space

To develop a Hilbert-space PDF for objects, we assume that a function f(r) repre-
senting a particular object is square-integrable and therefore corresponds to a vector
f in Lo(Sy), where Sy is a support region that will cover all object functions under
consideration. Then f can be expanded as in (8.76):

f=> anp,, (8.252)
n=1

where the set {1} is some convenient basis for Lo(Sy). The coefficients {a,}
are the components of f in this basis. If the basis is orthonormal, the infinite-
dimensional vector of coefficients, denoted «, is a unitary transformation of f.

Intuitively, £ corresponds to a single point in the space (or a vector from the
origin to the point), and the density pr(f) is a measure of how these points cluster
in the Hilbert space. The density pr(c) describes this same clustering in terms of
specific basis vectors v,,.
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A graphical depiction of this clustering is shown in Fig. 8.4. The two axes
shown can be construed as any two components {a,,, @, } out of the infinite set.

pr(a) = const

» Uy,

Fig. 8.4 Graphical depiction of the clustering of an object PDF. Two axes out
of an infinite-dimensional Hilbert space are shown, and each point corresponds
to a different object.

Subspaces We can never hope to know the full PDF in an infinite-dimensional space
(and we wouldn’t know what to do with it if we had it), but our ultimate goal is
always to obtain a PDF pr(g) for images (see Sec. 8.5). Since the data are insensitive
to null functions of the imaging operator H, and all real measurement operators
have finite rank R, we can always get by with a finite-dimensional subspace of the
object space U. As we know from Sec. 7.4.3, we can use the singular vectors of H
as the expansion functions and truncate the expansion at n = R; this truncation
produces no error in the data and hence no error in pr(g).

Another way to restrict the dimensionality is to construct an approximate
representation of f, just as we did in Chap. 7, and then consider the PDF of the
approximate vector f,. This procedure can lead to an error in pr(g), but it will be
small if the image error defined in Sec. 7.4.3 is small for all objects in the ensemble.
In fact, the image error will be zero if we use natural pixels as the expansion
functions (see Sec. 7.4.3).

Experimental determination of the object density We can imagine obtaining infor-
mation about the object density by examining a large number of typical object
functions. There are several ways we could know the object function. For example,
we might use a computer program that can simulate sample functions f(r), and for
each sample function we could obtain components «,, by computing scalar products
with the corresponding basis functions ¢, (r). (In fact, if a set of components is
chosen in advance, the computer program could advantageously generate the sam-
ple functions in this basis in the first place.)

Alternatively, we may want to construct a stochastic model useful for one par-
ticular imaging system, say a relatively low-resolution, noisy one, but we might
have available images from another system with better resolution and less noise.
We could then treat the images from the better system as good representations of
objects for the poorer system.

Finally, we might have some physical model, known as a phantom in the
medical-imaging literature. If the phantom can be reconfigured into different ob-
jects by moving components around in a controllable fashion, it can generate a set
of known sample objects.

With any of these sources of sample objects, a histogram estimate of, say,
pr(n, @) could be obtained by a frequentist interpretation of the PDF. By a
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multivariate generalization of (C.21), we can write®

PY(a,,am) (Qnk, Qi)

1
= A12330 W Pr(ank—%Aa <a, < oznk—k%Aa,amk—%Aa < am, < amk—F%Aa).
(8.253)

The histogram estimate is obtained by considering finite bins of width A« (hence
omitting the limit) and approximating the probabilities on the right with observed
frequencies of occurrence in a finite number of sample objects. Thus we approximate
the density as

= 1 J(ank7 amk)
DT (0, am) (Qnk Qnt) = Ba)y ¥i : (8.254)

where J(nk, amk) is the number of times (out of J sample objects) that the com-
puted value of (v, ay, ) falls in a square of size (Aa)? centered on point (q,k, i )-
This estimate can, in principle, be extended to an arbitrary number of dimensions.

The problem with this scenario is that the required number of samples may
be impractical. As a numerical example, suppose the objects can be adequately
specified by 10* terms in (8.252), so we are seeking to construct a histogram ap-
proximation to a PDF in a ten-thousand-dimensional space. If we choose to use just
10 bins along each axis in the space, then there are 1019990 total bins to fill. This
is an immense® number, and there is no hope of filling the bins with experimental
samples. Even with a drastically truncated set of components, pr(a) cannot be
interpreted in frequentist terms.

Independent components 'The number of samples required for a histogram estimate
would be much smaller if the components were statistically independent. In that
case, for an ND representation, we would have

N
pr(a) = H pr(ay,), (8.255)
n=1

so we would need only a set of N univariate densities instead of an /N-dimensional
multivariate one.

In contrast to pr(a), the univariate density pr(a;,) does admit of a frequentist
interpretation and a histogram estimate. Suppose, as above, that we have some
source of object functions f(r), perhaps a computer simulation code. For each
sample function we can evaluate o, by the usual scalar product, and the histogram
estimate of pr(«,) is defined by [cf. (8.254)]

. L Jn
Dro, (Omk) = Ao Tk ; (8.256)

8Recall our notational convention that subscripts on PDFs are deleted where they are redundant
with the argument. Thus pr(z) and pr,(z) mean the same thing but the subscript is reinstated
on pr,(zo), which means pr,(z) evaluated at x = z¢.

9We use the term immense here in its literal sense: incapable of mensuration, immeasurable.
Certainly any number exceeding the number of atoms in the universe (of order 108°) qualifies as
immense.



422 STOCHASTIC DESCRIPTIONS OF OBJECTS AND IMAGES

where a.,;; is the specific value of «,, centered on the kth bin, and J,; is the number
of times «,, falls in that bin.

The number J,; is a random variable; if the experiment is repeated many
times with different sample objects, J,; will be binomially distributed, and the full
set of Jpi values will be multinomially distributed (see Secs. C.6.1. and 11.2.1).
The mean value of J,; will be J times the probability that «,, falls in bin k, or

(Jnk) = J Prg, (ank) Aa. (8.257)

If the number of bins is large, the probability that «, will fall in one particular
bin is small, and any reasonable experiment will use a large value for J, so we are
dealing with rare events (see Sec. 11.1.2) where the binomial law on J,; is well
approximated by a Poisson.

As a practical example, suppose we want to construct a 100-bin histogram.
By the Poisson statistics, a relative error (standard deviation divided by mean) of
10% in the value estimated for the k' bin requires (J,x) = 100, and a relative
error of 1% requires (J,x) = 10% To relate these numbers to the required number
of images, we must make some assumptions about the underlying distribution of
ay. If we assume that pr(a,) is relatively flat over the range from 0 to unaz,
then each (J,) is approximately J divided by the number of bins, or 0.01.J in our
example. Thus we require J = 10* for 10% accuracy and 10 for 1% accuracy
in a 100-bin histogram. These numbers are large but not immense; they are well
within the capabilities of modern computers if the sample objects are simulated.
Moreover, each simulated object can be used to evaluate each «y,, so we get the full
multivariate PDF for this amount of simulation effort, but only if the components
are independent.

Finding the independent components One approach to finding approximately in-
dependent components is the Karhunen-Loeve (KL) expansion, introduced in Sec.
7.2.4. In Sec. 8.2.7 we showed that the KL expansion yields uncorrelated coefficients,
and if we can argue that the process is Gaussian (see Sec. 8.4.3), then uncorrelated
implies independent.

To use this argument, we must know the KL expansion. For stationary ran-
dom processes, as discussed in Sec. 8.2.4, KL expansion is Fourier analysis, but with
nonstationary models it can be difficult to determine the autocorrelation function,
much less to diagonalize it and find the KL basis. As we shall see in Sec. 8.4.5, some
authors argue that wavelet coefficients are approximately uncorrelated for natural
scenes, so a wavelet transformation is approximately a KL transformation. Even
when this argument can be justified, however, it is still necessary to show that the
wavelet coefficients are Gaussian random variables if we want to use (8.255), and
we shall present an argument in Sec. 8.4.3 showing why this is not the case for a
wide class of natural scenes.

When the process is not Gaussian or when we do not know the KL expansion,
it may nevertheless be possible to find a transformation that makes the expansion
coefficients approximately independent. To make this statement more precise, we
need some definition of degree of dependence.

One way to define degree of dependence is in terms of the distance, in some
sense, between the multivariate density and the product of its marginals. One dis-
tance measure used for this purpose is the Kullback-Leibler distance, known also
as the cross-entropy or mutual information. If we consider an N x 1 vector 3 with
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density pr(83), the Kullback-Leibler distance between this density and the product
of its marginals is defined by (Comon, 1994)

1(B) :/ d" pr(B) 1n{%} : (8.258)
o0 n=1Pr'{Pn

Note that I(3) is not a true distance, as defined in Sec. 1.1.2, since it is not sym-
metric in interchange of pr(8) and HiLl pr(53,). It does, however, vanish when
these two densities are equal, since the argument of the logarithm is unity in that
case, and it follows from the convexity of the logarithm that I(3) > 0 (Kendall and
Stuart, 1979). Thus independent components can be sought by attempting to find
a basis that minimizes I(8).

Many other measures of degree of dependence are discussed by Comon (1994).
In particular, he uses an Edgeworth approximation to argue that independent com-
ponents will have marginals with large kurtoses, as defined in (C.41). He therefore
suggests maximizing the sum of the squares of the marginal kurtoses as as a way
of finding approximately independent components. We refer the reader to Comon
(1994) for a full justification of this approach.

Independent components analysis A structured approach to minimizing some mea-
sure of statistical dependence is independent components analysis or ICA. ICA
is a refinement of principal components analysis or PCA, which we shall discuss
first.

Though the terms PCA and KL are often used interchangeably in the litera-
ture, we make the distinction that PCA is diagonalization of the sample covariance
matrix and KL is based on the ensemble covariance. Thus PCA approaches KL
analysis as the number of samples goes to infinity.

Suppose we are given J samples of a random vector o, denoting the j th sample
by o). The sample covariance matrix K is defined by

= 1
K, =

<

ZJ: [Aa@} {Aa(j)r , (8.259)

where Aa?) is @) minus the sample mean. PCA seeks to find a matrix M such
that the transformed sample vectors,

BY) = Ma¥) | (8.260)

are uncorrelated and hence the transformed sample covariance matrix Kﬁ is diag-
onal. By retracing the discussion in Sec. 8.1.6 but with K in place of K, we can
see that this diagonalization is accomplished by using the eigenvectors of K, as the
columns of M.

ICA also uses a transformation of the form (8.260), but now the goal is to min-
imize some measure of statistical dependence as discussed above or in much more
detail in Comon (1994) and subsequent literature. Since statistically independent
components are necessarily uncorrelated, ICA usually proceeds by first computing
the PCA, so that the spectral decomposition of K is known, and then applying
a prewhitening transformation as in (8.67). At this point we have a set of sample
vectors such that the sample covariance matrix is the unit matrix, and all further
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unitary transformations preserve this property. We thus decompose the matrix M
as .
M =UK,?, (8.261)

where U is unitary. ICA amounts to choosing U so as to minimize the chosen
measure of statistical dependence.

When ICA is carried out on training sets of natural scenes, the results are quite
striking (see Bell and Sejnowski, 1997; Field, 1987; Olshausen and Field, 1996). The
columns of M turn out to be localized, bandpass functions similar to wavelets or
to the channels in the human visual system (a topic to be treated in more detail in
Chap. 14), suggesting that humans may have evolved in such a way as to process
natural scenes through statistically independent channels (see also Barlow, 1989).

One practical implication of the observation that the independent components
are localized is that we can treat small pieces of the same object (or image) as
independent samples. Bell and Sejnowski (1997), for example, consider 12 x 12 seg-
ments of an image as the samples on which they perform ICA. The resulting ICA
filters are smaller than 12 pixels, even though the corresponding PCA filters tend
to fill the 12 x 12 region. The authors note, however, that the restriction to such
a small region may be an unrealistic feature of their approach. In addition, pixels
themselves are unrealistic if we wish to draw conclusions about “natural scenes.”

We shall revisit ICA in the context of texture analysis in Sec. 8.4.4. In that ap-
plication, ICA is considerably simplified because textures are at least approximately
stationary.

8.4.2 Multipoint densities

As we saw in Sec. 8.2.2, another kind of PDF for a random process is a collection
of P-point densities of the form pr[f(ry), f(r2),..., f(rp)]. In principle one needs
densities like this for all P to completely characterize the process, but often we must
be content with P =1 and 2.

In a sense, multipoint densities are just special cases of the Hilbert-space den-
sities discussed above. If we use delta functions as basis functions for the space (see
Sec. 2.2.6), then f(r,) is the coefficient «, associated with basis function §(r —r,),
and pr[f(r1), f(r2),..., f(rp)] is a P-dimensional marginal of a Hilbert-space den-
sity. This marginal is, however, a function of P spatial variables, so it is a richer
description of the statistics of the random process than pr(ay, s, ...,ap) would be
with preselected basis functions.

If we have a means of computing pr[f(ry), f(r2),..., f(rp)], we can in princi-
ple do it for all values of each of the spatial arguments, but a less ambitious goal
is to sample the function on a regular spatial grid, making it a discrete random
process. If r is a ¢D vector and we sample each component to L values, then f is
specified by N = LY numbers, and the full density is defined in an ND space. In
this sampled case, therefore, all of the P-fold multipoint densities can be computed
from the ND density on f. Nevertheless, it may be computationally or conceptually
simpler to compute the multipoint densities directly rather than as marginals of a
high-dimensional multivariate density.

Pointwise evaluation of random functions Before analyzing multipoint densities in
more detail, we have to deal with one mathematical subtlety. So far we have assumed
only that each sample function f(r) is in an Ly space, but we noted in Sec. 1.8 that
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not all functions in Ly are defined pointwise. If we want an expression like f(r;)
to be rigorously defined, we must assume that f(r) lies in a reproducing-kernel
Hilbert space (RKHS), which might be a subspace of L. For imaging purposes,
this restriction entails no loss of generality; we saw in Chap. 7 that the imaging
operator H'H is a nonnegative-definite Hermitian operator, and we know from
Sec. 1.8.2 that such an operator can be used to define an RKHS. Assuming that
f(r) lies in that particular RKHS is equivalent to saying that we are discussing
the statistics of the measurement component of the object, and that component is
necessarily in an RKHS and hence defined pointwise.

The same conclusion can be reached by assuming that we are not interested in
the statistics of an actual f(r) but rather those of some linear approximation to it,
such as the functions f,(r) or fi(r) discussed in Sec. 7.1.3. As we saw there, these
functions lie in an RKHS called representation space, so they too can be defined
pointwise. For example, we might construct a linear approximation by use of pixel
functions, so f,(r;) would refer to the gray level’® of a pixel centered at r = r;.

In what follows we shall use the notation f(r) but always with the implicit
assumption that the function corresponds to a vector in an RKHS. Thus we might
really mean fi,eqs(r) or fo(r), but we shall omit subscripts for convenience. As a
practical matter, essentially the only thing we rule out with this assumption is that
f(r) is white noise or some other generalized, infinite-energy random process.

Single-point PDFs For P =1 and a fixed choice of r, pr[f(r)] is a univariate PDF
for the gray level f(r) at point r. This density can be represented as an ordinary
1D function as in Fig. 8.5. Of course, this function may depend in general on the
choice of evaluation point r, so it can also be plotted as a function of the Cartesian
coordinates of r, as shown in Fig. 8.6.

pr(f(r)]
0.101
0.08
0.06
0.041

0.02 1
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ooot——~>——
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Fig. 8.5 Univariate PDF pr[f(r)] plotted as a function of f(r) for fixed r.

10Even though we are talking about pixels and gray levels here — terms often associated with
images — we emphasize that we are discussing object models.
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Fig. 8.6 Same PDF as in Fig. 8.5 but now plotted as a function of both f(r)
and r.

Since it is univariate, pr[f(r)] admits of a frequentist interpretation and a
histogram estimate. The considerations are essentially the same as for the univariate
density pr(«,); if we have a source of object functions f(r), such as a computer
simulation code, we can evaluate each sample function at any chosen point, say
r = ry, and define a histogram estimate analogous to (8.256):

— 1A N
ﬁl”f(r)[fk(rl)] _ Aif J[fk(rl) SAf < f(;rl) < falrn) + 3 f} |

(8.262)

where the numerator is the number of sample objects for which the value f(ry) falls
in an interval of width Af centered on the chosen value fi(r1), and J is the total
number of samples. The number of bins in this histogram is just fia./Af, where
fmaz is the maximum value of f(r). The k" bin is centered on the point fr(ry) if

k= fk(l‘l)

=57 (8.263)

For notational simplicity, we denote the numerator in (8.262) as Jy, which is just
the observed number of samples in bin k£, but we must keep in mind that the his-
togram is specific to the point r.

The same statistical considerations apply here as in the last section. If the
experiment is repeated many times with different sample objects, Ji will be ap-
proximately a Poisson random variable. The mean value of J; will be J times the
probability that the gray level will fall in bin k, or

(Jo) = JPr [fu(r1) — 3AF < f(r1) < fr(rr) + 3AF] & prye [fu(r)] Af . (8.264)

As in the previous section, we can construct a 100-bin histogram with a relative
error of 10% in the value estimated for the k' bin if (J;) = 100; a relative error of
1% requires (Ji) = 10% If we assume that pr[f(r)] is relatively flat over the range
from 0 to fynas, then we require J = 10* for 10% accuracy and 108 for 1% accuracy
in a 100-bin. Again, these numbers are within the capabilities of modern computers
if the sample objects are simulated.

One might think that we are far from characterizing the object random process
even to order P = 1 since we have fixed the evaluation point at r = r; in the
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discussion above. In fact, however, once we have a source of sample objects f(r), we
can evaluate them at as many points as we please, and we can construct histogram
estimates of pr[f(r)] on a grid of spatial points with very little increased effort.
A 100 x 100 grid for a 2D object, for example, requires that we construct 10,000
histograms. If k ranges from 1 to 100 for each sample r and the observed value of .Jj
does not exceed 255, then we can store the results in just 1 Megabyte of memory.

As a semantic point, each of the histograms discussed above is a histogram
of gray levels; it is not, however, what is usually called a gray-level histogram in
the image-processing community. In that community, it is common to compute
a histogram of the gray levels at all points within a single image for purposes
of display manipulation or data compression. The histograms we are discussing
here describe the distribution of gray levels at a single point in an ensemble of
images. Where confusion may result, we shall distinguish between single-image
histograms and single-point or ensemble histograms.

For stationary, ergodic random processes, the single-image histogram can be
used in place of the ensemble histogram as an estimator of the single-point PDF, but
these two histograms should not be equated in general. The single-image histogram
can give a very biased estimate of the PDF if there is even a slight deviation from
stationarity across the image. Consider, for example, the common situation where
the mean gray level varies slowly across the image; in that case the single-image
histogram can be much broader than the ensemble histogram at a fixed point and
hence a fixed mean gray level.

Two-point PDFs For fixed r1 and ra, the two-point density pr[f(r1), f(r2)] is a
bivariate density on the two scalar random variables f(r1) and f(ry). This density
can be represented by a 2D plot, where the axes are f(ry) and f(r2). A full char-
acterization to order P = 2 requires evaluation of such bivariate densities for all ry
and ry in Sy.

The two-point density can also be interpreted in frequentist terms, though
more sample objects are required than in the single-point case. If we again choose
fmaz/Af = 100, then there are 10,000 bins in a histogram representing
pr[f(r1), f(rz2)]. A calculation similar to the one above shows that J must be about
106 for 10% accuracy and 10® for 1% accuracy if the underlying PDF is relatively
flat. Moreover, 108 such histograms would be required if r is 2D and both r; and
ro are sampled on 100 x 100 spatial grids, and 10 GB of storage would be needed to
hold the results. In short, full experimental characterization of the random process
to order P becomes rapidly more difficult as P increases.

The histogram approximation to the bivariate density pr[f(r1), f(r2)] is related
to, but not identical to, the co-occurrence matrix used in image processing and
pattern recognition (Pratt, 1991). The distinction is the same as the one between
single-point and single-image histograms. The co-occurrence matrix is a random
matrix characteristic of a single image or a smaller region within a single image.
It is a histogram of the joint occurrence of binned or quantized gray levels in that
image. It is independent of absolute position within the region or image but it does
depend on the relative position ro — ry. The density pr[f(r1), f(r2)], on the other
hand, is a nonrandom characteristic of the ensemble and a function of two position
vectors. A histogram approximation to pr[f(ry), f(r2)] is also random since it is
formed from a finite number of samples, but this randomness can in principle be
reduced arbitrarily by letting the number of samples grow.
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If each sample function is drawn from an ergodic random process (see Sec.
8.2.4), then the co-occurrence matrix computed from one sample function is also an

estimator of pr[f(ry), f(r2)].

Local models 1If ry and ry are far apart in an object, f(r;) and f(rz) might be
statistically independent, or nearly so. For example, in a computed-tomography
scan of the chest, the gray level at a point in the lungs would be expected to be
independent of the gray level at a point in the spine. Two nearby points in the
same lung would, however, be expected to be dependent. A stochastic model that
takes account of this property is called a local model.

To see the structure of a local model, let us first consider two well-separated
points. If the gray levels at these two points are statistically independent, the
two-point PDF's are determined uniquely from the single-point ones:

pr(f(ry), f(ra)] = prf(r1)] pr(f(r2)] - (8.265)

As discussed in Sec. C.1.6, the independence condition in (8.265) can also be written
as

pr(f(ry)|f(r2)] = pr(f(ry)]. (8.266)

Now consider a countable set of points, say on a regular lattice in object space.
The gray level at some particular point ry will often depend on the values at other
points r; provided they are close to the chosen point ry, but it could be statistically
independent of the values at more distant points. We define the neighborhood Ny
of the point ry as the set of points close to rp in this sense, and we denote the
complete set of points in the object support as S. Then a local statistical model is
one for which [cf. (8.266)]

prlf(re) {f (ri), ri € 8,0 # k}] = pr{f(vx) {f(ri),ri € Nic}, (8.267)

where r; € N}, is read “point r; is an element of the set NV},” or somewhat more
colloquially, “r; is a neighbor of rip.” As we see from (8.267), the form of the
marginal density on f(rx) in a local model is determined fully by the values in
the neighborhood A, and points outside this neighborhood can be neglected for
purposes of describing the statistics at rg.

A local model defined on a discrete lattice as in (8.267) is called a Markov
random field or MRF. Developed by Besag (1973) and Cross and Jain (1983)
for describing textures, MRFs have received considerable attention as Bayesian
priors in image reconstruction (see Sec. 15.3.3), but relatively little effort has been
expended on establishing their validity as empirical distributions in a frequentist
sense. One exception is Herman and Chan (1995), who discussed so-called image-
modeling MRFs where a sample drawn from the MRF density would have the
same neighborhood statistics as the image (object) being modeled.

Regional models and mixture models Often objects can be divided into distinct re-
gions with different statistical properties. In a chest radiograph, for example, the
lungs are in more or less the same place for all patients, and the heart is generally
situated below the left lung. Before seeing a particular patient’s radiograph, we can
define a region that is likely to contain lung and another that is likely to contain
heart. Of course, this definition is not absolute; a collapsed lung or an enlarged
heart, or simply normal variations in patient size and positioning, could mean that
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the a priori region assignment is incorrect. Various strategies are available for re-
fining the region assignments, including image recentering and warping and various
segmentation algorithms. None of these methods is perfect, however, and the best
we can do is to assess the probability that a particular point is associated with a
given region.

If we denote by S; the set of points associated with region ¢, the univariate
PDF on the gray level at point r is given by

pr[f(r)] = Zpr[f(r)h‘ €S]Pr(res,). (8.268)

An analogous expression can be given for the two-point PDF:

pr{f(r1), f(ra)] = D Y prf(r1), f(rs)[r1 € Si,vs € S| Pr(vy € Si,ra € Si).
ik

(8.269)
If gray levels in different regions are statistically independent, this equation becomes

pr(f(r1), f(r2)]
=33 (1 =) prlf(r1)|ry € S;]pr[f(r2)[ra € S| Pr(ry € S, 13 € Sk)
Pk

+ Zpr[f(rl), f(r2)|r1 S Si,l‘g S Sz] Pl“(l‘l S Si, ro € Sl) . (8270)

Another special case is a piecewise-constant model where all points within a
given region have the same gray level in each sample function of the random process,
though that value (as well as the borders of the region) can vary randomly from
one sample function to the next. In that case,

pr[f(r1), f(ra)lr1 € Si,ra € S;] = 0[f(r1) — f(r2)] pr[f(r1)|r1 € Si]. (8.271)

The density in (8.268) is an example of a mizture model where the random
quantity is divided into classes, and the overall density is a weighted sum of the
densities for different classes. In (8.268), a class is identified with a spatial region,
but other kinds of classes are important in imaging as well. In medical imaging,
for example, different disease states are (we hope) described by different PDFs.
Similarly, in aerial photography, crops, cities, oceans and forests would require
different statistical models.

In such cases, the general form of the object PDF is

pr(f) =) pr[f|class i] Pr(class i) . (8.272)

The key difference between (8.268) and (8.272) is that the former applies to a
univariate density at a specific point r, while the latter is a general statement
applying to the entire density of the process.

Specifically, if we represent f by an N x 1 coefficient vector «, the mixture
density (8.272) takes the form

pr(a) = Z pr(aclass i) Pr(class i) , (8.273)

K2
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and the marginal on a single component of « is

pr(a,) = Z pr(ay,|class i) Pr(class i) . (8.274)

K2

8.4.3 Normal models

The basic properties of normal random processes and random vectors were intro-
duced in Sec. 8.3. Here we revisit normal models with the goal of understanding
when and how they apply specifically to the statistical description of objects.

When it is possible to use normal models in imaging, a considerable mathe-
matical simplification results. As we saw in Sec. 8.3, the PDF for a normal random
vector is fully determined by the mean vector and the covariance matrix. More-
over, any linear transformation of a normal random vector leaves it normal, so a
full analysis of the effect of a linear operator requires only that we transform the
mean and covariance, using simple formulas developed in Sec. 8.1.5.

These properties of normal random vectors extend readily to normal random
processes. The full PDF of any random process is infinite-dimensional, but in
the normal case we can take advantage of the fact that any marginal or condi-
tional density derived from a normal PDF, even an infinite-dimensional one, is
also normal. Thus if we choose to describe a normal random process by Hilbert-
space marginal densities of the form pr(ay, as, ..., ap) or by multipoint densities like
pr[f(r1), f(ra), ..., f(rp)], we can be assured that these densities will all be normal.

Central limits To establish the validity of a normal model, we must usually ar-
gue that the central-limit theorem applies, as it does when independent random
variables or vectors are added together. One way this can happen is when a pixel
or voxel representation is used for the object, and subregions of the pixel or voxel
are statistically independent. As an example, consider an airborne optical camera
viewing a meadow. The camera does not resolve individual blades of grass, and an
adequate 2D object representation can use a pixel that covers many blades. It is
reasonable to argue that the blades reflect light independently, so the total reflected
light in one pixel tends to a normal distribution, at least when we consider only
meadows and do not include, say, forests or beaches.

A somewhat more subtle example is nuclear medicine imaging of perfusion
patterns in the lungs. In this technique, radioactive albumin particles are injected
into a vein and get trapped in the alveoli (the functional units of the lungs where
blood becomes oxygenated). The distribution of the trapped tracer is indicative of
the perfusion of the lung, and it is this distribution that we regard as the object.
Since nuclear medicine systems have very poor spatial resolution compared to the
size of alveoli, we can choose a voxel size that contains many alveoli, and the voxel
value is the sum of the activities in many alveoli. It is reasonable to presume that
these activities are statistically independent, at least when one particular patient is
considered. If we were to consider an ensemble of patients, some would have higher
perfusion in a particular region than others, and all alveoli in this region would tend
to fluctuate together; we avoid this kind of dependence by conditioning the PDF on
a particular patient and hence a particular perfusion pattern. In a frequentist sense,
this conditional PDF describes the hypothetical distribution that would result from
making many different injections of albumin particles into a single patient.
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Gaussian mixture models In the two examples just given to justify use of the central-
limit theorem, we had to be careful to restrict the ensemble of objects under consid-
eration. In the aerial photography example, we had to consider only meadows and
not forests or beaches, and in the nuclear medicine example we had to consider re-
peated injections into one patient rather than a more realistic ensemble of patients.

To analyze a broader ensemble, we do not necessarily have to abandon the
central-limit theorem; instead, we can divide the different objects (or different re-
gions of the same object) into classes and use a mixture density as in (8.272). If we
can argue that a normal PDF applies to each component of the mixture, then the
resulting model is called a Gaussian mizture model.

If a is conditionally multivariate normal for each class, then «, is conditionally
univariate normal, so pr(a,|class ) in (8.274) is fully specified by the conditional
mean @,; and the conditional variance o2,:

(an - ani)2

1
pr(an)zz o &P [— 207

If we must use a large number of classes in order to justify the normal law for each
class, it might be better to consider a continuum of classes and write

] Pr(class i) . (8.275)

oo oo = \2
pr(a,) = / dan/ do? pr(an,oi); exp [—M} . (8.276)
—o0 0

\/2ma2 202

Similarly, the multivariate density on « for a discrete set of classes is

exp [—%(a @) 'K o~ @;)| Pr(class 1),

(@)=Y ——
PR = 2 e den(K,)
(8.277)

where @; and K; are, respectively, the mean vector and covariance matrix for o
under class ¢. For a continuum of classes, we can write

N~ 1 1 —ipe—1 —
pr(a) /Ood oz/oodK O] exp[—3(a—a)K '(a—-a)],
(8.278)
where dK is a shorthand for the differential of all components of K.

No matter which of these mixture formulas we use, we do not expect the
resulting PDF to be normal. For example, in the simple case of the univariate
expression (8.275) with just two classes, we would get a bimodal PDF with one
Gaussian peak for each class.

High-pass and band-pass filters There are many circumstances where we either pass
an image through a high-pass or band-pass spatial filter or consider an object to
consist of a superposition of such components. For example, edges in an image are
often detected with some sort of derivative filter, and derivatives suppress the DC

component!! of the image. Other examples of filters with zero DC response include

' The common jargon, DC component, does not, of course refer to direct current. Instead it
implies zero spatial frequency, by analogy to the zero temporal frequency of a steady current. In
coherent optical processing, the Fourier transform of an object is displayed as an optical amplitude
distribution centered on the optical axis of a lens system, and in that case it has been suggested
that DC stands for dot in the center.
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wavelets (see Sec. 5.3), channels in the human visual system (see Sec. 14.2) and
filters used to extract discrete cosine transforms (except, of course, the DC term
in the transform). Continuous objects can be represented by zero-DC components,
for example in the Fourier-series basis of (7.13), a wavelet basis or a basis of Gabor
functions (see Sec. 5.1.4). As we noted in Sec. 8.4.1, approximately independent
components can be obtained by filtering with localized band-pass filters.

In all of these cases, an expansion coefficient is computed by forming a scalar
product of the object function with a zero-DC function. For both objects and
images, therefore, it is of considerable interest to have a stochastic model for the
output of a high-pass filter.

In Sec. 8.3.3 we showed that linear filtering of a Gaussian random process
yields a Gaussian random process, so if the input to a filter is Gaussian, the output
must be also. It has been observed empirically, however, many images have a
decidedly non-Gaussian distribution results after high-pass or band-pass filtering.
As seen in the example in Fig. 8.7, the gray-level histograms are typically sharply
peaked around zero and display long tails (Heine et al., 1999; Bell and Sejnowski,
1997). In statistical lingo, these histograms have a large kurtosis. As defined in
(C.41), the kurtosis for a Gaussian is 3 (though many books subtract off the 3 and
make the kurtosis of a Gaussian 0), and gray-level histograms following high-pass
filtering often have kurtosis substantially larger than 3. Statistical pedants refer to
such distributions as leptokurtic (Greek lepto, thin or fine); the opposite condition,
kurtosis less than that of a Gaussian, is referred to as platykurtic (Greek platys,
broad or flat —behold the platypus!).

High-Pass Filtered Image
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Fig. 8.7 Top: A typical image before and after high-pass filtering. Bottom:
Gray-level histogram of the high-pass filtered image (note that the right plot
is vs. log frequency of occurrence).

Filtering of Gaussian mixtures Heine et al. (1999) offered an explanation for high
kurtosis after wavelet filtering, but it made assumptions about scale-invariance that
were specific to wavelets. Lam and Goodman (2000) derived the PDF of the coeffi-
cients in a discrete cosine transform from a Gaussian mixture model. Clarkson and
Barrett (2001) extended that argument and showed that kurtotic distributions were
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an inevitable consequence of high-pass or band-pass filtering of Gaussian mixtures;
we shall sketch here the derivation given by Clarkson and Barrett.

If we think of high-pass filtering as a convolution, then the output is a scalar
product of the shifted kernel function with the input. If the kernel contains both
positive and negative components, we can suppress the shift variable and write the
output for one position of the kernel as

z=u—uv, (8.279)

where u arises from the positive part of the filter and v from the negative part. This
equation applies whether we think of the input to the filter as a random process or
a random vector in a pixel representation. Moreover, it applies also to computation
of an expansion coefficient in a representation where the expansion function has
positive and negative parts.

We expect v and v to be highly correlated since they come from the same
region of the input, but it is reasonable to assume that they have the same mean if
the filter has zero DC response. This conclusion follows rigorously if we can assume
that all points within the region spanned by the kernel (at a specific shift) have the
same mean, and it may also be a good approximation even with a space-variant
mean since it requires only that the spatial average of the mean over the positive
regions of the kernel equal that over the negative regions. (Consider a difference-
of-Gaussians filter, where a positive central peak is surrounded by a negative ring;
the means of u and v will be equal if the spatial average of the input mean in
the negative ring is the same as the spatial average in the central peak.) Thus we
assume

u=1v; z=0. (8.280)

Note that the overbar here implies an ensemble mean; it has nothing to do with
spatial averages. We make no assumptions about stationarity or ergodicity, and
there is no implication that ensemble averages can be approximated by spatial
ones.

Now let us assume that u and v are drawn from a Gaussian mixture. To see
the essential results, we assume first that « and v are conditionally uncorrelated,
for any one component of the mixture, so that the entire correlation between the
two variables results from averaging over components in the mixture. Similarly,
we assume that u and v have the same conditional variances, so in fact they are
conditionally i.i.d. These assumptions may not always be justified, and they will
be relaxed below; for now, we write

(u—m)?+ (v—m)?
202 ’

1
pr(u,v|lo,m) = 52 XP {— (8.281)

where m is the common mean of u and v, and ¢ is the common standard deviation.
The corresponding conditional density on z is given by

pr(zlo,m) = / du pr(u,u — zlo,m). (8.282)

— 00
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Fig. 8.8 Illustration of the integral encountered in analyzing Gaussian mixture
models.

As illustrated in Fig. 8.8, this integral can be interpreted as a 1D projection or
Radon transform (see Sec. 4.4) of the 2D function pr(u,v|o, m). We see graphically
that the result is independent of m, and by completing the square we obtain

1 *° u? + (u—2)? 1 22
pr(zlo) = 53 /OO du exp [— 552 = NG exp |~ ) - (8.283)

Note that we have written this density as conditional on the standard deviation
o rather than the variance 02 We are free to choose either, but the standard
deviation is convenient when we write out the overall density on z. Since the
conditional mean does not influence the statistics of z, the mixture can be specified

by a univariate prior on ¢, and we find

pr(z) = % /000 C%U exp (—%) pr(o). (8.284)

By comparison with (4.85), we recognize (8.284) as a Mellin convolution, and many
interesting properties of pr(z) follow from this observation. Since Mellin transforms
convert Mellin convolutions into products, and since Mellin transforms can be inter-
preted as moments (see Sec. 4.2.2), it follows that moments of z are related simply
to moments of o; from Clarkson and Barrett (2001), the relation is

_ 2T (5)

N (") (8.285)

(")
where I'(+) is the gamma function.
From this moment relation and a little algebra, we find

(2% = 3(z%)2 = 12[(c?) — (62)F]. (8.286)

The kurtosis, defined as (2%)/(22)? is 3 for a Gaussian, so the left-hand side of this
expression would be zero for a Gaussian. By the Schwarz inequality, however, the
right-hand side is > 0, so z always has a kurtosis greater than or equal to that of a
Gaussian, with equality if and only if pr(o) is a delta function. In short, leptokurtic
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distributions are inevitable when a Gaussian mixture is filtered with a high-pass or
band-pass filter. Moreover, the resulting densities for z often take simple, symmetric
forms, quite robust to the detailed assumptions about pr(o).

Several different analytical forms have been suggested as empirical descriptions
of long-tailed densities like those shown in Fig. 8.8. When there is a sharp cusp at
the origin, a natural choice is the Laplace or double-exponential density. A family
of densities intermediate between Laplace and Gaussian can also be defined with
pr(z) o« exp(—alz|?), so p = 1 is the Laplace density and p = 2 is the Gaussian. The
parameters p and a can be adjusted to fit empirical densities. Another option is the
Lévy family, defined not by the density but by the characteristic function, which
has the form (&) = exp(—b|£|?). The corresponding densities cannot be stated as
simple analytic functions except when ¢ = 2, which is the Gaussian, and ¢ = 1,
which is the Cauchy density (see Sec. C.5.10). Again, ¢ and b can be treated as
adjustable parameters.

Mixtures of correlated Gaussians So far we have considered only a specific Gaussian
mixture where v and v were i.i.d. normal, but the result can readily be generalized.
Suppose u and v are bivariate normal with a covariance matrix of the form

Ko=| % 0. 8.287
o] (3.257)

As the reader may show, (8.284) is still valid with this model, only now o2 is not

a univariate variance but rather 3(a + ¢ — 2b) (see Clarkson and Barrett, 2001).
Thus the initial assumption that v and v are i.i.d. has no essential effect on the
conclusions.

Normals and entropy 1t is not always necessary to invoke the central-limit theorem
in order to arrive at a normal probability law. It occurs also in a Bayesian context
when one has partial information about a distribution and wishes to complete the
description as noncommittally as possible. One way to do this is to use the principle
of maximum entropy. A critique of this approach in the context of image recon-
struction is given in Sec. 15.3.3, but here we can be content to paraphrase Zhu et
al. (1998): Entropy is a measure of randomness, and we should choose the density
that is as random as possible in all unobserved dimensions and does not attempt
to represent information that we do not have.

If we know the mean and variance of a random variable (or mean vector and
covariance matrix of a random vector), these moments serve as constraints on the
density, and we would like to find the density of maximum entropy consistent with
these constraints. We shall carry through the calculation in the univariate case and
simply state the multivariate result.

Consider a random variable x and suppose we know that its mean is T and
its variance is 02 According to the principle of maximum entropy, we must choose
pr(z) to maximize [ dx pr(z)Inpr(z), subject to the constraints

/ do pr(z) = 1; / dx x pr(z) =T; / dz 2°pr(z) = o” +T°.
_ _ ) (8.288)
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The maximization can be performed by the method of Lagrange multipliers. We
require that the Lagrangian functional,

oo o0

Lpre) = [ dopropupr(o) +a | [

— 00 — 00

da ) - 1]

+8 [/m dx x pr(z) — T} + [/m dz 2° pr(z) — (o2 +T2)} , (8.289)

— 00 — 00

be unchanged by small perturbations of pr(x). Here, o, 5 and v are the Lagrange
multipliers, to be fixed by the constraint equations. If we perturb pr(z) by a small
amount 7(x), and retain only terms linear in the perturbation, we find

L{pr(z) + n(x)} — L{pr(x)} = / " do n(e) {1+ pr(e) + a + Bz + 22} = 0.

(8.290)
Since n(x) is arbitrary, this equation can hold only if the quantity in braces in the
integrand is zero, so pr(x) must take the form

pr(z) = exp (-1 — o — Bz — v2?) . (8.291)

Both this form and the constraints are satisfied if

1 (r — )2
pr(z) = Nor exp [—7] . (8.292)

Thus, if all we know about a random variable is its mean and variance, the
maximum-entropy choice for its density is a normal. A similar calculation shows
that if all we know about a random vector is its mean vector and covariance matrix,
the maximum-entropy density is multivariate normal.

Positivity Appealing though normal distributions may be, they have one serious
deficiency in many imaging applications. If the random variable or vector in ques-
tion is inherently nonnegative, as physical objects often are, then the normal law
cannot be strictly correct; it always predicts some finite probability of negative val-
ues. We shall now discuss several possible fixes for this problem.

One simple fix is just to consider situations where the standard deviation of
the random variable is small compared to its mean; then the probability of getting
a negative value is small and can perhaps be neglected without serious error. For
the normal law to represent a nonnegative object, in particular, we must consider
low-contrast scenes where the variation we are trying to describe is small compared
to some spatial-average value. Such situations arise often in medical imaging or
other applications involving a faint object on a bright background. They can be
particularly useful for local statistical descriptions where the background may vary
substantially over the whole scene but relatively little over a region of interest.

Another approach is to use a truncated Gaussian which is not allowed to go
negative. Perhaps surprisingly, this is the maximum-entropy choice if we know
the mean and variance of a random variable and also know that it is nonnegative.
Retracing the calculation above, we see that (8.290) still holds with the simple mod-
ification of setting the lower limit of integration to zero, and (8.291) holds without



STOCHASTIC MODELS FOR OBJECTS 437

modification. A more substantial modification does occur in (8.292), which can now
be written as
(z — x0)?

= N —
pr(z) exp [ 52

] step(x) , (8.293)
where N is a normalizing constant, xq is not the mean and v? is not the variance.
Instead these quantities must be determined by numerically solving constraint equa-
tions like (8.288) but with a lower integration limit of 0.

Similarly, if we know the mean and covariance of a nonnegative random vector,
a truncated multivariate normal is the maximum-entropy density. Again, however,
the known mean and covariance cannot simply be plugged into the standard mul-
tivariate normal form.

Log-normals Another solution to the positivity problem is to use log-normals rather
than normals. Since a log-normal is a density for a random variable whose log is
normal, it is defined for any nonnegative variable, and the density is taken to be
zero for negative values of the variable.

The density for a univariate log-normal is given in Sec. C.5.9 of App. C; the
corresponding multivariate form is

1 1 trr—1
pr(f)_lri[ mfi] det(K)exp{—%una)—u]K In(f) — pl} . (8.294)

where the logarithm is to be interpreted componentwise, and g and K are the
mean vector and covariance matrix of the Gaussian random vector Inf, not f itself.
The reader may test her understanding of transformations of random variables by
showing that the log of f is indeed a multivariate normal.

Often we can argue on physical grounds that the PDF for an object or image
should tend to a log-normal. Consider, for example, transmission x-ray imaging of
a thick, inhomogeneous 3D object. The 3D object can be divided into slabs, and
the overall transmission of the object is the product of the slab transmissions. If the
transmission of each slab is a random process, then the log of the product of the slab
transmissions is also a random process, and if the individual slabs are statistically
independent, then the log of the product is the sum of logarithms of independent
random processes. Thus, regardless of the statistics of the slab log-transmissions,
the overall log-transmission tends to a normal by the central-limit theorem, and
hence the overall transmission itself tends to a log-normal.

In other situations as well, we can decompose the object function into a product
of independent random variables. For example, in nuclear medicine we might inject
a radioactive tracer into the blood stream and watch its migration through the
circulatory system to some target organ. At each branching of the blood vessels,
a tracer molecule can go in one of two directions, and if we consider a point in
the vasculature after many branchings, then the number of molecules arriving there
is the injected number times a product of a large number of random variables,
one for each branch. The central-limit theorem suggests that the log of the tracer
concentration at this point is normally distributed, so the concentration itself is
log-normal.

There is an essential difference between log-normals and truncated normals
as densities for nonnegative random variables or vectors. As the examples above
suggest, we can expect the log-normal to be experimentally verifiable, in principle,
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so it can be interpreted in a frequentist sense. If the variable of interest is a product
of many independent random variables, and each experiment results in different
values for the individual variables, we can repeat the experiment many times, and
the resulting histogram estimate of the density for the product variable will tend to
a log-normal, and indeed this distribution is frequently observed experimentally.'?

There is, in fact, a frequentist rationale for maximum entropy, and it will
be sketched in Sec. 15.3.3, but it conceives of the object being constructed by
throwing imaginary grains or blobs of gray level; it definitely does not suggest a
concrete physical experiment. Thus, even though the truncated normal might be a
maximum-entropy density, we should not expect to encounter it as the limit of an
experimental histogram. Maximum entropy, as we used it above, is merely a way
of going from known moments to a noncommittal PDF.

8.4.4 Texture models

A significant portion of the image-science literature deals with analysis, synthesis,
recognition and segmentation of textures, defined loosely as spatial random fields
with some degree of stationarity. Sometimes the stationarity is periodic, with basic
repeating elements such as bricks in a wall or fibers in a woven'3 fabric. Sometimes
it is continuous, as with a stucco wall rather than a brick one or the surface of the
ocean, where the light reflected from the object can be described as a stationary
random process. Sometimes the stationarity is only approximate, in one of the
senses discussed in Sec. 8.2.4; the correlation properties might vary slowly, or they
might be stationary only within some region boundaries. Sometimes, in fact, the
stationarity is purely visual; two regions are said to be the same texture simply
because a human observer cannot tell them apart.

Since textures are essentially stationary random processes, Fourier analysis is
an important tool for analyzing them. We shall therefore start this section with a
discussion of the role of Fourier analysis and power spectral densities, and then we
shall briefly discuss methods for estimating power spectra.

Even when stationarity is a good approximation, an autocorrelation function or
power spectral density may not capture all of the essential properties of a texture
field. It may be necessary to specify also some aspects of the multivariate PDF
in order to adequately describe a texture, and we shall describe several means of
doing so.

Throughout this section we shall discuss not only methods of characterizing
texture as a random process, but also methods for generating sample functions of
the random process. An excellent general reference on methods of constructing
sample functions with specified correlation properties and marginal distributions is
Johnson (1994).

12 Above we presented an argument that the total amount of tracer in a voxel should tend to a
normal, and here we argue that the concentration at a point should be log-normal. These two
arguments are not necessarily inconsistent, since a sum of log-normals can converge to a normal,
but in fact this convergence is very slow (Barakat, 1976). Which distribution is actually observed
is best resolved empirically.

13Texture comes from the Latin tezere, to weave, so a fabric is the prototype of a texture.
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Fourier Phase and magnitude Any spatial pattern, whether regarded as a determin-
istic function or as a sample function of a random process, is completely specified
by its Fourier transform. This (continuous or discrete) Fourier transform is com-
plex, but the modulus and phase convey essentially different information about the
object. Fourier phase tells you where things are —if the position of an object is
shifted, the phase changes but the modulus does not. Fourier modulus, on the
other hand, tells you only how strongly different spatial frequencies contribute to
the object.

In many cases, Fourier phase is more important than Fourier modulus in con-
veying the essence of an object. In a famous experiment, Oppenheim and Lim
(1981) Fourier-transformed two images, one of the television news anchor Walter
Cronkite and one of a clock. They then interchanged the Fourier phases, putting
Walter’s phase with the clock modulus and vice versa. After inverse transformation,
the image with Walter’s Fourier phase still looked like Walter, and the one with the
phase of a clock looked like a clock.

With textures, on the other hand, the situation can be reversed. In a station-
ary random process we do not care where things are. One location is as good as
another, at least statistically, so Fourier phase is much less important than Fourier
modulus. Two stationary random processes with the same modulus but different
phases are recognized as sample functions of the same texture. One common way
of synthesizing sample textures, therefore, is to generate samples of white noise and
pass them through a linear filter.

As an example, Bochud et al. (1999b) examined the relative importance of
Fourier amplitude and phase in describing coronary angiograms (x-ray images of
blood vessels after injection of an x-ray-absorbing material into the blood stream).
In agreement with the remarks above, they found that the phase was important for
describing the vessel, but not for the random anatomical background against which
the vessel was seen. Though the background was not rigorously stationary, they
showed that realistic images could be simulated by filtering white noise through a
space-variant filter.

Estimation of power spectra or autocorrelation functions of images Suppose we have
one or more sample images, and we want to generate additional images with simi-
lar texture by filtering white noise. To the extent that the texture is a stationary
random process, we need to know the power spectral density or the stationary auto-
correlation function. There is a large literature on estimating these quantities from
sample images, and we confine ourselves here to a few general observations.

In Sec. 8.2.5 we mentioned — and dismissed — an apparently obvious approach
to spectral estimation, the periodogram of a single sample image. Figure 8.1 illus-
trates the difficulty with this approach. Mallat (1999) refers to periodogram analysis
as “naive spectral estimation;” one meaning of naive is “lacking information, un-
informed” and the periodogram is naive in the sense that it does not incorporate
prior information or beliefs into the spectral estimate. We certainly do not believe
that the rapid fluctuations seen in Fig. 8.1 are meaningful features of the power
spectrum (or if we did, we would need only to repeat the experiment to change our
belief system). The situation is very similar to image reconstruction, discussed in
much more detail in Chap. 15, where naive attempts at inverse filtering yield large
fluctuations in the reconstructed image.
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The Bayesian approach to this problem, in both image reconstruction and
spectral estimation, is to define a prior probability on the function being estimated
and then to seek an estimate consistent with both the data and this prior. In the
Bayesian community, a preferred prior is the entropy, and maximum-entropy recon-
structions do indeed eliminate the rapid fluctuations and yield smooth estimates.
The details of this procedure, in the context of image reconstruction, are given in
Sec. 15.3.3.

As we shall also see in Chap. 15, there are many other approaches, referred to
collectively as regularization, that can be used to suppress fluctuations in recon-
structed images, and each of these methods has its analog in spectral estimation.
Many of these methods can also be described as Bayesian, but with priors other
than entropy (see Sec. 15.3.3); all of them attempt to enforce our prior belief that
the function being reconstructed (power spectrum or image) is smooth in some
sense.

One way to enforce smoothness in spectral estimation is to model the spectrum
as a smooth function with unknown parameters and then to estimate the param-
eters. For example, we could model the spectrum as a Gaussian and estimate its
width, or as a Gaussian times a polynomial and estimate the polynomial coefficients
also. One popular model, especially for time-series analysis, is the autoregressive,
moving average or ARMA model where the spectrum is modeled as a ratio of
polynomials (Oppenheim and Schafer, 1989).

Another model is to assume that the power spectrum varies as a power law,
p~P and then to estimate the exponent 5. Many images exhibit this behavior in
practice (even when there is no reason to assume stationarity), and g is a useful
phenomenological descriptor. Physical mechanisms that lead to power-law power
spectra in the context of electrical noise are surveyed in Sec. 12.2.3.

Which regularization method is chosen depends on what one wants to do with
the spectral estimate. If we want to simulate images that appear realistic to a
human observer, we can use one of the psychophysical tests detailed in Sec. 14.2.3
to measure how well the observer can distinguish real texture images from white
noise filtered with the estimated spectrum. If the real and simulated images are
indistinguishable, it means that the estimated spectrum is good enough for this
purpose; on the other hand, if they are readily distinguishable, it may mean that
the spectral estimate is poor, or it may mean that the texture is more complicated
than just filtered noise.

For many purposes, however, we need more than just visual realism. In texture
recognition or discrimination, for example, we need a stochastic model in order to
design an optimal discriminant function (see Sec. 13.2.12). If we use a Gaussian
model, we need to know the inverse of the covariance matrix, and if we also assume
stationarity, that means we need to know the reciprocal of the power spectrum.
Even if the spectral estimate accurately represents the actual spectrum for the spa-
tial frequencies where the spectrum is large, it may be a poor estimate in the tails
and hence a poor estimate of the reciprocal spectrum. The best spectral estimate in
this case is the one that leads to the best discrimination performance for a discrim-
inant function based on the estimated spectrum (but tested on real images —not
ones simulated from the estimated spectrum!).

As another example, we shall see in Chaps. 13 and 14 that some important
measures of image quality are expressed in terms of the image power spectrum. If
we do not know the actual spectrum, we must estimate it, and the adequacy of the
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spectral estimate must be judged by the accuracy of the corresponding estimates of
figures of merit for image quality.

Estimation of power spectra or autocorrelation functions of objects Above we stated
our goal as estimation of the power spectral density or autocorrelation function of
a set of images. Often, however, what we really want to know is the power spectral
density or autocorrelation function of the objects that formed the images.

Suppose we have a set of sample images {g;,j = 1, ..., J}, where the 4t image
is related to an object f; by g; = Hf; + n;. We must assume that f; is a sample
function of a stationary (or at least quasistationary) random process in order to
define an object power spectral density Sf(p), and we need knowledge of H and of
the noise statistics in order to estimate Sy(p).

As a simple example, suppose the imaging system is well approximated as
a convolution (a CC LSIV system in the language of Sec. 7.2.3). Then g, is a
sample function of a stationary random process, and its power spectrum is denoted
by S¢(p). If we also assume that n; is a sample function of a stationary random
process, with power spectrum S,,(p), then use of (8.156) shows that the image power
spectrum is given by

Sy(p) = [H(p)” S¢(p) + Su(p) - (8.295)

The image spectrum S;(p) can be estimated by any of the methods suggested

above, and the result can be denoted as §g(p). If we know the noise spectrum
Sn(p) independently from the physics of the imaging problem, then one reasonable
estimate of the object spectrum is

Sy(p) = Su(p)
|H (p)|?

This method gives little information about Sy(p) at frequencies for which H(p) is

S(p) = (8.296)

small, and large errors in Sy (p) can result from small errors in either S, (p) or g’g (p).
Moreover, the whole approach depends on modeling the system as CC LSIV and
the noise as stationary.

A better approach is to use some parametric description of the object power
spectrum, perhaps one that allows quasistationarity, and then to estimate the pa-
rameters from the data. This way, the system operator H can be a general CD
mapping and the noise can have an arbitrary covariance matrix Kj,, so long as both
of these quantities are known. Methods of parameter estimation to be developed
in Chap. 13 can then be used to estimate the spectral parameters. Thus a station-
ary or quasistationary texture field can be imaged through a shift-variant imaging
system and have nonstationary noise added to it, yet the parameters describing the
spectrum of the texture field can still be estimated.

Gray-level statistics When the correlation properties are not sufficient to charac-
terize a texture, we can also use the single-point PDF pr[f(r)]. For a stationary
texture, this density is independent of r, and we might want to generate samples of
the texture with this density and some specified autocorrelation function or power
spectral density. We shall sketch an iterative algorithm for this purpose.

The algorithm begins by filtering white noise to obtain several samples with the
requisite power spectrum. It is probably valid to invoke the central-limit theorem
on the filter output since the filter will serve to add up many independent samples of
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the white noise, so the single-point PDF on the filter output is probably Gaussian,
but in any case we can estimate the PDF from the average gray-level histogram of
the samples. At this stage we can perform a process known as histogram equaliza-
tion, a pointwise nonlinear transformation that changes the gray-level distribution
as described in Sec. C.3.1, and the form of the transformation can be chosen to
yield the required PDF. This transformation changes the power spectrum in a com-
plicated way, and it is necessary to estimate the new spectrum from the samples.
From the new spectrum, we can devise a new filter to match the current spectrum to
the required one, but this changes the PDF so a new histogram-equalization step is
needed. The process is then repeated iteratively. Each iteration is a projection onto
convex sets, as discussed in detail in Sec. 15.4.5, and convergence can be proven by
use of a theorem quoted there. The result is a set of samples that have both the
specified power spectrum and the specified single-point PDF.

Texture synthesis with wavelet channels It has been found (Bergen and Adelson,
1991; Chubb and Landy, 1991) that textures that give similar gray-level histograms
through a series of wavelet filters appear similar to a human observer. Heeger and
Bergen (1995) and Rolland and co-workers (Rolland and Strickland, 1997; Rolland
et al., 1998; Rolland, 2000) have used this observation to develop algorithms for
synthesizing textures.

The Rolland group uses a digital image of a reference texture and synthesizes
additional sample textures of similar visual appearance. The reference texture is
decomposed into subbands by means of a discrete wavelet transform (see Sec. 5.3.3).
This transform is invertible, so the original reference texture can be recovered by
the inverse transform. The stochastic model, however, is that the texture can
be characterized by means of gray-level histograms for each subband, basically a
histogram estimate of the univariate PDF's for the output of each wavelet filter. In
principle, multiple reference images could be used to improve this estimate, but the
Rolland algorithm uses just one and implicitly assumes ergodicity.

To synthesize a sample texture, a discrete white noise field is generated, and
it is also passed through the same discrete wavelet transform. The histogram of
each filter output is computed, just as for the reference texture. A nonlinear point
operation is applied in each subband to convert the histograms of the transformed
white noise to histograms that match those of the reference texture. An inverse
wavelet transform then yields the synthesized texture. The visual correspondence
between the reference texture and the synthesized textures is striking, yet all of the
synthesized textures are statistically independent since independent noise fields are
used.

Multiple filters and maximum entropy The method of Heeger and Bergen permits
the synthesis of textures from one or more training images, but it does not give
a probability model for the synthesized images. This gap was filled by Zhu et al.
(1998), whose work can be seen as a combination of wavelet-based texture synthesis
and independent components analysis. Rather than restricting attention to some
chosen set of wavelets, as in Heeger’s method, Zhu et al. use a large library of linear
filters and compute marginal histograms of the filter outputs for some training set
of images (which may consist of just a single image plus an ergodicity assumption).
They then use the principle of maximum entropy to construct a multivariate distri-
bution that agrees with the marginals estimated from training data.
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The rationale for maximum entropy is the one mentioned in Sec. 8.4.3:
maximum-entropy densities are maximally noncommittal and do not attempt to
represent information not available empirically. According to Zhu, the maximum-
entropy density is the “purest fusion” of the empirical marginals.

Suppose we have a set of linear operators £Y9) in object space, with the output
of the j*" operator given by ¢ (r) = [£Yf](r). In the abstract notation of Sec.
8.2.2, the single-point marginal density on the output can be written as

pr [q(j)(r)] = /df pr [q(j)(r)‘f} pr(f). (8.297)

But the linear operator is deterministic, so ¢/ )(r) is known exactly once f is speci-
fied, and we can write

pr (10 w)] = [ at 6{aw) ~ 1£781) } pr(e). (3.298)

where §{¢)(r) — [£Pf](r)} is simply a 1D delta function. Comparing this ex-
pression to (4.173), we see that the single-point marginal on the filter output is a
Radon-transform projection of the object density pr(f), where f here corresponds to
the position vector r in (4.173), and choice of the linear operator here corresponds
to the projection direction n in (4.173).

Now suppose we have a set of training “objects” (either good computer sim-
ulations or images from a high-resolution, low-noise imaging system as discussed
in Sec. 8.4.1) from which we can form a histogram estimate of pr [¢\)(r)]. If we
denote this histogram, defined as in (8.262), by pryu) ) [q(j)(r)], then we can pose
the maximum-entropy density-estimation problem as

—/df pr(f) In[pr(f)] = max, (8.299)

subject to the constraints of normalization,

/df pr(f) =1, (8.300)

and agreement with the empirical histograms,

BTy () (2) = /df 5{2 - [E(j)f](r)} pr(f). (8.301)

If we assume stationarity, at least over some restricted region, then the histogram
should be the same for all positions, and we can drop the argument r on the sub-
script, but we still have to satisfy the constraint at all r. In practice, the matching
will be done for a discrete set of points r;, usually on a pixel grid.

This problem can be solved by the method of Lagrange multipliers, just as in
(8.288) ff., but now we have an infinite number of constraints! For each operator
L) we must satisfy (8.301) for all r and all z. We thus have a continuum of un-
known Lagrange multipliers, which we can express as an unknown function ® ){z}
With this view, the general form of the maximum-entropy object density turns out
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to be [see Zhu et al. (1998) for details]

pr(f) = %exp{ - ZZ/dz o {2} 6{2 - [E(j)f} (r;) } }
_ %exp{ - ZZ@W ({c@f} (ri)) } : (8.302)

3
where 7 is a normalizing constant.

The problem is not yet solved since we still have to find the functionals &)
such that the constraints are satisfied. Zhu et al. propose an iterative algorithm for
this purpose.

One remaining question is how to choose the operators L9 in the first place.
Since stationarity is probably required to make this whole approach computationally
feasible, it is natural to choose the operators as LSIV filters, but another consider-
ation is independence. The maximum-entropy estimate in (8.302) shows that the
filter outputs are statistically independent, even if this is not the case in reality. Zhu
et al. propose use of a large library of filters and an iterative algorithm to select
a subset of them that optimize a measure of independence, as in ICA, and Zhang
(2001) suggests a Metropolis algorithm.

Parametric descriptions of the marginals The filters chosen in the Zhu approach (or
discovered in ICA) are mostly band-pass filters (though Zhu includes a low-pass
filter as well). As discussed in Sec. 8.4.3 and illustrated in Fig. 8.7, the outputs
of band-pass filters tend to have simple cuspy shapes with long, kurtotic tails.
Empirically, we can describe these marginals by simple analytical forms such as
Laplacian or Levy densities, with only one or two free parameters per filter output.

This observation suggests an alternative to the Zhu method: instead of trying
to choose the functions &) {z} to match the empirical marginal histograms, we can
directly estimate the free parameters in the assumed analytical densities (Kupinski
et al., 2003c).

Lumpy backgrounds Another way to generate images (or simulated objects) with
specified correlation properties and controllable gray-level statistics is the lumpy
background, introduced by Rolland and Barrett (1992). In this method, spatial
elements, called lumps and denoted I(r), are randomly distributed over some area,
so the distribution has the form

N
f)y=> lr—r,). (8.303)

n=1

A common choice for I(r) is a Gaussian spatial distribution,

I(r) = Aexp <—%) . (8.304)

The positions r,, and possibly also the total number of lumps N are random vari-
ables.

One important special case is where N is a Poisson random variable; the math-
ematical tools for analyzing this case will be developed in Sec. 11.3.9, and the char-
acteristic functional for the random process (8.303) will be derived in Sec. 11.3.10.
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As we shall see there, f(r) is a stationary random process if the positions r,, are
uniformly distributed over some area, and the statistical autocorrelation function
turns out to be just the autocorrelation integral of the lump profile [see (11.140)].

If N is large and the lump positions are statistically independent, the single-
point PDF of a lumpy background approaches a Gaussian by the central-limit the-
orem. In this limit, the details of the lump profile are irrelevant, and the resulting
functions are indistinguishable from ones obtained by filtering white, Gaussian noise.
If NV is small, on the other hand, then the lump profile controls the single-point PDF
as well as the correlation properties; for more details, see Sec. 11.3.10.

More general lumpy backgrounds As originally defined by Rolland, the lump profile
I(r) in (8.303) is a nonrandom function; the only randomness is in the lump location
r,. To allow more freedom in synthesizing lumpy backgrounds, we can let the lump
profile also be random. For example, the amplitude or the width of each blob could
vary according to some specified probability law.

One very useful variant of the simple lumpy background is the clustered lumpy
background, suggested by Bochud et al. (1999a), where a cluster of identical blobs
forms a superblob, and the final model is a superposition of superblobs. With this
scheme, (8.303) becomes

Ns Ny

F) =" l(r —rpe — Ry), (8.305)

k=1n=1

where N is the number of superblobs, N, is the number of blobs within the k*?
superblob, Ry, is the center of the k" superblob, r, is the center of the nt* blob
within the k** superblob, and I;,(r) is the random lump profile associated with that
superblob. It is useful to make N and N, Poisson random variables, so we must
wait until Chap. 11 to analyze the statistics of (8.305).

Bochud et al. chose elongated Gaussians for the lump profiles and used their
orientation as the random parameter in l;(r). With this simple model they were
able to synthesize images strikingly similar to clinical mammograms.

Two-point densities As we discussed in Sec. 8.4.2, two-point PDFs of the form
pr[f(r1), f(r2)] can be an important part of the stochastic description of objects
in general, and they are particularly attractive for stationary random processes
such as textures. For purposes of stochastic modeling, we can estimate the two-
point PDF from the empirical co-occurrence statistics of one or a few images if we
assume ergodicity. It was suggested by Julesz (1962) that textures with similar
co-occurrence statistics would appear similar, though psychophysical studies have
shown that higher-order statistics do have at least some effect on human texture
perception (Diaconis and Freedman, 1981).

The use of co-occurrence statistics for synthesis of realistic textures should be
distinguished from their use in texture discrimination or segmentation. In the latter
application, the goal is to describe the texture pattern within a spatial region by
a few features with good discriminatory power, and it is common to reduce pixel
values in the region to a co-occurrence matrix and to derive the features from that
matrix. There is no need to make any argument about ergodicity or stationarity in
this application; if the features are useful in discriminating one region from another
or classifying regions, that is justification enough.
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Quasistationary textures Most of the discussion above has concentrated on textures
as stationary random processes. If exact stationarity is not a good assumption, we
may want to model a texture as quasistationary, and in this case the stochastic
Wigner distribution function defined in Sec. 8.2.5 is a useful tool. In particular,
if the quasistationary form (8.142) is valid, we can estimate the two factors b(rg)
and A(p) separately from samples. If we want to generate sample textures with a
stochastic Wigner distribution specified by (8.142), we can use a lumpy background
with a spatially variable lump density (mean number of lumps per unit area) given
by b(rp). For more discussion on the statistics of lumpy backgrounds, see Sec.
11.3.10.

Sometimes the pattern we want to synthesize is stationary within prespecified
boundaries. For example, we may want to simulate statistically independent sample
functions of an abdominal section of the body in order to study image quality in
computed tomography (CT). We can start with a good anatomical model, obtained
perhaps by manual or automated segmentation of a single reference CT image, and
we can identify specific organs such as liver and spleen within this image (Zubal et
al., 1994). Then any of the methods described above can be used to characterize
the texture within each organ and to generate sample functions consistent with this
characterization. These sample functions can then be placed within the specified
organ boundaries, and the procedure can be repeated as many times as needed to
get a large number of simulated abdomens. These simulations can be regarded as
object representations rather than images since the organ boundaries will be sharp
and the textures may contain very high spatial frequencies.

Random shapes In addition to simulating random textures within a region, we may
wish to make the shape itself random. Simulating a shape usually means adopting
some parameterized description of the shape and choosing the parameters. Some
simple approaches to describing shapes mathematically were discussed briefly in
Sec. 7.1.6. One approach, used for example by Cargill (1989) to describe the hu-
man liver, is to specify the distance R from some internal reference point to the
boundary as a function of polar angles 6 and ¢. If the surface of the object is
smooth, an expansion of R(6,¢) in spherical harmonics can be terminated with
relatively few terms (~ 100 in Cargill’s work), and the coefficients in this expansion
are the desired parametric representation of the liver. This general approach is ap-
plicable to any 3D shape in which a reference point can be found for which R(6, ¢)
is unique; it is not necessary that the shape be convex, though convexity avoids the
necessity of searching for a suitable reference point.

Another general approach, also mentioned briefly in Sec. 7.1.6, is to express the
shape as a geometric transformation of a given reference shape. Affine or non-affine
transformations can be used, and the parameters of the transformation are then the
shape descriptors.

After establishing a parametric description of shape, the next step in shape
simulation is to find the PDF on the parameters, for example by analyzing real
shapes. One common approach is to compute a sample mean and sample covari-
ance matrix on a set of measured parameters and, in effect, to assume that the
PDF is multivariate normal with this mean and covariance. If there are many pa-
rameters, it can be advantageous to use principal components analysis or PCA (see
Sec. 8.4.1) and retain only components corresponding to a few of the eigenvectors
of the sample covariance with the largest eigenvalues. The eigenvectors themselves
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are sets of shape parameters, and the shapes associated with them are often called
eigenshapes. It must be kept in mind, however, that these eigenshapes are char-
acteristics of both the particular shape description used and the experimental data
set from which the parameters were derived.

However the PDF on the shape parameters is formulated, samples drawn from
it can be used to synthesize new shapes consistent with the estimated PDF, and
these random shapes can then be used in image-quality studies and many other
investigations. For an example of these procedures, see Duta et al. (1999), and
for general mathematical treatments of statistical shape analysis, see Small (1996),
Dryden and Mardia (1998) and Kendall et al. (1999).

8.4.5 Signals and backgrounds

In many imaging situations, we do not have equal interest in all parts of the scene.
In aerial reconnaissance, for example, we are relatively uninterested in trees and
bushes, but we would be extraordinarily interested in a military vehicle that might
be hiding in the bushes. Similarly, in an abdominal MRI scan, we have little interest
in the myriad features of normal anatomy, but we are much more interested in a
small nodule that might turn out to be malignant. As a very general term, we
can call an object of interest, that may or may not be present in a given scene, a
signal. The remainder of the scene can be called background or (especially in the
radar literature) clutter. In Chap. 13 we shall discuss in detail methods of detecting
signals, or distinguishing between different signals, but here we introduce the topic
by discussing stochastic models for objects with and without signals.

Additive signals Perhaps surprisingly, it entails no loss of generality to decompose
an object into a simple sum of signal and background components:

f(r) = fi(r) + fo(r). (8.306)

Once we have defined the portion of the object that we regard as signal and denoted
it as f;(r), then the background fy(r) is just defined as f(r) — fi(r).

This does not say that fi(r) is the same as f(r) would be in the absence of
the signal, though in fact it may be. In nuclear medicine for example, a tumor is
often manifest by an increased uptake of some tumor-seeking radiopharmaceutical,
so it is natural to simply add the tumor distribution f;(r) to the distribution fj(r)
in normal tissue. If both f;(r) and f3(r) are sample functions of random processes,
then it may be reasonable to take the two processes as statistically independent.

In optical imaging, on the other hand, objects are opaque, so a signal of interest
may obscure the background behind it. For purposes of describing the response of an
imaging system, the object f(r) is either f;(r) or fi(r), not their sum. Nevertheless,
we can still use an additive model if the statistical dependence of the two processes
is taken into account.

Nonrandom signals The simplest model for a signal on a background is one where
the signal function is completely specified and the only randomness is whether or
not it is present. This model is often called SKE (signal known exactly). As we
shall see in Chap. 13, it is an excellent starting point for discussing signal detection
and image quality.
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If we adopt the SKE model and assume that the signal is just added to the
background rather than obscuring it, then the signal and background are statisti-
cally independent. With or without a signal, the PDF on f(r) is fully determined
by the PDF on f,(r) since that is the only random process in the problem. In the
absence of a signal, we can write the univariate density on f(r) as

pr[f(r)|signal absent] = pr,[fy(r)] . (8.307)

We have added the subscript b to indicate that pr,[fy(r)] is specifically the PDF
on the background; the notation is redundant here since the same information is
conveyed by the subscript on f,(r), but its usefulness will become apparent in a
moment.

Because of the assumed statistical independence, the form of the PDF for f3(r)
is still the same with a signal present, but to relate it to the PDF on f(r) we must
rewrite (8.306) as

folr) = f(r) = f(r). (8.308)
We then have
pr[f(r)|signal present] = pr,[f(r) — f;(r)]. (8.309)

Now we see the need for the subscript: the 1D PDF pr;[f3(r)] is merely shifted along
the axis by the presence of a nonrandom signal (see Fig. 8.9), and the functional
form is unchanged.

pr[f(r)|signal absent]

pr([f(r)|signal present]

f(x)

Fig. 8.9 Effect on the univariate PDF of adding a nonrandom signal to a
random background.
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This discussion has specifically dealt with univariate densities at a single point,
but it is easy to extend it to an arbitrary number of points or to general Hilbert-
space vectors representing object, signal and background. Abstractly, we can write

pr(f|signal absent) = pr(f}) ; (8.310)

pr(f|signal present) = pr,(f — f). (8.311)

These densities can be interpreted as PDFs on coefficient vectors like av or as multi-
point densities. In fact, (8.308) and (8.309) follow from (8.310) and (8.311) just by
regarding f(r) as a component of f (and similarly for f;, and f;) and taking marginals
on both sides of (8.310) and (8.311). Whatever space we are working in, addition
of a nonrandom signal merely shifts the background PDF.

Parametric signal models Sometimes a signal is not known exactly but can be de-
scribed by a function with a small number of unknown parameters. For example, in
nuclear medicine a tumor might be well modeled as a sphere with random location,
size and uptake of a radiopharmaceutical. Similarly, in astronomy a pulsar could
be modeled as a time-varying point source, where the random parameters are its
coordinates in the sky and the amplitude and period of the pulsation.

In these cases we do not need an infinite-dimensional PDF like pr(fs) to de-
scribe the signal; if the signal is fully specified by L parameters {0s,¢ = 1,..., L},
all we need is the L-variate PDF pr({fs}). The signal parameters can also be
arranged into an L x 1 vector 6, so we need the PDF pr(6;) in order to describe
the signal fully.

With a signal described parametrically, the object PDF is given by

pr(f|signal present) = / d" 0 pr(f| signal present, 6,) pr(6,). (8.312)
The conditional density pr(f| signal present, ;) is just the density for an SKE prob-
lem; if we condition on a set of parameters that completely specify the signal, then
the signal is known exactly. If the signal and background are statistically indepen-
dent, then this conditional density is given by (8.311), and we have

pr(f|signal present) = / d0, pr, [f — £.(6,)] pr(6s). (8.313)

oo

The object PDF is now a weighted average of shifted background PDFs.

Obscuring signals  If point r lies within the signal and the signal obscures the back-
ground, then f,(r) can take on only the value zero at this point. Since f(r) is then
identical to f;(r), the univariate density on f(r) for a nonrandom signal is given by

pr[f(r)|signal present at r] = §[f(r) — fs(r)]. (8.314)

If the signal is absent, or if it is present in the object but not at point r, then (8.307)
still holds.

Multipoint densities can be formulated similarly. For example, if a nonrandom
signal is present at r; but not at ry, the two-point conditional PDF is

pr[f(r1), f(ra)|signal present at rq, absent at ro | = &[f(r1) — fi(r1)] prylf(r2)] .
(8.315)
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The univariate marginals of (8.315) are consistent with (8.314) and (8.307).

The PDFs specified by (8.314) and (8.315) can be difficult to work with, es-
pecially when we extend the discussion to random signals. It is often preferable to
work in terms of the expansion coefficients {a, }. Consider a nonrandom, obscuring
signal with support Sg; that is, the signal obscures the background for all points r
in the region S;. For an orthonormal basis, the coefficient «, is given by

oy = /s dir ) (r) f(r), (8.316)

where Sy is the overall support of the object. When a signal is present, this integral
can be written as

o= |
S

where S, is the complement of S, i.e., the set of points in S¢ but not in Sj.

We can think of the first integral in (8.317) as the n'" component of an infinite
vector a; describing the signal in the basis {1, }; since the signal is nonrandom,
o, is nonrandom. The second integral would be the n*" expansion coefficient for
the background except that we have excluded the region S, from the range of
integration. Nevertheless, we can think of that integral as the n'® component of a
random vector which we can denote as o, and we can write, without approximation,

dr 7 (x) f(x) + / dir 2 (x) fi(r) (8.317)

Ssc

s

a=a,+ay, (signal present) . (8.318)

If the signal is absent, then the support of the background is the same as the
object support, and we can write

a=aqy, (signal absent), (8.319)

where o, is now computed via integration over all of Sy.

Because of the different regions of integration, the statistics of oy will, in
general, depend on whether or not the signal is present. There is, however, one
interesting situation in which we might assume that o, is independent of the signal.
Suppose we have a spatially compact signal but a spatially extended basis function,
such as a Fourier basis function (see Sec. 7.1.2). In that case, deletion of a small
region may not change the value of the integral very much, so it might be a good
approximation to say that oy is the same with and without the obscuring signal.
If that assumption is valid, then we are back to an additive model with a signal-
independent background, at least in this basis. If, on the other hand, deletion of the
signal support does change the integral significantly, we can still use the additive
form (8.318), but we have to use a different PDF on «, for signal present and signal
absent.

8.5 STOCHASTIC MODELS FOR IMAGES

Having just discussed various stochastic models for objects, we turn now to images.
In keeping with our emphasis on digital imaging, we consider only CD systems here,
and for simplicity we assume they are linear. Our objective will be to characterize
an ensemble of such images by its mean vector and covariance matrix and, where
possible, a multivariate probability density function.
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8.5.1 Linear systems

In the absence of noise, we defined a linear imaging system as one for which the
image was a linear functional of the object; with noise, a linear imaging system
can be defined as one for which the average image, obtained after many repeated
images of the same object, is a linear functional of the object. If we denote this
mean image by g(f), then for any linear system we can write

g(f) = Hf, (8.320)

where H is a linear operator acting on the object f.
Specifically for the case of digital imaging of an object function, we know from
Sec. 7.3.1 that the most general way to write the linear mapping is

IS /s dr hp () f(r), m=1,..,M. (8.321)

Except for the overbar and the explicit argument f, this equation is identical to
(7.225). We emphasize that the average implied by this overbar is for repeated
images of a single object.

To get an expression for the actual random image, we can define an M x 1

noise vector n by
n=g-g(f)=g—Hf. (8.322)

Thus, we have
g=Hf +n. (8.323)

This is the fundamental equation describing noisy, digital imaging of real objects.
Now we must understand the statistical properties of g, both for a particular object
f and when a random ensemble of objects is considered.

8.5.2 Conditional statistics for a single object

Conditional density 1If each component of g is a continuous random variable, we
can denote the conditional probability density function (for a particular object) by
pr(glf). If each component of g can take on only discrete values, we should use the
conditional probability Pr(g|f), but to avoid considering these two cases in parallel,
we shall use the lower-case pr(g|f) in both cases, understanding it as a probability
density function or probability as needed. Specific forms for pr(g|f) will be given
later, especially in Chaps. 11 and 12. As we shall see there, independent Poisson
models are usually valid when photon-counting detectors are used, and multivariate
normal models are valid with most other detectors.

Even without specific models for the detector statistics, we can make some
general statements about pr(g|f). For one thing, we know that f affects the data
only through the system operator H, so

pr(glf) = pr(g|Hf) = pr(g[Hfmeas) - (8.324)

Thus only the measurement component of the object affects the statistics of the
image.
Furthermore, for a given f, Hf is not a random variable, so

pr(g|f) = pra(g — HE|HE), (8.325)
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where pr,(n|g) is the PDF on the noise vector'? given some mean value for the
detector output. If this density is independent of g, then we say that the noise is
object-independent and write

pr(g|f) = pr,(g — Hf). (8.326)

In this case, therefore, the conditional density on g is just a displaced version of the
density on the noise. As we shall see in more detail in later chapters, this object-
independent model is often valid for electronic and other excess noise in detectors.

A related approximation is that the noise is object-dependent but signal-
independent. When we divide an object into signal and background, as in (8.306),
it may turn out that the signal is weak compared to the background, and sometimes
we can write pr(g|f) = pr(g|f, + f5) ~ pr(g|fy). This may be a good approximation
with photon-counting detectors in low-contrast situations where all components of
Hf are approximately equal.

Another assumption that is often justified in practice is that the components of
n are statistically independent for a fixed object. With discrete arrays of photodi-
odes, for example, the electronic noise in one element is often statistically indepen-
dent of noise in all other elements, and we shall see in Chap. 11 that photon-counting
detectors viewing a Poisson source almost always yield statistically independent
measurements. When this assumption is valid, we have

M
pr(glf) = T pr(gmlf)- (8.327)
m=1

Conditional mean and covariance We can also make some general statements about
conditional means and covariances. We know already that the conditional mean of
g is
E{g|f} =g =HTF, (8.328)
from which it follows at once that
E{n|f} =0. (8.329)

Thus we can always regard the noise vector as zero-mean.

Since we are conditioning on f and hence Hf is not a random variable, the
conditional covariance of g is the same as the covariance of n; notationally, we
write

Kgir = Kn, (8.330)

but we must allow for the possibility that K,, depends on f (in the Poisson case, for
example).

8.5.3 Effects of object randomness

Next we examine the image statistics in the case where the object is random. In
frequentist terms, we can consider a large number of images, each with a different
object drawn from some ensemble. Our knowledge of the object statistics is given
by a stochastic model such as those considered in Sec. 8.4.

14Recall that we add subscripts to PDFs only when the random variable is not obvious from the
argument.
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Overall density Formally, we can write the overall probability density as

m@—Aﬂm®ﬂMﬂ- (3.331)

In principle, this integral runs over the entire infinite-dimensional object space, but
from (8.324) we know that only the measurement subspace contributes. The di-
mensionality of this subspace is R, the rank of the operator H, so really only R
components are important. If we expand f,,,.,s in some suitable basis for measure-
ment space as in (7.251), with an R x 1 coefficient vector «, then the integral can
be written as

pr(g) = [ " pr(gla) pr(c). (8.332)

Depending on the choice of basis for measurement space, there is some matrix
H, that exactly maps the coefficients a to Hf (see Sec. 7.4.3), so we can write

mysz%m@mmmmy (8.333)

Derivation of the form of Hy for the specific case of expansion in natural pixels
(Sec. 7.4.3) is an interesting exercise for the reader.
For object-independent noise as in (8.326), (8.333) takes the appealing form,

prle) = [ " pr g - Hoo) pr(cr). (8.334)

This equation is not quite a convolution, but nevertheless it can be usefully trans-
formed by Fourier methods. With characteristic functions as defined in (8.27) and
some algebra similar to that used in obtaining (8.43), we can show that

Pg(€) = ¥n(€) Yo (HHE) - (8.335)

Increasing the noise level decreases the width of ¢y, (€) in this Fourier domain, and
increasing the degree of object randomness decreases the width of 1, (H{E); either
measure decreases the width of 1¢(£) and hence increases the spread of pr(g).

For Poisson noise (8.334) and (8.335) are not valid; instead, (8.334) must be
written as'®

Pr(g) = / d®a Pr(g/Hpa) pr(a) . (8.336)

Note that we have written Pr(g) instead of pr(g) since Poisson random variables are
discrete. The probability (not density) Pr(g|Hpa) is just a product of univariate
Poisson probabilities, where the mean of g, is [Ho|m,.

The transformation of the characteristic function in the Poisson case was de-
rived by Clarkson et al. (2002). They show that (8.336) is equivalent to

Ug(€) = Ya[HT(E)], (8.337)

15We could also have written Pr(g|Hoa) in (8.336) as Pr(g|a) since Hoa is fully determined by
a, but the former version is more useful when we want to write the probability as a product of
Poissons; the probability for g, is specified by a single component of Hpa, but all components of
a may be required because of the matrix multiplication.
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where I' is an operator that acts independently on each component of its vector
operand; it is defined such that

 —1+exp(—2mi&y,)
B —2ri '

[T,

(8.338)

Clarkson et al. (2002) show also that this transformation law applies when Hy
is replaced by a CD operator H and the full infinite-dimensional vector f is used in
place of the finite-dimensional . In that case the characteristic function for g is
related to the characteristic functional for £ by

Vg (€) = Te[HIT(€)]. (8.339)

Overall mean We shall use the notation of (8.331), recognizing that the integral
will be realized by expanding the measurement component of f in some basis and
integrating over the coefficients. With this convention, we can write the overall
mean image as

Ble) = [ "o eprte) = [ aye [ dt or(ein)or(e). (8.340)

Shuffling the integrals, we see that

E@ZAﬂMW/M@w%m- (8.341)

The inner integral is the average of g with respect to the conditional density, which
is precisely what we called g(f) previously, so

Blg) = [ df pr(e)a(r). (8.342)
U
Another notation that means the same thing is

(8) = ((&)ne s - (8.343)

Yet another notation denotes this overall average as g, with the double overbar
indicating that we have averaged over both the measurement noise and the object
variability. This double average can also be seen directly in (8.340) when we recall
that pr(g|f) pr(f) is also the joint density, pr(g, f).

Overall covariance  When both measurement noise and object variability are taken
into account, the covariance matrix on g is defined (for real g) by

Ke=(([g—E] [8— 8] upe)e- (8.344)
Adding and subtracting g(f) in each factor gives
Ky = (([g—&(f) +&(f) — 8] [ —8(F) + &) — 8] e )y (8.345)

Noting that g(f) — g does not involve n (since it has been averaged out) and that
(lg— E(f)]>n‘f = 0, we see that

Ky = (g —8(f)llg —&(E)]"), ) + ([BE) —B) [B(E) —B) ), (8.346)
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The first term in this expression is just the noise covariance matrix K,, averaged
over f (though this average is superfluous in the case of object-independent noise);
we can denote this term as K,. The second term has nothing to do with n but
rather reflects the object variability as seen in the mean image; we can denote this
term as Kg. With this notation, we have

K, =K, +Kg. (8.347)

This division of the overall covariance into two terms, one representing the
average noise covariance and the other representing the variation in the conditional
mean, is exact and does not require any assumptions about the form of either pr(g|f)
or pr(f). In particular, it does not require that the noise be object-independent,
and it does not require that either the noise or the object be Gaussian.

Other expressions for the object-variability term There are several alternative ways
of expressing Kg. First, since the object f(r) is a sample function of a random
process, we can use the autocovariance operator Ky, i.e., the integral operator with
kernel Ky (r,r’). Since g is a linear transformation of f by (8.320), it follows that
[¢f. (8.50) and (8.145)]

Kg = HIC:H. (8.348)

Similarly, if we know that f,,..s = Hoa as in (8.333), and if we know the
covariance matrix K, then we have

Kz =HoK, Hj. (8.349)

Finally, if we have some approximate object representation as in (7.301) and
a system matrix H as defined in (7.304), and we know a covariance matrix for the
coefficients 8, then we can approximate Kg by

Ky ~HKyH'. (8.350)

This approximation will be accurate if the image error defined in (7.329) is small
for all objects in the ensemble (and, of course, if Kg is accurate).

Sample averages We have written formal expressions for the overall mean and
covariance as if we know the densities needed to perform the averages. In practice,
we will usually know the conditional density pr(g|f), since it follows from the physics
of the measurement process; as we have noted, this conditional density will usually
be Gaussian or Poisson. The average over objects is much more problematical in
practice. In Sec. 8.4 we discussed a variety of statistical models for objects, but
we saw that there were many circumstances where we could generate samples of f
but could not develop an analytical expression for pr(f). In these circumstances we
have no choice but to approximate the analytical averages with sample averages;
more details on how this is done in practice will be forthcoming in Chap. 14.

8.5.4 Signals and backgrounds in image space

In Sec. 8.4.5, we divided the object into signal and background parts as in (8.306),
which we can also write as
f=f+1. (8.351)

Now we shall look at how this division affects the image statistics.
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Conditional statistics The conditional mean, for a fixed object, is still given by
(8.328), but because of the assumed linearity of the operator, we can write separately
that

g, = Hf,, g, = Hf}, (8.352)

The conditional covariance is still given by (8.330), but for signal-dependent
noise we have to assume in general that the noise covariance matrix depends on both
the signal and the background. In many problems, however, we can assume that the
signal is weak compared to the background, so K, is approximately independent
of f.

The conditional density is still given by (8.325), which we can now write as

pr(glf) = pry(g — Mf, — Hfy|HE) (8.353)
or, for object-independent noise,

pr(g|f) = pra(g — HE — HE,). (8.354)

For noise that is object-dependent but signal-independent, this expression would
become pr(g|f) = pry, (g — Hfs — HE|HE).

Random background When the background fj, is random but the signal is not, then
the overall probability density function in (8.331) becomes

pdg)——jgd&1n(mﬂnﬂ)pdﬁﬂ (8.355)

or, for object-independent noise,

pr(g) = /Udfb pr,(g — Hf, — HE) pr(fy). (8.356)

For a nonrandom signal, the overall covariance matrix is almost unchanged
from before; from (8.347) and (8.348), we have

K, =Kn+HKgH' . (8.357)
Essentially the only change here is the subscript on IC.

Random signals If both signal and background are random but they are statistically
independent, the overall density on the data is given by [cf. (8.355)]

prie) = [ df. [ df (el £ pr(t) pr(t.) (3.35%)
U U
The overall covariance matrix in this case is given by

Kg =Kn+HKe,H + HI, HT (8.359)

If f; and f, are not statistically independent, we can write pr(f,) pr(fs) =
pr(fy|fs) pr(fs) and do a nested average as in (8.344); the result will be that /Cg,
acquires an overbar indicating that it is to be averaged over signals.



