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The past decade has seen a significant growth in research targeted at space-based observatories for
imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with
a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing
and control is needed to correct the errors in the optics and generate a “dark hole.” The high-contrast
imaging laboratory at Princeton University is equipped with two Boston Micromachines Kilo-DMs. We
review here an algorithm designed to achieve high contrast on both sides of the image plane while mini-
mizing the stroke necessary from each deformable mirror (DM). This algorithm uses the first DM to
correct for amplitude aberrations and uses the second DM to create a flat wavefront in the pupil plane.
We then show the first results obtained at Princeton with this correction algorithm, and we demonstrate
a symmetric dark hole in monochromatic light. © 2009 Optical Society of America

OCIS codes: 350.1260, 220.1080, 010.7350.

1. Introduction

With the need to image faint exoplanets close to their
parent star, wavefront control for space-based high-
contrast imaging has received tremendous attention
over the past few years. The idea of completely can-
celing starlight using coherent subtraction via a de-
formable mirror (DM) was first introduced by Malbet
et al. [1], where they proved, using nonlinear numer-
ical tools, the theoretical feasibility of a very-high-
contrast dark hole in the image plane of a telescope.
Experimentally, the first idea tested was based on a
linearization of this previous result: cycle through a

set of arbitrary DM configurations and choose the
one yielding the best contrast in an algorithm called
“speckle nulling” (e.g., Brown and Burrows [2], Trau-
ger [3]). Bordé and Traub [4] proposed a refinement
of this solution that yielded much faster convergence
rates: they separated the estimation and the correc-
tion stages and reduced the second one to a simple
matrix inversion based on an energy minimization
criteria. However, this method presented numerical
caveats when associated to a coronagraph since it
required the inversion of an ill-conditioned matrix.
Give’on et al. [5] proposed a solution to regularize
the problem based on electrical field conjugation.
In this paper we introduce an alternative correction
method that fully solves the nonlinear problem while
using the smallest DM deformation possible. We not
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only present the theory underlying these algorithms,
but also provide an experimental validation of the
stroke minimization method using one and two
DMs. Previous experimental results of high-contrast
dark hole formation only achieved high contrast in
one-half of the image plane. Because of the unique
dual DM feature of the Princeton University high-
contrast laboratory, this paper is the first experimen-
tal report of symmetric high-contrast point spread
functions (PSFs).
One of the characteristics of high-contrast wave-

front control in space is focal plane wavefront sen-
sing. Using the science camera to also estimate the
wavefront avoids potential non-common path errors
from conventional pupil estimation. The control algo-
rithms discussed in this paper, therefore, all assume
perfect estimates of the field in the region of the im-
age plane where we seek high contrast. The experi-
ment uses an estimation algorithm that retrieves the
wavefront based on random DM diversity (Give’on et
al. [5] and Give’on et al. [6]). That is, probes are set on
the DM in order to cause interference with the aber-
rated field. A careful analysis of the resulting speck-
les leads to the retrieval of the complex field.
For all the analysis and simulation of the various

control approaches in this paper, we assume perfect
estimates of the focal plane field.

2. Optimal Dark Hole Problem

The goal of the correction problem is to cancel the
starlight due to optical imperfection so that the con-
trast in the image plane is the one for which the cor-
onagraph was designed. It was first shown in Malbet
et al. [1] that this could be formulated as a nonlinear
optimization problem. While the problem itself is
straightforward to state, many solution approaches
are possible. Here, we follow the notation of Give’on
et al. [5]. We model the coronagraph as a general lin-
ear transformation, C, between the electric field at
the deformable mirror, E0, and the final electric field
at the image plane of the camera:

Ef ¼ CfE0g: ð1Þ

When the DM is at the pupil, the linear transforma-
tion C is a Fourier transform. When the DM is not at
the pupil, the operator includes Fresnel propagations
from the DM to the pupil. The linear mapping could
represent any number of possible coronagraphs
(shaped pupils, Lyot-type coronagraphs, pupil map-
ping, etc.). In most cases, it will simply be a series
of Fourier transforms and convolutions involving
various mask types. For the simulations in this pa-
per, we assume a shaped pupil coronagraph because
of its simplicity. There, CfE0g simply represents the
Fourier transform of the field at the shaped pupil.
For this analysis, the DM is assumed to be in a plane
conjugate with the shaped pupil, while the experi-
mental results presented in Subsections 2.D and
3.D take into account propagation between the
DMs and the plane of the shaped pupil.

If we include amplitude and phase aberrations and
a single DM to correct, the electric field at the DM
can be written as in Give’on et al. [5]:

E0 ¼ Aðx; yÞeαλðx;yÞþi2πλ βλðx;yÞei
2π
λ ψðx;yÞ; ð2Þ

where αλðx; yÞ and βλðx; yÞ are, respectively, the ampli-
tude and phase aberrations across the pupil (and
may differ with wavelength due to propagation ef-
fects), Aðx; yÞ is the pupil apodization, and ψðx; yÞ
is the DM height in units of wavefront. The problem
is to find a DM surface to sufficiently cancel the aber-
rations and restore the contrast in some region of the
image plane, often called the “dark hole.”

This is an infinite-dimensional problem and can-
not be solved exactly. One approach to making it
tractable is to approximate the DM surface height
by a finite sum of basis functions:

ψðx; yÞ ¼ λ0
XN
k¼1

akf kðx; yÞ; ð3Þ

where λ0 is the central wavelength in the band con-
sidered. The problem is now to choose the coefficients
ak to achieve the desired performance. The basis
functions can be any convenient set, such as Le-
gendre polynomials, Zernike’s, Fourier modes, Che-
byshev polynomials, or others. Depending upon the
choice of basis function, the coefficients ak will be
some function of the voltages applied to the DM. Se-
lecting a particular expansion is a trade-off among
various objectives. One objective might be to mini-
mize the number of terms for an adequate fit.
Another might be to simplify the relationship be-
tween the coefficients and the voltages. Most often,
the f k are chosen to be the so-called influence func-
tions. These are the shapes the DM takes when a
voltage is applied to only a single actuator. The as-
sumption is thenmade that superposition holds (that
is, that an arbitrary shape can be found by summing
influence functions). For this choice, the coefficients
have a one-to-one correspondence to the voltage
applied to the kth actuator. The experimental work
reported in this paper uses such an influence func-
tion basis.

To further simplify our notation, we write the coef-
ficients to be found as a single column matrix,
X ¼ ½a1;a2;…; aN−1;aN �T , and the basis functions in
the row matrix Fðx; yÞ ¼ ½f 1ðx; yÞ; f 2ðx; yÞ;…;
f N�1ðx; yÞ; f Nðx; yÞ�, which lets us write the DM sur-
face in matrix form:

ψðx; yÞ ¼ λ0Fðx; yÞX : ð4Þ

Finally, for convenience, we streamline our notation
by replacing the complex exponentials in Eq. (2) by a
function h:

E0 ¼ Aðx; yÞhðγλðx; yÞ;XÞ; ð5Þ
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where

γλ ¼ αþ i
2π
λ β

is the complex, wavelength-dependent abberation
and h represents the nonlinear dependence on the
aberration and DM settings.
The simplest correction algorithm would be to

choose the coefficients such that the DM surface can-
cels, or conjugates, the aberrations in Eq. (2). This is
the typical approach used in conventional, ground-
based adaptive optics (AO). We notice immediately
two limitations. First, with a single DM, it is only
possible to correct the field at a single wavelength.
Second, since the DM is a phase-correcting device,
it nominally only corrects for the phase aberration.
However, complete phase conjugation across the pu-
pil is more than is needed, as we seek a dark hole in
only a limited region of the image plane. In fact, we
show in Appendix A that, by correcting only the part
of αðx; yÞ whose image plane electrical field is centro-
symmetric with respect to the optics axis, it is possi-
ble to correct for both amplitude and phase in a dark
hole on only one-half of the image plane with a single
DM. For symmetric dark holes, two DMs are neces-
sary. In Pueyo and Kasdin [7], we show how, in prin-
ciple, two DMs can be used to correct for both
amplitude and phase across the image plane and at
multiple wavelengths. We discuss two DM correc-
tions in Section 3.
Deterministic phase conjugation also requires

knowledge of βλðx; yÞ. In classical AO, this is done
via a wavefront sensor in a diverted beam. For ex-
treme high contrast in space, however, non-common
path errors result in an uncorrectable component
that degrades the desired contrast. Our goal is to de-
velop algorithms for correction using only measure-
ments of the image plane field, avoiding the need to
backpropagate to estimates of the pupil aberrations.
In the remainder of this section we review past ap-
proaches and present a new approach, stroke minimi-
zation. We also continue to restrict ourselves to
algorithms incorporating one DM at a single wave-
length. In Section 3 we show how to generalize this
one DM solution to two sequential DMs and present
the first experimental validation of two DM dark
hole generation.

A. Energy Minimization

One approach to achieving a dark hole is to minimize
the energy in the desired region of the image plane,
as first proposed by Malbet et al. [1]. While this first
form of the problem resulted in a complicated non-
linear optimization, Bordé and Traub [4] presented
a simplified linear form, which we review in this
section.
The total energy in some region S of the image

plane is written as the integral of the intensity over
that region:

ES ¼ hEf ;Ef iS ¼
Z Z

S
EfE�

f dξdη; ð6Þ

where � represents the complex conjugate, ðξ; ηÞ are
image plane coordinates, and Ef ¼ CfE0g.

In energy minimization we seek to minimize ES
over X. There are a number of ways one might do
this. For example, if we let gðXÞ ¼ hEf ;Ef iS, then a
simple steepest-descent algorithm gives

Xnþ1 ¼ Xn � ν∇XgðXnÞ ð7Þ

for some constant ν, where∇XgðXnÞ is the gradient of
gðXÞ evaluated at Xn. While simple to formulate,
steepest descent is known to take many steps to con-
verge down a long narrow valley and tends to over-
shoot further than the minimum (Press et al. [8]).
Instead, we might choose a Newton algorithm based
on a Taylor series expansion of gðXÞ:

Xnþ1 ¼ Xn �H�1
n ∇XgðXnÞ; ð8Þ

where Hn is the Hessian matrix of gðXÞ at X ¼ Xn.
However, it is a common problem with Newton’s
method that, when far from the solution, the Hessian
can become negative definite and the step no longer
descends. The usual approach is to use Gauss’ correc-
tion, resulting in the Gauss–Newton iteration:

Xnþ1 ¼ Xn � ð∇XgðXnÞT∇XgðXnÞÞ�1∇XgðXnÞT : ð9Þ

The correction step to the coefficients is given by the
pseudoinverse of the Jacobian of the total energy in
the dark hole.

Using the expression for the electric field in Eqs. (1)
and (2), the Jacobian can be written as

∇XgðXnÞ ¼ 2

�ℜ
��

CfE0ðXnÞg; i
2πλ0
λ CfE0ðXnÞFg

�
S

�
;

ð10Þ

where ℜ stands for the real part of a complex num-
ber. Bordé and Traub’s [4] insight was realizing that
computing the gradient in the Gauss approximation
to the Hessian around X ¼ 0, and neglecting cross
terms between γλðx; yÞ and ψ , would greatly simplify
the problem at a small cost in convergence rate.
Following their presentation, we write a first-order
expansion of hðγλðx; yÞ;XÞ as

hðγλðx; yÞ; δXnÞ≃ 1þ γλðx; yÞ þ i
2πλ0
λ Fðx; yÞδXn;

ð11Þ

where we have expanded about X ¼ 0 and ignored
the cross term in
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i
2πλ0
λ Fðx; yÞδXnγλðx; yÞ:

Ignoring this cross term leads to an error of about jγλj
percent in the actual gradient. This error, in theory,
slows down the convergence rate. However, as dis-
cussed later in this section, for this application, such
an error in the gradient is not the convergence rate
limiting factor. In any case, when the starting wave-
front error is small, starting contrast below 10�4, the
error on the gradient does not impact the minima
toward which the algorithm converges. As a conse-
quence we can write

∇XgðXnÞ≃ 2 �ℜ
��

Ef ; i
2πλ0
λ CfAFg

�
S

�
; ð12Þ

∇XgðXnÞT∇XgðXnÞ≃�2

�
2
2πλ0
λ

�
2

�ℜ½hCfAFg;CfAFgiS�: ð13Þ

This approximation significantly simplifies the algo-
rithm, as ∇XgðXnÞT∇XgðXnÞ can now be precom-
puted and ∇XgðXnÞ only depends on the projection
of the image plane field at iteration n on the modal
matrix CfAFðx; yÞg.
Implementing energy minimization thus requires

only an estimate of the electric field at the image
plane,Ef . Bordé and Traub [4] suggested finding this
field via image plane measurements only and a DM
diversity estimation scheme, avoiding any non-com-
mon path errors associated with pupil sensors. They
devised a reconstructor for Ef that used several DM
settings to disentangle the ambiguity of intensity
measurements at the science camera.
Unfortunately, a common problem with the

Gauss–Newton method is that ∇XgðXnÞT∇XgðXnÞ
can drop rank. In fact, this is a signficant problem
for dark hole generation, as the image plane area
being minimized is small enough that Xn is underde-
termined. One common solution is the Levenberg
algorithm, where a constant “damping parameter”
is added to the search direction:

Xnþ1 ¼ Xn � ð∇XgðXnÞT∇XgðXnÞ
þ μIÞ�1∇XgðXnÞT ; ð14Þ

where μ is a regularization parameter and I the iden-
tity matrix. This approach provides a balance
between Gauss–Newton and steepest descent, allow-
ing faster convergence when far away and slower
convergence (avoiding overshoot) as the minimum
is approached. It also guarantees invertibility of
the weighting matrix. Marquardt suggested a modi-
fication, replacing the identity matrix with the
square of the Gauss approximation to the Hessian:

Xnþ1 ¼ Xn � ð∇XgðXnÞT∇XgðXnÞ
þ μdiagðð∇XgðXnÞT∇XgðXnÞÞT
× ð∇XgðXnÞT∇XgðXnÞÞÞÞ�1∇XgðXnÞT : ð15Þ

This is known as the Levenberg–Marquardt algo-
rithm. Marquardt’s damping correction is very simi-
lar to Tikhonov regularization in ill-posed linear
problems. Malbet et al. [1] used this algorithm in a
computationally expensive fashion since they were
evaluating the gradient ∇XgðXnÞ numerically and
also finding ∇XgðXnÞT∇XgðXnÞ at each iteration.
The slower convergence rate due to the approxima-
tion in Eq. (11) is a minor drawback compared to
the efficiencies gained by computing the approxi-
mate Hessian only.

In practice, if it were possible to measure Ef per-
fectly with a precision better than 10�5, then only one
series of numerical iteration would be sufficient to
converge to a solution that would yield a contrast
when the magnitude square of the errors in the es-
timate is below 10�10. However, in the presence of
photon and camera noise, such a precision will never
be achieved and a new estimate is needed each time
the contrast improves. Moreover, since the estima-
tion is based on DM diversity, and the actual DM
shape is not fully known, the estimate of Ef becomes
biased. As a consequence, while in theory the algo-
rithm presented here could only consist of numerical
iterations with only one measurement of Ef , in rea-
lity it needs to include iterations with successive es-
timates of the field due to experimental limitations.

B. Electric Field Conjugation

While some of the numerical difficulties of energy
minimization could be alleviated by trying other qua-
si-Newton search techniques, such a path is not fruit-
ful. Since we are minimizing the energy, we are not
necessarily guaranteeing the contrast we are trying
to achieve. That is, the line search approach never
uses the fact that a coronagraph has been imple-
mented to achieve high contrast. One alternative
approach is the electric field conjugation (EFC) algo-
rithm introduced by Give’on et al. [5]. In this algo-
rithm, Give’on replaced the optimization with a
root-finding problem. Since we have a desired field
in the image plane, EDðξ; ηÞ ¼ CfAðx; yÞg, the control
problem becomes finding the DM settings required to
achieve that field in S:

Ef � ED ¼ 0: ð16Þ

If we use a continuous version of the image plane,
this problem is infinite dimensional and nonlinear
in the ak. It is made tractable by discretizing the field
at a finite number of points in the image plane.
Give’on solved for the roots by assuming the DM sur-
face height to be small and expanding the complex
exponential in a Taylor series:
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ei
2π
λ ψ ≅ ei

2π
λ ψn

�
1þ i2π

λ δψnþ1

�
; ð17Þ

where we have written the DM surface as the surface
at the previous iterate, ψn, plus a small correc-
tion, δψnþ1.
This lets us write the root-finding problem at each

iteration as a simple linear equation:

~En þ i
2πλ0
λ CfAhðγλ;XnÞFgδXnþ1 ¼ 0; ð18Þ

where

~En ¼ ED � CfAeαλþi2π
λ βλþi2π

λ ψng ¼ ED � ðEf Þn
is the error between the desired and previously cor-
rected aberrated electric field at the image plane and
δXnþ1 is the change in the DM coefficients Xn at
iteration nþ 1. Since, in all of the algorithms we
are considering, we assume only an estimate of the
electric field in S, we can further simplify by expand-
ing CfAhnf kg and approximating it by its zero-order
term:

~En þ i
2πλ0
λ CfAFgδXnþ1 ¼ 0: ð19Þ

This is a linear equation in δXnþ1 and can thus be
solved for the DM increment given a previous mea-
surement of the image plane field in S at step n,

CfAeαþi2π
λ βþi2π

λ ψng:

However, for it to be invertible, the same number of
points in the image plane must be taken as there are
coefficients, ak. Unfortunately, measurements are
only available at the pixel spacings in the dark hole,
which typically are much fewer in number than the
available actuators. The result is an underdeter-
mined problem for the δXnþ1. The approach taken
in Give’on et al. [5] is to form the pseudoinverse of
CfAFg, which is equivalent to finding the minimum
norm solution for δXnþ1. Unfortunately, this too can
suffer from numerical difficulties. In particular, for a
given coronagraph, there is no guarantee that even
the pseudoinverse of CfAFg is well behaved. This
is particularly true for shaped pupils, since many
of the DM actuators are covered by the opaque
regions of the mask.

C. Stroke Minimization

We solve many of these problems in our new ap-
proach, which we term “stroke minimization.” In
stroke minimization, we eliminate the dimensional-
ity problem by minimizing the finite number of coef-
ficients in the DM surface expansion, rather than the
field itself. This has the effect of minimizing the aver-
age stroke of the DM actuators, an important criteria
for the small devices being used. We include in the

minimization the constraint that the field meet the
contrast requirement in the dark hole.

The optimization problem is thus written

minimize
1
2

XN
k¼1

a2
k subject to ES ≤ 10�C;

where ES ¼ hEf ;Ef iS is the integrated intensity in
the dark hole given by Eq. (6) and C is the contrast
desired.

While we have solved the dimensionality problem,
this is still a difficult nonlinear program. A common
solution approach is to expand the constraint in a
Taylor series about the previous coefficient settings
and replace the optimization with a quadratic sub-
program at each step. Returning to our matrix nota-
tion, where Xn is the matrix of coefficients at step n
and δXnþ1 is the change in actuator settings, we can
approximate the field at the DM, E0, in Eq. (5):

E0 ≅ Aðx; yÞ
�
hnðγλðx; yÞ;XnÞ þ

∂h
∂X

����
Xn

δXnþ1

�
; ð20Þ

where the Jacobian of h is the row matrix

Jn ¼ ∂h
∂X

����
Xn

¼ i
2πλ0
λ eαλðx;yÞþi2πλ βλðx;yÞei

2π
λ ψnðx;yÞFðx; yÞ:

ð21Þ

The integrated intensity can now be approximated
using this first-order expansion:

ES ≅

Z Z
Sðξ;ηÞ

½CfAhng þ CfAJngδXnþ1��½CfAhng

þ CfAJngδXnþ1�dξdη:
ð22Þ

Multiplying through gives us

ES ≅

Z Z
S
CfAhng�CfAhngdξdη|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðESÞn

þ 2ℜf
Z Z

S
CfAhng�CfAJngδXnþ1dξdηg

þ
Z Z

S
δXT

nþ1CfAJng�CfAJngTδXnþ1dξdη;

where we have noted that the first term is just the
measured energy in the dark hole at iteration n. This
lets us write the quadratic subprogram:

minimize
1
2
ðXn þ δXnþ1ÞTW�1ðXn þ δXnþ1Þ

subject to δXT
nþ1MnδXnþ1 þ BnδXnþ1 þ dn ≤ 10�C;
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where we have generalized to allow for an arbitrary
weighting among the coefficients, through the matrix
W, and

dn ¼
Z Z

S
CfAhng�CfAhngdξdη;

Bn ¼ 2ℜf
Z Z

S
CfAhng�CfAJngdξdηg;

Mn ¼
Z Z

S
CfAJng�CfAJngTdξdη:

Because ES is always positive, this is a convex quad-
ratic program and, thus, very efficient global solvers
are available given estimates of dn, Bn, and Mn. One
simple approach is to augment with the Lagrange
multiplier, μ, and solve the first-order optimality con-
dition as a function of μ. However, as with the other
algorithms, we assume only estimates of the field in
the image plane are available at each iteration,
CfAhng. For the Jacobian, we proceed as presented
previously by using a constant value obtained as-
suming ψn ¼ 0 and ignoring the cross term between
DM influence function and aberration:

J0 ¼ ∂h
∂X

����
Xn¼0

¼ i
2πλ0
λ Fðx; yÞ: ð23Þ

This greatly reduces the computations needed in
the algorithm since the state does not appear in
the gradient. The augmented cost function can be
written using the Lagrange multiplier μ:

EM ¼ 1
2
ðXn þ δXnþ1ÞTW�1ðXn þ δXnþ1Þ

þ μðδXT
nþ1M0δXnþ1 þ BnδXnþ1 þ dn � 10�CÞ:

ð24Þ

The optimality condition corresponds to solving for
the zeros of the derivative of EM:

δXnþ1ðμÞ ¼ �ðμI þ 2WM0Þ�1

�
1
μXn þWBT

n

�
; ð25Þ

where

Bn ¼ 2ℜf
Z Z

S
CfAhng�CfAJ0gdξdηg

¼
�
Ef ; i

2πλ0
λ CfAFg

�
S
; ð26Þ

M0 ¼
Z Z

S
CfAJ0g�CfAJ0gTdξdη

¼ �
�
2πλ0
λ

�
2
hCfAFg;CfAFgiS : ð27Þ

To find the optimal μ⋆, we use a line search that
finds the smallest μ ¼ μ⋆ such that the contrast con-
straint is satisfied. Indeed, all the μ-dependent terms
in the modified cost function correspond to a penalty
that weighs the relative importance of contrast with
respect to actuator minimization. Thus, the more
stringent the contrast constraint, the larger μ⋆ be-
comes. Based on this qualitative approach, we start
our algorithm with a small μ0, compute X⋆ðμ0Þ, simu-
late the propagation of these DM commands through
the system, and increase μ until the contrast con-
straint is satisfied. We also begin with a smaller con-
trast target to ensure small DM changes at each
iteration and slowly increase the target contrast un-
til the goal of 10�10 is reached. We call this algorithm
“stroke minimization” because it finds the smallest
deformations that achieve a target contrast. In Fig. 1
we show, via simulation, the PSF that results from
one iteration of the stroke minimization algorithm
at λ ¼ λ0, with CTarget ¼ 10�10. Figure 2 shows a com-
parison between the strokes obtained using a direct
minimization of ES and stroke minimization, for
which the strokes are smaller by a factor of 2 to 5.
For this simulation, the DM was modeled using an

Fig. 1. (Color online) Numerical results of the stroke minimization algorith using a 10�10 shaped pupil. (a) DM deformation in radians.
(b) Log(corrected PSF).
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influence function basis, similar to the algorithms we
use on our test bed.

D. Experimental results

1. High-Contrast Point Spread Functions and
Convergence Curves

The optical layout of the Princeton high-contrast ima-
ging laboratory is shown in Fig. 3. It consists of two
6 in: off-axis parabolic mirrors to collimate and refo-
cus the beam, a shaped pupil coronagraph, and two
sequential DMs for control. The DMs are 1 cm on a
side, and neither is located in a plane conjugate to

the pupil. For the experiment presented here, we
use only the image plane camera and control only
one of the two DMs, while no voltage is applied to
the other one. The dark hole obtained using the stroke
minimization algorithm is shown in Fig. 4 and exhi-
bits a dark hole 2 orders ofmagnitude deeper than the
noncorrected one.Thedarkhourglass shape in the im-
age plane corresponds to a binary mask that sup-
presses the bright central core and vertical wings of
the PSF. Such an image plane mask is used to miti-
gate the limited dynamic range of our camera.

2. Current Contrast Limitations at the Princeton
Test Bed

Stroke minimization also proves to be an effective
diagnostic tool for the limitations of the test bed.

Fig. 2. Comparison between the peak-to-valley actuator strokes
necessary to correct a given wavefront error using energy minimi-
zation and stroke minimization.

Fig. 3. Optical layout of the Princeton high-contrast imaging test bed. For the experiment presented in Subsection 2.D, only one DM is
used for wavefront control and only the image plane camera is used for wavefront sensing.

Fig. 4. (Color online) (a) Aberrated and (b) corrected PSF on the
Princeton test bed in log(contrast). The wavefront is flattened so
that half of the image plane exhibits a dark hole over a specified
region, in this case X ¼ 7–10λ=D and Y ¼ −2:5 − 2:5λ=D. This
monochromatic experiment used an illumination wavelength of
635nm.
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Figure 5 shows experimental convergence curves
obtained using the stroke minimization algorithm.
Each panel illustrates the contrast versus iteration
curve for a given target contrast. We use the follow-
ing notations:

• ITarget, target contrast setting the contrast con-
straint of the wavefront control algorithm;

• INL
est , integrated magnitude square of the esti-

mated field in the dark hole at each iteration; and
• INL, integrated intensity actually measured in

the dark hole at each iteration.

The last three panels of Fig. 5 illustrate this diver-
gence. This divergence is due to the inherent bias of
our DM diversity estimator. We note a discrepancy

Fig. 5. (Color online) Experimental results for six different target contrasts. The top two curves correspond respectively to the maximum
of the intensity in the dark hole and the maximum of the estimated intensity in the dark hole. The bottom two correspond to the average
intensity in the dark hole and the average estimated intensity in the dark hole. Note that, when the algorithm converges, the average
estimated intensity is equal to the target contrast. Also, note that these results were obtained on the Princeton testbed prior to the in-
stallation of the second DM and, therefore, the contrast limit is slightly better than other results shown in this paper.
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between the estimated intensity, INL
est , and the actual

intensity in the dark hole, INL. This implies an esti-
mation bias that can be caused either by incoherent
light landing in the dark hole or by a systematic error
in the estimation scheme. When ITarget ¼ 1:6 × 10�7,
the iterative loop diverges, primarily due to the large
bias in the field estimate. Note that the contrast in
the dark hole before correction in Fig. 5 is 10�5, an
order of magnitude better than in Fig. 8. This esti-
mate bias arises because the estimation algorithm
relies upon a linearity assumption of the DM, perfect
knowledge of the influence function, and a perfect
knowledge of the voltage-to-deformation transfer
function. When applied to the Princeton test bed,
these assumptions produce an intrinsic bias in the
estimated field. Each iteration of the stroke minimi-
zation algorithm minimizes the DM deformation un-
der the constraint that the norm squared of the sum

of the estimated field and effect of the DM is below
ITarget. If we decompose the estimate as δEf þ Ef ðXnÞ,
where δEf is the bias, then the constraint can be writ-
ten as

∥δEf þ Ef ðXnÞ þ CfAFg · δXk∥
2 < ITarget; ð28Þ

where δEf is the estimation bias and ∥∥2 is the norm
square. This implies that the constraint in the stroke
minimization loop is actually

∥δEf ∥
2 þ ∥Ef ðXnÞ þ CfAFgδXn∥

2

� 2ℜ½hδEf ;Ef ðXnÞ þ CfAFg · δXniS� < ITarget: ð29Þ

If we write the integrated value of the bias as
Ibias ¼ ∥δEf ∥

2, the Cauchy–Schwartz inequality
yields

∥Ef ðXnÞ þ CfAFgδXn∥
2 < ITarget � Ibias

þ 2
ffiffiffiffiffiffiffiffiffiffi
IBias

p ffiffiffiffiffiffi
ES

p
; ð30Þ

and the quadratic contrast constraint is more strin-
gent than it is supposed to be. When Ibias < ITarget,
the algorithm is quite insensitive to the estimation er-
ror, as seen on the first three panels ofFig. 5.However,
when these two quantities become similar then, at
some iteration ni, the intensity constraint becomes
too stringent; the algorithm seeks to correct for wave-
front errors that are larger than the ones actually pre-
sent in the test bed. This yields a set of deformation
coefficients that is too large for the assumptions of the
algorithm to be valid. The last three panels of Fig. 5
illustrate this divergence. The upward trend in the
last few iterations indicates that the algorithmmight
diverge if run for a few more iterations. When tested,
only the last panel actually diverges; for the two other
cases, the algorithm lead to an oscillatory regime in
contrast. Solutions to circumvent these limitations

Fig. 6. (Color online) DM surfaces in radians obtained using the two-DM stroke minimization algorithm. The algorithm used here is
designed to operate monochromatically and does not take advantage of the broadband capabilities of the wavefront controller. Pupil size
D ¼ 3 cm and DM separation z ¼ 1m.

Fig. 7. (Color online) Monochromatic PSF resulting from two-DM
wavefront correction using a monchromatic stroke minimization
algorithm. D ¼ 3 cm and z ¼ 1m.
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include estimation algorithms that do not use theDM
as a source of diversity, or adaptive algorithms that
build an on-the-fly model of the nonlinear response
of the DM and include that model in the estima-
tion stage.

3. Symmetric Dark Hole with Two Deformable Mirrors

Another value of the stroke minimization algorithm
is that it is easily modified to incorporate multiple
DMs. We show in Pueyo and Kasdin [7] how multiple

DMs are necessary to achieve symmetric dark holes
on both sides of the image plane and for achieving
high contrast in broader bands. The ability to provide
a wavelength-independent lever for wavefront cor-
rection is the main advantage of controllers based
on two sequential DMs, since it will ultimately en-
able broadband observations of exoplanets and, thus,
greatly facilitate their spectral characterization. The
actual implementation of control algorithms in
broadband using these methods can be done by using

Fig. 8. (Color online) (a) Aberrated image and (b) corrected image of the two-DM stroke minimization symmetric dark hole experiment.
(c) Plot of contrast versus iteration in each of the two dark holes and in the combination of the two.
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either a series of monochromatic estimations, as
shown by Give’on et al. [5], or a single wavelength
estimation coupled with some priors on the symme-
tries of the PSF. In either case, once the estimation is
complete, the stroke minimization algorithm can be
applied to retrieve the DM commands. Discussing re-
lative performances of wavefront retrieval methods

under polychromatic light is beyond the scope of this
paper, and here we chose to focus only on the intri-
cacies of the implementation of a two-DM control al-
gorithm. As a consequence, we will only present on
monochromatic results, using the same estimator
as in Subsection 2.D, using the two DMs to produce
a symmetric dark hole.

Fig. 9. (Color online) Half dark hole correction using one DM. Left column: a phase aberration can theoretically be compensated at all
wavelengths by a matching DM setting to cancel out the total electric field on both sides of the optical axis. Right column: in the case of
amplitude aberrations, a DM setting can be found that will exactly compensate the amplitude error on one side of the optical axis, and at a
single wavelength.
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A. Monochromatic Stroke Minimization with Two
Sequential Deformable Mirrors: General Algorithm

Here we do not delve into to the details of the several
single-DM correction algorithms presented in Sec-
tion 2 and focus solely on stroke minimization. To

begin, we write the matrix of actuator commands
as a concatenation of the coefficients of each DM,
X ¼ ½X ð1ÞX ð2Þ�. When we consider the case where
DM2 is conjugated with the shaped pupil (or the Lyot
plane of the coronagraph) and separated from DM1

Fig. 10. (Color online) Broadband amplitude correction using two DMs: complex phasor illustration. Left column: one can find a DM1set-
ting thatwill cancel theamplitudeerrorachromatically onboth sides of theoptical axis afterpropagation throughthe system(equivalent toa
phasor rotation in the angular spectrum approximation). Right column: the phase error induced by DM1, together with the phase error
accumulated through the system, is then takenout at allwavelengthsby the secondDM, resulting in broadband two-sided light cancellation.
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by a distance z, the field at DM2, before the final
Fourier transform, can be written as

EDM2ðx; yÞ ¼ Aðx; yÞhð2Þðγλ;XÞ; ð31Þ
where

hð2Þðγλ;XÞ ¼ eαλðx;yÞþi2πλ βλðx;yÞ

×ℱz

h
ei

2π
λ ψ ð1Þðx;yÞ

i
ei

2π
λ ψ ð2Þðx;yÞ: ð32Þ

ψ ð1Þ and ψ ð2Þ stand, respectively, for the surface of
DM1 and DM2 at the nth iteration, F z is the Fresnel
propagation between two surfaces separated by a
distance z, and Aðx; yÞ is the pupil apodization. Using
the coronagraph operator C notation, the field in the
final image plane is then

Ef ¼ C
h
eαλðx;yÞþi2πλ βλðx;yÞF z

h
ei

2π
λ ψ ð1Þðx;yÞ

i
ei

2π
λ ψ ð2Þðx;yÞ

i
: ð33Þ

The general form for the intensity resulting from the
effects of the two DMs is then

ES ≅

Z Z
S
CfAhð2Þ

n g�CfAhð2Þ
n gdξdη|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðESÞn

þ 2ℜf
Z Z

S
CfAhð2Þ

n g�CfAJngδXdξdηg

þ
Z Z

S
ΔXTCfAJng�CfAJngTδXdξdηl;

where, by virtue of the linearity of the operator C,

Jn ¼ ∂hð2Þ

∂X

����
Xn

: ð34Þ

Thus, just as we presented above for the case of a sin-
gle DM, we are seeking to solve the following optimi-
zation problem:

minimize
1
2

XN
k¼1

a2
k subject to ES ≤ 10�C:

We proceed using the same subquadratic program-
ming approach and solve at each iteration the follow-
ing subprogram:

minimize
1
2
ðXn þ δXnþ1ÞTW�1ðXn þ δXnþ1Þ

subject to δXT
nþ1MnδXnþ1 þ BnδXnþ1 þ dn ≤ 10�C:

However, for the case of multiple DMs, we need to
reduce the modeling of the wavefront controller in
such a way that Mn, Bn, and dn can be directly com-
puted either from a wavefront estimate or the design
parameters of the optical setup. Once again, this is
done by approximating Jn by a constant value J0,
which slows down the convergence rate of the algo-
rithm but circumvents the high computational cost
associated with the evaluation of the sensitivity
matrix at each iteration. Next, we present the model
reduction we implemented for our experimental
validation.

B. Monochromatic Stroke Minimization with Two
sequential Deformable Mirrors: Model Reduction

While dividing the problem of finding optimal DM
strokes in a series of quadratic subprograms is a gen-
eral method applicable to all types of wavefront con-
trol architectures; here we are interested in reducing
the subprogram in such a way that

• the sensitivity matrix is computed only once,
before any correction,

• the sensitivity matrix provides two degrees of
freedom to correct on both sides of the image plane,
and

• the sensitivity matrix provides two degrees of
freedom for wavelength-independent wavefront er-
rors and those proportional to 1=λ [7].

We show here how to reduce Eq. (32) in such a
fashion. The main difference between Eq. (5) and
Eq. (32) is the presence of a Fresnel propagation be-
tween the two DMs. This propagation is what
provides both the symmetric and wavelength levers.
We start by calculating the Jacobian of the effect
of the DM in the plane where the aberrations are
estimated:

Jn ¼ i
2πλ0
λ eαλðx;yÞþi2πλ βλðx;yÞ

�
ei

2π
λ ψ

ð2Þ
n ðx;yÞF z

h
ei

2π
λ ψ

ð1Þ
n ðx;yÞFð1Þðx; yÞ

i
;F z

h
ei

2π
λ ψ ð1Þðx;yÞ

i
ei

2π
λ ψ

ð2Þ
n ðx;yÞFð2Þðx; yÞ

�
; ð35Þ

where FðjÞðx; yÞ is the matrix representing the basis
function for the jth DM. We proceed as previously;
namely, we choose to evaluate this Jacobian around
X ¼ 0 and ignore the cross talk between the DMs
and the aberrations. We also ignore the cross talk
between the two DMs. These approximations lead
to a Jacobian that is not exact, but making them
only lowers the convergence rate and does not
change the final solution. The contribution of the
second DM becomes
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C



Aðx; yÞÞi 2πλ0λ eαλðx;yÞþi2πλ βλðx;yÞ

× F z

�
ei

2π
λ ψ ð1Þðx;yÞ

�
ei

2π
λ ψ

ð2Þ
n ðx;yÞFð2Þðx; yÞ

�

≃ i
2πλ0
λ CfAFð2Þg:

ð36Þ

To calculate the contribution of the first DM, which
is not conjugated with the plane of the aberrations,
we assume, as is the case for shaped pupils, that the
operator C is a Fourier transform. Moreover, we
work under the angular spectrum approximation
and, thus, the impact of an out-of-pupil optics is only
to multiply the electrical field in the image plane by
a quadratic phase factor. The contribution of the
out-of-pupil plane DM is then

C



iAðx; yÞ2πλ0λ eαλðx;yÞþi2πλ βλðx;yÞei

2π
λ ψ

ð2Þ
n ðx;yÞ

× F z

�
ei

2π
λ ψ

ð1Þ
n ðx;yÞ

�
Fð1Þðx; yÞ

�
≃ e�iπλz

D2ðξ2þη2ÞCfAFð1Þg;

ð37Þ

where, again, we have used the fact that the gradi-
ent is computed around X ¼ 0 with no aberration.
Thus, the reduced and linearized effect of the two
DMs becomes

CfAJng≃ CfAJ0g ¼ i
2πλ0
λ

×
�
e�iπλz

D2ðξ2þη2ÞCfAFð1Þg CfAFð2Þg
�

¼ ½CfAJð1Þ
0 gCfAJð2Þ

0 g�: ð38Þ

In our laboratory we have implemented the stroke
minimization algorithm with dual DMs using this
reduced Jacobian. Namely, at each iteration we
solve the quadratic subprogram

minimize
1
2
ðXn þ δXnþ1ÞTW�1ðXn þ δXnþ1Þ

subject to δXT
nþ1MδXnþ1 þ BnδXnþ1 þ dn ≤ 10�C;

where

dn¼hCfAhð2Þ
n g;CfAhð2Þ

n giS ;
Bn¼2ℜ½hCfAhð2Þ

n g;CfAJð1Þ
0 giS hCfAhð2Þ

n g;CfAJð2Þ
0 ÞgiS �;

M¼
"
hCfAJð1Þ

0 g;CfAJð1Þ
0 giS hCfAJð1Þ

0 g;CfAJð2Þ
0 giS

hCfAJð2Þ
0 g;CfAJð1Þ

0 giS hCfAJð2Þ
0 g;CfAJð2Þ

0 giS

�
:

C. Stroke Minimization with Two Sequential Deformable
Mirrors: Symmetries and Broadband Lever

Note that, for small spatial frequencies, the angular
spectrum is small:

πλz
D2 ðξ2 þ η2Þ ≪ 1;

resulting in the following first-order Taylor
expansion:

CfAJ0g ≅

�
� 2π2λ0z

D2 ðξ2 þ η2ÞCfAFð1Þg þ i 2πλ0λ CfAFð1g i 2πλ0λ CfAFð2Þg
�
: ð39Þ

If we rearrange the DM commands as ~X ¼ ½~X1
~X2� ¼ ½X1X1 þ X2�, then the sensitivity matrix becomes

CfA~J0g ≅

�
� 2π2λ0z

D2 ðξ2 þ η2ÞCfAFð1Þg i 2πλ0λ ðCfAFð1g þ CfAFð2ÞgÞ
�
: ð40Þ

Because FðjÞðx; yÞ and Aðx; yÞ are real functions in the
pupil plane, CfAFð1Þg and CfAFð2Þg feature a Hermi-
tian symmetry in the image plane when Cfg is a
Fourier transform. Thus the first block of CfA~J0g
provides a lever that corrects for Hermitian field dis-
tributions in the image plane, while the second one
provides a lever that corrects for anti-Hermitian dis-
tributions. It is the combination of these two inde-
pendent Hermitian and anti-Hermitian levers that
allows us to create symmetric monochromatic dark

holes. Note that, in the case of a single-DM correc-
tion, there is only an anti-Hermitian lever; thus,
both sides of the image plane cannot be corrected
independently, which constraints the control-
lable area to only one side of the PSF. These consid-
erations are developed in Appendix A using a phasor
representation.

Moreover, each of these two independent levers
has a different chromatic behavior: the Hermitian
one scales as λ0 and the anti-Hermitian one scales
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at 1=λ. In terms of wavefront errors, this means that
a two-sequential-DM controller can correct over a
broad band for what are commonly called amplitude
and phase errors in the pupil plane. However, imple-
menting a broadband stroke minimization control al-
gorithm requires a more elaborate estimate of the
field in the image plane. One option is to obtain an
estimate across the bandpass that provides a set of
Bn and dn for each wavelength so that the constraint
of the quadratic subprogram becomes the integrated
broadband intensity. An alternative is to force a
monochromatic quadratic subprogram to use the
Hermitian lever only to correct for the λ0 component
of the estimated wavefront and to use the anti-
Hermitian lever for its 1=λ component. While critical
for the feasibility of broadband wavefront control
and, thus, the detection of exoplanets, the develop-
ment and implementation of such estimation algo-
rithms is beyond the scope of this paper and will
be presented in a future communication. For the
remainder of this article we focus on experimental
results that feature a monochromatic symmetric
dark hole.

D. Experimental Results

Figure 6 shows the DM surfaces obtained using this
algorithm to create the symmetric 10�10 monocho-
matic dark hole that is presented in the top panel
of Fig. 7. For these numerical simulations, we have
used square DMs of size D ¼ 3 cm that are separated
by z ¼ 1m. In this section, we present the first results
of a symmetric dark hole using two DMs in sequence
to correct for errors on both sides of the image plane.
This experiment was performed in monochromatic
635nm light using the stroke minimization algo-
rithm as described in Subsection 3.A. As before,
the estimate of the wavefront was obtained using
an algorithm based on the application of diversity
on the surface of one of the DMs. As shown in Fig. 3,
neither of the two DMs is in a plane conjugate to the
shaped pupil. The propagation from each DM to the
pupil plane is taken into account using the angular
spectrum approximation, just as shown for the first
term of Eq. (39).
Figure 8 shows the aberrated image prior to correc-

tion, as well as the image after 60 iterations of the
stroke minimization correction algorithm. In addi-
tion, the figure shows a contrast plot as a function
of iteration. The dark hole is from 7 to 10λ=D in x
and −3 to 3λ=D in y. The average contrast between
the two sides of the image plane before any correction
is at 1:2 × 10�4, with the right side starting out worse
than the left side. After 60 iterations, the contrast on
both sides of the image has reached to 2:5 × 10�6.
This figure shows that the stroke minimization algo-
rithm allowed us to improve the on-axis light extinc-
tion by almost 2 orders of magnitude.

4. Conclusion

In this paper we presented a novel general method to
solve the nonlinear inversion problem associated

with the correction of quasi-static wavefront errors.
This novel algorithm, which we named stroke mini-
mization, circumvents the dimensionality of the
problem and allows a selection of the regulari-
zation parameters that is directly related to the tar-
get contrast desired in the dark hole, where exopla-
nets are expected to be seen. It can also easily be
generalized to multi-DM systems. In this com-
munication, we used this algorithm to accomplish
the first experimental proof of a symmetric high-
contrast PSF obtained using two sequential DMs.
This is a significant experimental milestone for the
field of high-contrast imaging since it not only dou-
bles the search space of coronagraphs, but also
proves that amplitude and phase errors can be simul-
taneously corrected. A full chromatic characteriza-
tion of this solution will be presented in a subsequent
communication.

Appendix A: Physics of Wavefront Correction

We present here a qualitative explanation of the phy-
sics involved in a single-DM wavefront compensator.
We earlier mentioned that such a device could only
create a dark hole in half of the image plane (see
Brown and Burrows [2]), and we show here how it
achieves such a feature. First, consider a phase error
in the pupil plane that is composed of only one har-
monic component:

EPup
abb ðx; yÞ ¼ e

i
λ0
λ cos

�
2π
DðmxþnyÞþϕ



: ðA1Þ

Then, it can be corrected using a deformable mirror
to conjugate the field in the pupil plane:

EPup
DM ðx; yÞ ¼ e

�i
λ0
λ cos

�
2π
DðmxþnyÞþϕ



: ðA2Þ

This correction is perfect for all the wavelengths.
Now consider the case of an amplitude error:

EPup
abb ðx; yÞ ¼ cos

�
2π
D

ðmxþ nyÞ þ ϕ
�
; ðA3Þ

and of a DM surface that is such that, to first order,

EPup
DM ðx; yÞ ¼ �i

λ0
λ sin

�
2π
D

ðmxþ nyÞ þ ϕ
�
: ðA4Þ

Then the residual field in the pupil plane is

EPup
Res ðx; yÞ ¼

1
2

�
1� λ

λ0

�
e
i

�
2π
DðmxþnyÞþϕ




þ 1
2

�
1þ λ

λ0

�
e
�i

�
2π
DðmxþnyÞþϕ



: ðA5Þ

When λ ¼ λ0, then the positive spatial frequencies
are corrected while the negative ones are not com-
pensated. We illustrate this feature using a phasor
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representation. Figure 9 shows how the spatial
variations of amplitude and phase errors are repre-
sented as pulsating phasors that can be decomposed
into two rotating phasors in the complex plane. The
clockwise-rotating phasor corresponds to the contri-
bution of the ripple in the right half of the image
plane and the anticlockwise in the left half of the im-
age plane. One can cancel the clockwise component of
an amplitude error using the anticlockwise compo-
nent of a phase deformation introduced by a DM.
This concept is illustrated in Fig. 9. This is exactly
the approach carried out in the “speckle-nulling” al-
gorithm (see Bordé and Traub [4]), where there is no
wavefront estimation, and the alignment of the
phasor occurs via a trial-and-error process, which
considerably lengthens the convergence time (See
Section 1). A similar analysis can be performed for
wavefront correction using two DMs, showing that
the wavefront actuator can correct both amplitude
and phase aberrations under a broadband illumina-
tion. This capability was first shown in Shaklan et al.
[9]. Using the setup of Fig. 3, where DM2 is in a plane
conjugate to the final imaging lens, DM2 can be used
to correct phase errors as shown by Eq. (A2). Ampli-
tude errors can then be compensated using a combi-
nation of DM1 and DM2. Assume the amplitude
aberration, located at DM2, is such that

Epup;abbðx; yÞ ¼ cos
�
2π
D

ðmxþ nyÞ þ ϕ
�
: ðA6Þ

We choose the surface of DM1 such that the linear
contribution of DM1 to the field is

EDM1;pupðx; yÞ ¼ i
λ0
λ

D2

πzðn2 þm2Þ

× cos
�
2π
D

ðmxþ nyÞ þ ϕ
�
: ðA7Þ

Then, using the results of [7,10], the propagation
from DM1 to DM2 of this field is given by

EDM1;pupðx; yÞ ¼ �i
λ0
λ

D2

πzλ0ðn2 þm2Þ e
�iπλzðn

2þm2Þ
D2

× cos
�
2π
D

ðmxþ nyÞ þ ϕ
�
: ðA8Þ

We work in the low-to-mid spatial frequency regime,
so here again we can assume that

πλzðn2 þm2Þ
D2 ≪ 1:

With this first-order approximation of the angular
spectrum factor, the contribution of DM1 at DM2
becomes

EDM1;pupðx; yÞ ¼ �i
λ0
λ

D2

πzλ0ðn2 þm2Þ

× cos
�
2π
D

ðmxþ nyÞ þ ϕ
�

� cos
�
2π
D

ðmxþ nyÞ þ ϕ
�
:

ðA9Þ

Therefore, choosing

EDM2;pupðx; yÞ ¼ i
λ0
λ

D2

πzλ0ðn2 þm2Þ

× cos
�
2π
D

ðmxþ nyÞ þ ϕ
�

ðA10Þ

yields a broadband cancellation of the amplitude
error. These considerations are illustrated using a
complex phasor representation on Fig. 10, where
DM1 corrects for the amplitude errors and DM2
for the phase errors. Note that there is an important
assumption underlying this result: the small angular
spectrum regime is required in order to obtain the
broadband property of the two-DM controller. This
yields an outer working angle limit, dependent on
the optical design of the controller, which has been
derived in Pueyo and Kasdin [7].
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