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ABSTRACT

High-contrast imaging from spacemust overcome twomajor noise sources to successfully detect a terrestrial planet
angularly close to its parent star: photon noise from diffracted starlight and speckle noise from starlight scattered by
instrumentally generated wave front perturbation. Coronagraphs tackle only the photon noise contribution by re-
ducing diffracted starlight at the location of a planet. Speckle noise should be addressed with adaptive optics systems.
Following the tracks of Malbet, Yu, and Shao, we develop in this paper two analytical methods for wave front sensing
and control that aims at creating ‘‘dark holes,’’ i.e., areas of the image plane cleared of speckles, assuming an ideal
coronagraph and small aberrations. The first method, ‘‘speckle field nulling,’’ is a fast FFT-based algorithm that
requires the deformable-mirror influence functions to have identical shapes. The second method, ‘‘speckle energy
minimization,’’ is more general and provides the optimal deformable mirror shape via matrix inversion. With an
N ; N deformable mirror, the size of the matrix to be inverted is either N 2 ; N 2 in the general case or only N ; N if
the influence functions can bewritten as the tensor product of two one-dimensional functions.Moreover, speckle energy
minimizationmakes it possible to trade off some of the dark hole area against an improved contrast. For bothmethods,
complex wave front aberrations (amplitude and phase) are measured using just three images taken with the science
camera (no dedicated wave front sensing channel is used); therefore, there are no noncommon path errors. We assess
the theoretical performance of both methods with numerical simulations including realistic speckle noise and ex-
perimental influence functions. We find that these speckle-nulling techniques should be able to improve the contrast
by several orders of magnitude.

Subject headinggs: instrumentation: adaptive optics — planetary systems — techniques: high angular resolution

1. INTRODUCTION

The field of extrasolar planet research has recently made a leap
forward with the direct detection of extrasolar giant planets
(EGPs). Using the Spitzer Space Telescope, Charbonneau et al.
(2005) and Deming et al. (2005) have detected infrared photons
from two transiting planets, TrES-1 and HD 209458b, respec-
tively. Chauvin et al. (2004, 2005) have reported the infrared
imaging of an EGP orbiting the nearby young brown dwarf
2M1207 (2MASSWJ1207334!393254)withNACO (association
of NAOS [Nasmyth Adaptive Optics System] and CONICA
[High Resolution Near Infrared Camera]) at VLT (Very Large
Telescope), whereas Neuhäuser et al. (2005) have collected evi-
dence for an EGP companion to the T Tauri star GQ Lup using
VLT NACO as well.

Although there are claims that the direct detection of terrestrial
planets could be performed from the groundwith—yet to come—
extremely large telescopes (Angel 2003; Chelli 2005), it is widely
believed that success will be more likely in space. Direct detec-
tion is the key to spectroscopy of planetary atmospheres and
discovery of biomarkers, namely, indirect evidence of life de-
veloped at the planetary scale (e.g., Des Marais et al. 2002).

Both NASA and ESA have space mission studies well under-
way to achieve this task. Darwin, the European mission to be

launched in 2015, will be a thermal infrared nulling interfer-
ometer with three 3.5 m free-flying telescopes (Karlsson et al.
2004). Terrestrial Planet Finder, the American counterpart, will
feature two missions: Terrestrial Planet Finder–Coronagraph
(TPF-C), an 8 m ; 3:5 m monolithic visible telescope equipped
with a coronagraph to be launched in 2015, and Terrestrial Planet
Finder–Interferometer (TPF-I ), an analog toDarwin to be launched
sometime in 2015–2019 (Coulter 2004).
The direct detection of the photons emitted by a terrestrial

planet is made very challenging by the angular proximity of the
parent star and by the very high contrast (i.e., luminosity ratio)
between the planet and its star: about 106 in the thermal infrared
and about 1010 in the visible. Both wavelength ranges have their
scientific merits and technical difficulties, and both of them are
thought to be necessary for an unambiguous detection of habit-
ability and signs of life (e.g., DesMarais et al. 2002). In this paper,
we deal with the visible range only.
In the visible, planet detection faces two fundamental noise

sources: (1) quantumnoise of the diffracted starlight and (2) speckle
noise due to the scattering of the starlight by optical defects.
Labeyrie (1995) proposed a technique based on ‘‘dark speckles’’
to overcome speckle noise: randomfluctuations of the atmosphere
cause the speckles to interfere destructively and disappear at
certain locations in the image, thus creating localized dark spots
suitable for planet detection. The statistical analysis of a large
number of images then reveals the planet as a spot persistently
brighter than the background.
Malbet et al. (1995) proposed using a deformable mirror (DM)

instead of the atmosphere tomake speckles interfere destructively
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in a targeted region of the image called a ‘‘search area’’ or ‘‘dark
hole’’ (DH or H). Following the tracks of these authors, this
paper discusses methods for reducing the speckle noise below the
planet level by using a DM and an ideal coronagraph. However,
unlike Malbet et al. (1995), we propose noniterative algorithms,
in order to limit the number of long exposures needed for terres-
trial planet detection. We refer to these methods as ‘‘speckle-
nulling’’ techniques, as Trauger et al. (2004) call them. Technical
aspects of this work are inspired by the High Contrast Imaging
Testbed (HCIT; Trauger et al. 2004), a speckle-nulling experi-
ment hosted at the Jet Propulsion Laboratory, specifically de-
signed to test TPF-C related technology.

After reviewing the process of speckle formation to establish
our notations (x 2), we derive two speckle-nulling methods in the
case of small aberrations (x 3). The speckle-nulling phase is pre-
ceded by the measurement of the electric field in the image plane
(x 3.4). The performance of both methods is then evaluated with
one- and two-dimensional simulations (x 4), first with white
speckle noise (x 4.1), then with nonwhite speckle noise (x 4.2).
Various effects and instrumental noises are considered in x 5.
Finally, we conclude and discuss some future work (x 6).

2. SPECKLE FORMATION

This paper is written in the framework of Fourier optics
considering a single wavelength, knowing that a more sophisti-
cated theory (scalar or vectorial) in polychromatic light will even-
tually be needed. Fourier transforms (FTs) are signaled by a hat.

Let us consider a simple telescope with an entrance pupil P. In
the pupil plane, we use the reduced coordinates (u; v) ¼ (x/k; y/k),
where (x, y) are distances in meters and k is the wavelength. We
define the pupil function as

P(u; v)#
1 if u; vð Þ2P;
0 otherwise:

!
ð1Þ

Even in space, i.e., when not observing through a turbulent
medium such as the atmosphere, the optical train of the telescope is
affected by phase and amplitude aberrations. Phase aberrations are
wave front corrugations that typically originate in mirror rough-
ness caused by imperfect polishing, while amplitude aberrations
are typically the result of a heterogeneous transmission or reflec-
tivity. Moreover, Fresnel propagation turns phase aberrations into
amplitude aberrations and the reverse (e.g., Guyon 2005). Regard-
less of where they originate physically, all phase and amplitude
aberrations can be represented by a complex aberration function !
in a reimaged pupil plane, so that the aberrated pupil function is
now Pei!.

The electric field associated with an incident plane wave of
amplitude unity is then

E u; vð Þ ¼ P u; vð Þei! u;vð Þ: ð2Þ

Exoplanet detection requires that we work in a regime in
which aberrations are reduced to a small fraction of the wave-
length. Once in this regime, we can replace e i! by its first-order
expansion 1þ i! (we discuss in x 5.2 the validity of this ap-
proximation). Since the electric field in the image plane is the FT
of equation (2), we get

Ê "; #ð Þ ¼ P̂ "; #ð Þþ icP! "; #ð Þ; ð3Þ

where (", # ) are angular coordinates in the image plane.
The physical picture is as follows. The first term (P̂) is the

direct image of the star. The second term (bP!) is the field of

speckles surrounding the central star image, where each speckle
is generated by the equivalent of first-order scattering from one
of the sinusoidal components of the complex aberration !. Each
speckle is essentially a ghost of the central point-spread function
(PSF).

In the remainder of this paper, we focus on means of mea-
suring and correcting the speckles in a coronagraphic image.
FollowingMalbet et al. (1995), we leave out the unaberrated PSF
term by assuming that it was canceled out by a coronagraph of
some sort (see Quirrenbach 2005 for a review on coronagraphs).
Thus, we clearly separate the gain in the contrast that can be ob-
tained, on the one hand, by reducing the diffracted light with the
coronagraph and, on the other hand, by fighting the scattered
light with the speckle-nulling technique.

3. SPECKLE-NULLING THEORY

The purpose of speckle nulling is to reduce the speckle noise
in a central region of the image plane. This region, the dark hole,
then becomes dark enough to enable the detection of com-
panions much fainter than the original speckles. Speckle nulling
is achieved by way of a servo system that has a deformable
mirror as an actuator. Because our sensing method requires DM
actuation and is better understood with the knowledge of com-
mand control theory, we first model the deformable mirror (x 3.1),
then present two algorithms for the command control (xx 3.2 and
3.3), and finally conclude with the sensing method (x 3.4).

3.1. Deformable Mirror

The deformable mirror (DM) in Trauger et al. (2003) consists
of a continuous face sheet supported by N ; N actuators ar-
ranged in a square pattern of constant spacing. This DM format is
well adapted to either square or circular pupils, the only pupil
shapes that we consider in this paper.3 We assume that the DM is
physically located in a plane that is conjugate to the entrance
pupil. However, what we call ‘‘DM’’ in the following is the
projection of this real DM in the entrance pupil plane. The pro-
jected spacing between actuators is denoted by d. We assume that
the optical magnification is such that the DM projected size is
matched to the entrance pupil, i.e., Nd ¼ D, where D is either the
pupil side length or its diameter. The DM surface deformation in
response to the actuation of actuator (k; l )2 f0; : : : ;N ! 1g2 is
described by an ‘‘influence function,’’ denoted by fkl. The total
phase change introduced by the DM (DM phase function) is

 (u; v) #
XN!1

k¼0

XN!1

l¼0

akl fk l u; vð Þ; ð4Þ

where akl are actuator strokes (measured in radians). Note that
contrary to the complex aberration function !, the DM phase
function is purely real.

With an ideal coronagraph and a DM, the image-plane electric
field formerly given by equation (3) becomes

Ê 0 "; #ð Þ ¼ icP! "; #ð Þ þ icP "; #ð Þ: ð5Þ

In the next two sections, we explore two approaches for
speckle nulling. In x 3.2, we begin naively by trying to cancel Ê 0.
Because there is a maximum spatial frequency that the DM can
correct for, the DH necessarily has a limited extension. Any
energy at higher spatial frequencies will be aliased in the DH and

3 Two square DMs can be assembled to accommodate an elliptical pupil such
as that envisioned for TPF-C.
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limit its depth. Therefore, the DM cannot be driven to cancel Ê 0

unless bP! ¼ 0 outside the DH (i.e., unless there are already no
speckles outside the DH). With this in mind, we start over in
x 3.3 with the idea that speckle nulling is better approached by
minimizing the field energy.

3.2. Speckle Field Nulling

The speckle field nulling approach consists in trying to null
out Ê 0 in the DH region (H), meaning we seek a solution to the
equation

8 "; #ð Þ2H; cP! "; #ð Þ þ cP "; #ð Þ ¼ 0; ð6Þ

although, as we show, this equation has no exact solution unless
bP! happens to be a band-limited function within the control-
lable band of the DM.

By replacing  with its expression (4), we obtain

8 "; #ð Þ2H;
XN!1

k¼0

XN!1

l¼0

akldPfkl "; #ð Þ ¼ !cP! "; #ð Þ: ð7Þ

We recognize in system (7) a linear system in akl that could be
solved using various techniques such as singular value decom-
position (SVD; Press et al. 2002, x 2.6). Although it is general,
this solution does not provide much insight into the problem of
speckle nulling. For this reason, let us now examine a different
solution, less general but with more explanatory power. We
comment on the use of SVD at the end of this section.

We consider a square pupil. In this case, all DM actuators
receive light and the pupil function has no limiting effect on the
DM phase function, i.e., P ¼  . Moreover, we assume that all
influence functions are identical in shape and write fkl(u; v) ¼
f u! k d/kð Þ; v! l d/kð Þð Þ. Under these hypotheses,

P u; vð Þ ¼ f u; vð Þ '
XN!1

k¼0

XN!1

l¼0

akl$ u! k
d

k
; v! l

d

k

" #
; ð8Þ

where $ is Dirac’s bidimensional distribution and the asterisk
denotes the convolution.

Substituting bP with the FT of equation (8) in equation (6)
yields

8 "; #ð Þ2H;
XN!1

k¼0

XN!1

l¼0

akle
!i 2%d=kð Þ k"þl#ð Þ ¼!

cP! "; #ð Þ
f̂ "; #ð Þ

: ð9Þ

We recognize in the left-hand side of equation (9) a truncated
Fourier series. If we choose the akl to be the first N2 Fourier
coefficients of !bP!=f̂ , i.e.,

akl ¼
2d 2

k2

Z Z

!k=2d; k=2d½ )2
!
cP! "; #ð Þ
f̂ "; #ð Þ

e i 2%d=kð Þ k"þl#ð Þ d" d#;

ð10Þ

then according to Fourier theory, we minimize the mean-square
error between both sides of the equation (see, e.g., Hsu 1967,
x 1.5). This error cannot be reduced to zero unless the Fourier
coefficients of!bP!/f̂ happen to vanish for k; l < 0 and k; l > N .
At this point, we have reached the important conclusion that per-
fect speckle cancellation cannot be achieved with a finite-size DM
unless the wave front aberrations are band-limited. Moreover, we

can assert that the maximum DH extension is the square domain
H # ½!k /2d; k /2d)2 ¼ ½! N /2ð Þ k /Dð Þ; N /2ð Þ k /Dð Þ)2.
Solution (10) is physically acceptable only if the Fourier

coefficients are real numbers, which means mathematically that
bP!/f̂ should be Hermitian.4 If there are phase aberrations only,
then P! is real, bP!/f̂ is Hermitian, and the akl are real. This is no
longer true if there are amplitude aberrations as well, reflecting
the fact that the DM alone cannot correct both phase and am-
plitude aberrations in H. However, by considering the Hermi-
tian function that is equal to bP!/f̂ in one-half of the DH, say,
Hþ # ½0; k /2d) ; ½!k /2d; k /2d), we obtain the real coefficients,

akl ¼ 4d 2

Z Z

Hþ
!
cP! "; #ð Þ
f̂ "; #ð Þ

cos
2%d

k
k" þ l#ð Þ

$ %
d" d#;

ð11Þ

that correct both amplitude and phase aberrations inHþ. As we
have k/2d ¼ N /2ð Þ k/dð Þ, the DH has a size of N ; N resolution
elements (resels) with phase aberrations only and N /2ð Þ ; N
resels with phase and amplitude aberrations. Therefore, a DM
can correct both amplitude and phase aberrations in the image
plane, albeit in a region that is either the left, right, upper, or
lower half of the phase-corrected region.
As Malbet et al. (1995) pointed out, let us remind the reader

that k /2d is equal to the Nyquist frequency for a sampling inter-
val d/k. Therefore, we find that the maximum extension for the
DH corresponds to the range in which the sampling theorem
applies to the wave front at the DM actuator scale. Indeed, taking
the inverse FT of equation (9) leads to the wave front recon-
struction formula

P! u; vð Þ ¼ !
XN!1

k¼0

XN!1

l¼0

akl f u! k
d

k
; v! l

d

k

" #
: ð12Þ

Again, this reconstruction cannot be perfect unless the spectrum
of P! is contained in H. Note that because f̂ is generally not a
flat function (as would be the case if influence functions were,
for instance, two-dimensional sinc functions), the actuator strokes
are not equal to the negative of the wave front values sampled at
the actuator locations.
Our Fourier solution was derived by assuming (1) that all

influence functions are identical in shape and (2) that the pupil
has a square shape. Hypothesis 1 appears to be reasonable at least
for the DM in use on the HCIT (J. Green 2005, private com-
munication), but this remains to be precisely measured. If hy-
pothesis 2 is relaxed, then (a) some actuators do not receive any
light and play no role, so there are effectively fewer terms in the
summation in equation (9), and (b) the fact that influence func-
tions on the pupil boundary are only partly illuminated is ignored.
Now that we have two methods to solve equation (6), Fourier

expansion and SVD, let us compare their solutions. We deal here
with functions belonging to the Hilbert space of square inte-
grable functions f : H ! C. This space has f ; gh i #

R R
H f g'

for the dot product and k f k # (
R R

Hj f j
2)1/2 for the norm. As

mentioned above, Fourier expansionminimizes the mean-square
error between both sides of equation (9), i.e., jj(bP!þ bP )/f̂ jj2.
By contrast, SVD has the built-in property of minimizing the
norm of the residuals of equation (7), i.e., jjbP!þ bP jj. In other
words, SVD minimizes jjÊ 0jj2, the speckle field energy, which

4 A function f is said to be Hermitian if 8(x; y); f (x; y) ¼ f '(! x;!y). The
FT of a real function is Hermitian and vice versa.
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seems more satisfactory from a physical point of view. To find
out which is best, we have performed one-dimensional numer-
ical simulations. It turns out that SVD yields dark holes that are
50% deeper (median value) than does the Fourier expansion. In
addition, SVD does not require all influence functions to have
the same shape.

However, considering four detector pixels per resel in two
dimensions (critical sampling), SVD would require us to ma-
nipulate matrices as large as N 2 ; 4N2 (or even N2 ; 8N2 when
real and imaginary parts are separated). Such matrices would
occupy 537 MB of memory space for 64 ; 64 actuators and
single-precision floating-point numbers. By contrast, Fourier ex-
pansion would be straightforwardly obtainedwith fast FTs (FFTs)
of 2N ; 2N arrays at critical sampling, but again at the cost of a
50% shallower dark hole and a strong hypothesis on the influence
functions. In the next section, we seek to find a computationally
less intensive solution that still minimizes the speckle energy in
the dark hole but does not require any hypothesis on the influ-
ence functions.

3.3. Speckle Energy Minimization

Let us start with the idea that the best solution is defined as that
minimizing the total energy of the speckle field in the DH. For
the sake of simplicity, we assume once again a square pupil but
not necessarily a common shape for the influence functions. The
total energy in the speckle field reads

E #
Z Z

H
cP! "; #ð Þ þ  ̂ "; #ð Þ

&&&
&&&
2

d" d# ¼ cP!þ  ̂; cP!þ  ̂
D E

;

ð13Þ

using the same notation as in x 3.2.
Given that @ ̂/@akl ¼ f̂kl, the energy is minimized when

8 k; lð Þ2 0; : : : ;N!1f g2;
@E
@akl

¼ 0()Re cP!þ  ̂; f̂kl
D E' (

¼ 0; ð14Þ

where ‘‘Re’’ stands for the real part. Note that this is less de-
manding than equation (6), as equation (6) implies equation
(14) but the reverse is not true.

Using definition (4) for  and realizing that f̂nm; f̂kl
) *

is a real
number,5 we finally get

8 k; lð Þ2 0; : : : ;N ! 1f g2;
XN!1

n¼0

XN!1

m¼0

anm f̂nm; f̂kl
) *

¼ !Re cP!; f̂kl
D E' (

: ð15Þ

As in equation (7), we find a system that is linear in the ac-
tuator strokes. By replacing double indices with single ones, e.g.,
(k, l ) becomes s ¼ kN þ l, equation (15) can be solved in matrix
format by inverting an N2 ; N 2 real matrix. This is already an
improvement with respect to the N2 ; 4N2 complex matrix re-
quired by SVD in x 3.2.

It appears that the same solution can be obtained with a much
less demanding N ; N matrix inversion, provided that two-
dimensional influence functions can be written as the tensor
product of two one-dimensional functions (separation of vari-

ables), i.e., fkl(u; v) ¼ gk(u)gl(v). This would be the case for box
functions or bidimensional Gaussians and is good at the 5%
level for the DM in use on the HCIT. This property also holds in
the image plane, since the FT of the previous equation yields
f̂kl("; # ) ¼ ĝk(" )ĝl(# ).

By separating variables, equation (15) becomes

8 k; lð Þ2 0; : : :;N ! 1f g2;
XN!1

n¼0

ĝn; ĝkh i
XN!1

m¼0

anm ĝm; ĝlh i ¼ !Re cP!; f̂kl
D E' (

: ð16Þ

As the left-hand side happens to be the product of three N ;N
matrices, equation (16) can be rewritten as an equality between
square matrices:

GAG ¼ !; where

Gkl ¼ ĝk ; ĝlh i;
Akl ¼ akl;

!kl ¼ !Re cP!; f̂kl
D E' (

:

8
>><

>>:
ð17Þ

For square-box and actual HCIT influence functions, numer-
ical calculations show that G is diagonally dominant6 and there-
fore invertible by regular Gaussian elimination. The solution to
equation (17) is then

A ¼ G!1!G!1: ð18Þ

Note that G!1 can be precomputed and stored, so that com-
puting the strokes effectively requires only two matrix multipli-
cations. As shown in the Appendix, an equivalent result can be
obtained by working with pupil-plane quantities.

As for the field-nulling approach, correcting amplitude
errors also implies restricting the dark hole either to Hþ ¼
½0; N /2ð Þ k/Dð Þ) ; ½! N /2ð Þ k/Dð Þ; N /2ð Þ k/Dð Þ) or else toH! ¼
½! N /2ð Þ k/Dð Þ; 0) ; ½! N /2ð Þ k/Dð Þ; N /2ð Þ k/Dð Þ). To account for
amplitude errors and keep the formalism we have presented
so far, it is sufficient to replace bP! with a function equal to
bP! ("; # ) in either Hþ or H! (depending on the half where
one wishes to create the dark hole) and equal to bP!'(!";!# )
in the other half (Hermitian symmetry). Because its FT is Her-
mitian, the new aberration function in the pupil plane is
real, and thus the algorithm processes amplitude and phase errors
at the same time as if there were phase errors only.

Let us derive the residual total energy in the DH after the
correction has been applied. Starting from definition (13) and
rewriting condition (14) as Re (hbP!þ  ̂;  ̂i) ¼ 0, we find

Emin ¼ cP!; cP!
D E

!  ̂;  ̂
) *

: ð19Þ

The former term is the initial speckle energy in the DH, while
the latter is the speckle energy decrease gained with the DM.
Mathematically, E1/2

min measures the distance (according to the
norm we have defined) between the speckle field and its ap-
proximation with the DM inside the DH. Because there is no
exact solution to equation (6), the residual energy cannot be
made equal to zero inHþ orH!. However, the energy approach
offers an additional degree of freedom: by concentrically re-
ducing the domain over which the energy is minimized, the
speckle energy can be further decreased (see x 4).

5 This property stems from the Hermitian character of f̂kl together with the
symmetry of H. 6 A matrix A ¼ ½aij) is said to be diagonally dominant if 8i; aiij j >

P
j 6¼i aij
&& &&.
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3.4. Speckle Field Measurement

So far, our speckle-nulling theory has presupposed knowledge
of the speckle field bP! or, equivalently, of the phase and am-
plitude aberrations across the pupil, embodied in the complex
phase function P!. In this section, we show how the speckle field
can be measured directly in the image plane. As the detector
measures an intensity, a single image yields only the modulus of
the speckle field. The phase of the speckle field can be retrieved
by perturbing the phase function P! in a controlled way and by
recording the corresponding images, a process analogous to
‘‘phase diversity’’ (e.g., Löfdahl & Scharmer 1994). In our sys-
tem, the DM provides the natural means for creating this con-
trolled perturbation.

As we show, exactly three images obtained with well-chosen
DM settings provide enough information to measure bP!. Let
us call image 0 the original image recorded with setting  0,
whereas images 1 and 2 are recorded with settings 0 þ $ 1 and
 0 þ $ 2.

To be general, we consider in the field of view the presence of
an exoplanet and an exozodiacal cloud (hereafter exozodi), in
addition to the star itself. The electric fields of these objects are
incoherent with that of the star, so their intensities should be
added to the star’s intensity. Because they are much fainter than
the star, the speckles they produce are negligible with respect
to the star speckles, and their intensities can be considered as
independent of ! and  . The total intensity of every image pixel
(", #) then takes the successive values

I0 ¼ cP!þ  ̂0

&&&
&&&
2

þIp þ Iz;

I1 ¼ cP!þ  ̂0 þ c$ 1

&&&
&&&
2

þIp þ Iz;

I2 ¼ cP!þ  ̂0 þ c$ 2

&&&
&&&
2

þIp þ Iz;

8
>>>>><

>>>>>:

ð20Þ

where Ip and Iz are the exoplanet and exozodi intensities,
respectively.

System (20) can be reduced to the linear system

c$ 1

' (' cP!þ  ̂0

' (
þ c$ 1

cP!þ  ̂0

' ('
¼ I1 ! I0 ! c$ 1

&&&
&&&
2

;

c$ 2

' (' cP!þ  ̂0

' (
þ c$ 2

cP!þ  ̂0

' ('
¼ I2 ! I0 ! c$ 2

&&&
&&&
2

;

8
><

>:

ð21Þ

where the asterisk in the exponent denotes the complex conjugate.
Note how the exoplanet and exozodi intensities have disappeared
from the equations, demonstrating that faint objects do not affect
the measurement process of stellar speckles. However, note that
because of quantum noise, the planet detection can still be prob-
lematic if the exozodi is much brighter than the planet.

Now, system (21) admits a unique solution if its determinant,

" # c$ 1

' ('c$ 2 ! c$ 1
c$ 2

' ('
; ð22Þ

is not zero, that is, if

c$ 1

&&&
&&& c$ 2

&&&
&&& sin arg c$ 2

' (
! arg c$ 1

' (h i
6¼ 0: ð23Þ

Condition (23) tells us that the DM setting changes, $ 1 and
$ 2, should modify the speckles differently in any given pixel;
otherwise, not enough information is secured to measure bP!
unambiguously in this pixel. It should be expected for this method
to work practically that the magnitude of the speckle modification
be greater than the photon noise level.
We have not yet found a rigorous derivation of the optimum

values for the amplitude jb$ 1j and jb$ 2j, but a heuristic argument
suggests to us that the optimum perturbations may be that I1 * I0
and I2 * I0. That is to say, the DM-induced speckle intensity
pattern, taken by itself, should be approximately the same as the
original speckle intensity pattern. Thus, at each pixel we choose
jb$ 1j * jb$ 2j * I1/20 , with the caveat that neither should be zero
to keep equation (23) valid.
The phase of b$ 1 does not matter, but the phase difference be-

tween b$ 1 and b$ 2 should be made as close to %/2 as possible to
keep " from zero. Practically, this can be realized as follows:

1. Compute $ 1 stroke changes from equation (11) or equa-
tion (18) by replacingbP!with I1/20 e i&, where & is a random phase.
2. Compute $ 2 stroke changes from equation (11) or equa-

tion (18) by replacing bP! with b$ 1e
i%/2.

Now that we have made sure that " 6¼ 0, we finally derive

cP! ¼
c$ 2 I1 ! I0 ! c$ 1

&&&
&&&
2

" #
! c$ 1 I2 ! I0 ! c$ 2

&&&
&&&
2

" #

"
!  ̂0:

ð24Þ

Equation (24) shows that the initially unknown speckle field
(bP! ) can be experimentally measured in just three exposures
taken under identical circumstances but with different shapes
imposed on the DM.

4. SPECKLE-NULLING SIMULATIONS

4.1. White Speckle Noise

In this section, we perform one- and two-dimensional simu-
lations for the theoretical case of white speckle noise caused by
phase aberrations only. The DM has 64 actuators and top-hat in-
fluence functions. Smoother influence functions have been tested
and do not lead to qualitatively different results. A simulationwith
actual HCIT influence functions is presented in x 4.2. The simu-
lated portion of the pupil plane is made twice as large as the pupil
by zero padding, so that every element of resolution in the image
plane would be sampled by two detector pixels. This corresponds
to the realistic case of a photon-starved exoplanet detection for
which readout noise must be minimized.

4.1.1. One-dimensional Simulations

Figure 1 shows a complete one-dimensional simulation in-
cluding speckle field measurement (x 3.4) and speckle nulling
with field nulling (x 3.2) and energy minimization (x 3.3). The
standard deviation of the phase aberrations is set to k/1000. In-
tensities are scaled with respect to the maximum of the star PSF
in the absence of a coronagraph. Ideal conditions are assumed:
no photon noise, a noiseless detector, and perfect precision in the
control of the DM actuators. Under these conditions, the speckle
field is perfectly estimated, and the mean intensity in the DH is
5:8 ; 10!11 with field nulling and 1:4 ; 10!11 with energy min-
imization, i.e., about 1500 and 6500 times lower than the mean
intensity outside the DH, respectively. Repeated simulations with
different noise sequences show that energy minimization always
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performs better than field nulling by a factor of a few. Field nulling
solved with SVD yields the same numerical solution as that of
energy minimization (they differ by the last digit only), in agree-
ment with the idea that they both minimize speckle energy.

4.1.2. Dark Hole Depth Estimate in One Dimension

In the one-dimensional case, it is easy to roughly predict the
shape and the depth of the DH. The function bP!þ  ̂ is band-
limited, since the pupil has a finite size. As the pupil linear di-
mension is D/k, the maximum spatial frequency of bP!þ  ̂ is
D/2k. Let us apply the sampling theorem at the Nyquist sampling
frequency D/k and write

cP!þ  ̂
' (

"ð Þ ¼
Xþ1

n¼!1

cP!n þ  ̂n

' (
sinc

"D

k
! n

" #
; ð25Þ

where the subscript n denotes the function value for" ¼ n k/Dð Þ.
Substituting " with n k /Dð Þ and d with D/N leads to

cP!n þ  ̂n ¼ cP!n þ f̂n
XN!1

k¼0

ake
!i 2%kn=Nð Þ: ð26Þ

The field-nulling equation (6) here takes the discrete form

8n2 0; : : : ;N ! 1f g;

cP!n þ  ̂n ¼ 0() ak ¼
XN!1

n¼0

!
cP!n

f̂n

 !
e i 2%kn=Nð Þ; ð27Þ

i.e., the actuator strokes are computed thanks to an inverse FFT.
Let us now turn to the residual speckle field

cP!þ  ̂
' (

"ð Þ ¼
X!1

n¼!1

cP!n sinc
"D

k
! n

" #

þ
Xþ1

n¼N

cP!n sinc
"D

k
! n

" #
: ð28Þ

Because the sinc function decreases rapidly with ", the terms
flanking the DH (n ¼ !1 and N ) should by themselves give
the order of magnitude of the residual speckle field in the DH.
In the case of phase aberrations only and white noise, we have
jbP!!1j2 * jbP!N j2 * I0, where I0 is the mean intensity in the

Fig. 1.—Full one-dimensional speckle-nulling simulation for a one-dimensional pupil with 64 actuators. Left: Phase aberrations (dotted lines) and their low spatial
frequency approximations at the actuator scale (solid lines; negative of the patterns applied to the DM). Right: Corresponding images. The full algorithm is a four-step
process: (a) Original speckles are measured with the current DM shape (taken here to be flat). (b, c) Speckles are modified by driving the DM. At this point, enough
information has been gathered to deduce the phase and amplitude aberrations of the wave front. (d) Low spatial frequency aberrations are corrected with the DM,
canceling out speckles in the center of the image. Dark holes produced by the field-nulling and energy-minimization approaches (xx 3.2 and 3.3) do not differ noticeably
in the figure (thin solid line). A rough estimate based on the mean intensity prior to the dark hole creation (x 4.1) is superimposed as a thick solid line.
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image plane prior to the DH creation. Therefore, a crude esti-
mate of the intensity profile in the DH should be

IDH "ð Þ * I0 sinc
"D

k
þ 1

" #
þ sinc

"D

k
! N

" #$ %2
: ð29Þ

We have superimposed this approximation as a thick line in
Figure 1. In this case the match is remarkable, but more simu-
lations show that it is generally good to within only a factor of 10.
Nevertheless, it demonstrates that the DH depth depends criti-
cally on the residual speckle field at its edges and hence on the
decreasing rate of the complex aberration spectrum with spatial
frequency. In that respect, a white spectrum is certainly the worst
case. Equation (29) further indicates that theDHdepth depends on
the number of actuators: asN is increased, theDHwidens and gets
deeper. With 8, 16, 32, and 64 actuators, equation (29) predicts
I0/IDH to reach about 100, 300, 1000, and 4500, respectively.

4.1.3. Dark Hole Depth versus Search Area

As mentioned in x 3.3, speckle nulling by energy minimi-
zation can be performed in a region narrower than the maxi-
mum DH. Figure 2 illustrates this point: by reducing the search
area from 64 to 44 resels (31% reduction), the DH floor was
decreased from 1:4 ; 10!11 to 2:7 ; 10!15, i.e., a gain of about
5200 in contrast (further reducing the search area does not bring
any significant gain). By giving up search space, one frees the
degrees offreedom corresponding to the highest spatial frequency
components on the DM pattern. These can be used to improve
the DH depth at lower spatial frequency because of the PSF an-
gular extension (this is essentially the same reason why high spa-
tial frequency speckles limit the DH depth). As the search space
is reduced, the leverage of these highest spatial frequency compo-
nents decreases (PSFwings falling off ). The energy-minimization
algorithm compensates by puttingmore energy at high frequency
(see Fig. 2, top) and increasingly brighter spots in the image
(around +32k/D and +96k/D in the bottom panel of Fig. 2).

Thus, the trade-off rangemight be limited in practice by the max-
imum actuator stroke (currently 0.6 'm on the HCIT) and/or by
the detector’s dynamic range.
In two dimensions, the trade-off limits arewell illustrated by the

following example: considering a 64 ; 64DMand a randomwave
front, we find that the DHfloor can be decreased from 2:4 ; 10!12

to 1:4 ; 10!13 (a factor of 17) if the search area is reduced from
64 ; 64 to 60 ; 60 resels (12% reduction in area). This implies a
maximum actuator stroke of 10 nm and a detector dynamic range
of 106. A further reduction to 58 ; 58 resels does not feature a
lower DH floor (2:1 ; 10!13) and would imply a maximum ac-
tuator stroke of 10 'm and a detector dynamic range of 1010. In
this case, the leverage of the additionally freed high spatial fre-
quency components is so weak that the algorithm starts diverging.

4.1.4. Two-dimensional Simulations with Phase
and Amplitude Aberrations

In Figures 3–4, we show an example of two-dimensional
speckle nulling with phase and amplitude aberrations for a
square pupil. To reflect the fact that phase aberrations dominate
amplitude aberrations in real experiments (see Trauger et al.
2004), the rms amplitude of the amplitude aberrations is made
10 times smaller than that of the phase aberrations (the choice
of a factor of 10 is arbitrary). The DH is split into two regions:
in the right one (Hþ), the amplitude and phase aberrations are
corrected, whereas in the left one (H!), the phase aberrations
are corrected and the amplitude aberrations are made worse by a
factor of 4 in intensity.

4.2. Realistic Speckle Noise

4.2.1. Power Spectral Density of Phase Aberrations

With the 3:5 m ; 8 m TPF-C primary mirror in mind, we have
studied the phase aberration map of an actual 8 m mirror: the

Fig. 2.—Speckle-nulling simulation for a one-dimensional pupil with 64
actuators. The energy-minimization algorithm makes it possible to push down
the dark hole floor at the cost of some search area: the thick solid line shows the
original dark hole, while the thin solid line shows the deeper and narrower dark
hole. In this particular example with phase aberrations only, the average floor is
decreased from 1:4 ; 10!11 to 2:7 ; 10!15 (a factor of about 5200 in contrast) by
reducing the dark hole size from 64k/D to 44k/D (31% reduction). As explained
in the text, this trade-off is obtained by increasing the amplitude of the highest
spatial frequencies on the DM, making the dark hole’s rim brighter at the same
time.

Fig. 3.—Speckle nulling with the energy-minimization algorithm (x 3.3) for
a square pupil in two dimensions (64 ; 64 actuators). The gray scale shows the
logarithm of the intensity. Speckles are cleared from the central part of the
image, creating a dark hole (or search area) suitable for the detection of faint
companions. Phase aberrations are corrected in the full dark hole, while am-
plitude aberrations are corrected in the right part only and made worse by a
factor of 4 in intensity in the left part. Thus, the difference in intensity between
the two sides of the dark hole gives a measure of the wave front amplitude errors.
In this simulation, the standard deviations of the phase and amplitude aberra-
tions are k /103 and k /104, respectively. The dark hole shape is a result of the
actuator grid geometry on the DM, not of the pupil shape.
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primary mirror of Antu, the first 8.2 m unit telescope of ESO’s
Very Large Telescope (VLT). This phase map7 was obtained
with the active optics system on and is characteristic of zonal
errors (aberrations that cannot be fitted by low-order Zernike-
type polynomials). It can be seen in Figure 5 that the azimuthally

averaged power spectral density (PSD) of such a map is well
represented by

PSD (ð Þ ¼ PSD0

1þ (=(cð Þx ; ð30Þ

where ( ¼ "2 þ # 2ð Þ1/2. Values for PSD0, (c , and x are listed in
Table 1. For comparison, the same treatment has been applied to
the Hubble Space Telescope (HST ) zonal error map from Krist
& Burrows (1995).

We conclude from this study that a realistic phase aberration
PSD for an 8 m mirror decreases as the third power of the spatial
frequency. The standarddeviation of theVLTphasemap is 20.9 nm
(18.5 nm for HST ). The square root of the power of the phase
aberrations in the 0.5–4 m!1 spatial frequency range [ 4 32ð Þk/D
for an 8mmirror] is 19.4 nm, i.e., about k/25 at 500 nm, clearly not
in the validity domain of our linear approximation.

4.2.2. One-dimensional Simulation

Figure 6 shows a simulation performed under the same con-
ditions as for Figure 1 but with a VLT-like PSD. The PSD is
scaled so that the standard deviation of the phase aberrations
is equal to k /1000. The average DH floor is now 5:3 ; 10!12,
6 orders of magnitude below the intensity peak in the original
image! In agreement with x 4.1, we find that the DH’s depth
depends critically on the magnitude of the speckle field at the
edge of the DH and hence on the decrease of the phase aber-
ration PSD with spatial frequency.

7 The phase map of Antu’s primary mirror can be found courtesy of ESO at
http://www.eso.org/projects/vlt /unit-tel /m1unit.html.

TABLE 1

Parameter Values for the Azimuthally Averaged PSD Model
of HST and VLT Phase Maps

Telescope
PSD0

(nm2 m2)
(c

(m!1) x

HST ......................................... 2.2 4.3 2.9

VLT ......................................... 720 0.35 3.1

Fig. 4.—Average cut through the dark hole of the speckle nulling with the
energy-minimization algorithm (x 3.3) in two dimensions. The solid curve is an
average of the intensity in Fig. 3 over #. The dotted line represents the state prior
to correction with the DM. Note that the dark hole has a rim that is brighter than
the background.

Fig. 5.—Azimuthally averaged power spectral density (PSD) of phase aber-
rations for the 8.2 m primary mirror of a VLT unit telescope (Antu) and the
combination of the primary and secondary mirrors of HST. Both data sets appear
as solid lines and are fitted with model (30) drawn with dotted lines. The model
parameters are listed in Table 1. The dashed lines indicate the boundaries for
spatial frequencies leading to speckles in the 4 32ð Þk /D region of the image
plane for an 8 m mirror. The bottom left and top right insets are the VLT phase
map (courtesy of ESO) andHST phase map (Krist & Burrows 1995), respectively.

Fig. 6.—One-dimensional speckle nulling as computed by energy minimi-
zation (x 3.3) with a phase aberration PSD given by equation (30). The values
for x and (c are the same as for the VLT; PSD0 is such that the standard deviation
of the phase aberrations is the same as in Fig. 1 (k /1000). These realistic phase
aberrations lead to deeper dark holes than in the hypothetical white-noise case of
Fig. 1d.
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4.2.3. Two-dimensional Simulation

For the two-dimensional simulation in Figures 7–8, we have
kept the original VLT phase map and circular pupil but scaled
the standard deviation of the phase aberrations to k /1000. In ad-
dition, we have used the actual HCIT influence functions from
Trauger et al. (2003). The average DH floor is then 5:9 ; 10!12

with field nulling (case shown) and 7:1 ; 10!11 with energy min-
imization. The worse performance of the second method reflects
the cost of the variable separation hypothesis, only accurate to
within 5% for the HCIT. Note that the DH retains its square
shape with a circular pupil, as the DH shape is fixed by the

actuator grid geometry on the DM (a square grid of constant
spacing in our case).

5. DISCUSSION

5.1. Quantum and Readout Noise

In x 4, we presented noise-free simulations. To give an idea of
the effect of quantum and readout noises, let us consider a sunlike
star at 10 pc observed by a 3:5 ; 8 m space telescope with a 5%
overall efficiency. In a 100 nm bandwidth centered at 600 nm, the
telescope collects about 2 ; 1012 photoelectrons in 1 hr exposures.
Considering the quantum noise, a 1 e! read noise, and ignoring
chromatic effects, simulations of sequences of four 1 hr exposures
show that the average DH floor in Figure 1 would jump from
1:4 ; 10!11 to 2:7 ; 10!10, whereas the average DH floor in
Figure 6 would jump from 5:2 ; 10!12 to 3:2 ; 10!11.

5.2. Validity of the Linear Approximation

In practice, our speckle-nulling process will work as stated
provided equation (3) holds, that is, if jP!þ  j3 1

2 jP!
2j. If

c is the improvement in contrast with respect to the speckle
floor and )! the standard deviation of the wave front aberrations
in radians, this condition translates into )!/

ffiffiffi
c

p
3)2

!=
ffiffiffi
2

p
, or

)!T 2/cð Þ1/2. In terms of optical path difference, the standard
deviation should then be much less than k/½%(2c)1/2) ¼ k/140
for c ¼ 103. This is why we considered k/1000 rms wave fronts
in our simulations. As the wave front will probably not be of this
quality at the start, the speckle-nulling method presented here is
intended to be used in the course of observations, after a first
phase for which the bulk of the aberrations have been taken out.
When the linear approximation breaks down, three imageswith

different DM settings still provide enough information about the
aberrations that a DH could be created thanks to a global nonlinear
analysis of these images (P. Bordé, W. Traub, & J. Trauger 2004,
private communication). Malbet et al. (1995) also explored non-
linear solutions, but with many more iterations (*20).

5.3. Real Coronagraphs

Dwelling on the validity of equation (3), real coronagraphs
would not only remove the direct image of the star (P̂), they
would alsomodify the speckle field (bP!) and the DMphase func-
tion (bP ). This can be easily incorporated in the theory. A more
delicate point is that real coronagraphs are not translation-
invariant systems. As a consequence, effective influence func-
tions as seen from behind the coronagraph will vary over the
pupil. For image-plane coronagraphs with band-limited sinc
masks (Kuchner & Traub 2002, x 4), we estimate this variation
to be of the order of 10%, assuming * ¼ 0:1 and 64 actuators.
Only energy minimization, not field nulling (unless solved with
SVD), can accommodate this effect.

5.4. Actuator Stroke Precision

What about the precision at which actuators should be con-
trolled? As a consequence of the linearity of equation (15), the
DH depth depends quadratically on the precision of the actuator
strokes. We deduce—and this is confirmed by simulations—that
a 4 orders of magnitude deep DH can only be obtained if the
strokes are controlled at a 1% precision, i.e., 6 pm rms with
k/1000 aberrations at 600 nm. This precision corresponds to the
current resolution of the actuator drivers on the HCIT.

5.5. Instrumental Stability

Regarding instrumental stability, we assumed that the instru-
ment would remain perfectly stable during the four-step process.

Fig. 8.—Average cut through the dark hole of speckle nulling with the field-
nulling algorithm (x 3.2) with a VLT-like PSD instead of white noise. The solid
curve is an average of the intensity in Fig. 7 over #. The dotted line represents
the state prior to correction with the DM.

Fig. 7.—Speckle nulling with the field-nulling algorithm (x 3.2) with a VLT-
like PSD instead of white noise (64 ; 64 actuators). The standard deviation of
the phase aberrations is fixed to k /1000. Actual HCIT influence functions are
used. The average DH floor is 5:9 ; 10!12.
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However, despite the foreseen thermal and mechanical controls
of the spacecraft, very slow drifts during the few hours of single
exposures should be expected. Therefore, we intend to study in a
subsequent paper how to incorporate a model of the drifts in our
method. The exact parameters of this model would be derived
from a learning phase after the launch of the spacecraft.

5.6. Chromaticity

We have not considered the effect of chromaticity. Let us point
out that phase aberrations due to mirror surface errors scale with
wavelength, so the correction derived fromonewavelengthwould
apply to all wavelengths. This is unfortunately not the case for
amplitude aberrations. Although these are weaker than phase
aberrations, a degradation of the correction should be expected in
polychromatic light. Moreover, polychromatic wave front sens-
ing will require a revised theory, as speckles will move out ra-
dially in proportion to the wavelength.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented two techniques to optimally null
out speckles in the central field of an image behind an ideal
coronagraph in space. The measurement phase necessitates only
three images, the fourth image being fully corrected. Depending
on the number of actuators and the desired search area, the gain
in contrast can reach several orders of magnitude.

These techniques are intended to work in a low-aberration
regime, such as in the course of observations after an initial
correction phase. They are primarily meant to be used in space
but could be implemented in a second-stage adaptive optics (AO)
system on ground-based telescopes. Of these two methods, the
speckle energyminimization approach seems to bemore powerful

and flexible: (1) it offers the possibility to trade off some search
area against an improved contrast, and (2) it can accommodate
influence function variations over the pupil (necessary with real
coronagraphs). If influence functions feature the required sym-
metry (variable separation), it is computationally very effective,
but it is otherwise still better than SVD.

Since the principles underlying these speckle-nulling tech-
niques are general, it should be possible to use them in con-
junction with most coronagraph designs, including those with
band-limited masks (Kuchner & Traub 2002), pupil mapping
(Guyon et al. 2005; Vanderbei & Traub 2005), and shaped pupils
(Kasdin et al. 2003). It is our intent to complete our work by
integrating models of these coronagraphs in our simulations and
to carry out experiments with the HCIT. In addition, we will seek
to incorporate in the measurement theory a linear model for the
evolution of aberrations, and we will work toward a theory ac-
commodating the spectral bandwidth needed for the detection
and spectroscopy of terrestrial planets.
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sion Laboratory (JPL), funded by NASA through the Michelson
Fellowship Program, and in part under contract 1260535 from
JPL. JPL is managed for NASA by the California Institute of
Technology. This research has made use of NASA’s Astrophysics
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APPENDIX

FORMULATION OF ENERGY MINIMIZATION IN THE PUPIL PLANE

In this appendix, we show that energy minimization can be formulated in the pupil plane as well. Note that no measurement
takes place in the pupil plane: the aberration function P! is obtained by the inverse FT of bP!, which is still measured as described
in x 3.4. Although we here present a solution for the phase aberrations, the amplitude aberrations can be corrected in half of the domain
without changing the formalism, exactly as explained in x 3.3.

By replacing Ê with its expression as a FT, the dark hole energy reads

E ¼
Z Z

H

Z Z

P
E u; vð Þe!i2% u"þv#ð Þ du dv

Z Z

P
E' u0; v0ð Þ ei2% u 0"þv 0#ð Þ du0 dv0

$ %
d" d#: ðA1Þ

Now we invert the integration order and integrate over H to get

E ¼ 1

4d 2

Z Z

P
E u; vð Þ

Z Z

P
E' u0; v0ð Þh u0 ! uð Þh v0 ! vð Þ du dv du0 dv0; ðA2Þ

where h(x! y) # sinc½k(x! y)=2d). The energy is minimized when

8 k; lð Þ;
Z Z

P
fkl u; vð Þ

Z Z

P
! u0; v0ð Þ þ  u0; v0ð Þ½ )h u0 ! uð Þh v0 ! vð Þ du dv du0 dv0 ¼ 0: ðA3Þ

In the next steps, we first replace  with equation (4) then fkl (u, v) with its tensor product gk (u)gl(v) in order to separately integrate the
variables (u, u0) and (v, v0). The final result reads

8 k; lð Þ2 0; : : : ;N ! 1f g2;
XN!1

n¼0

Gkn

XN!1

m¼0

anmGml ¼ !kl;

where Gij ¼
Z Z

P
gi xð Þgj yð Þh x! yð Þ dx dy; !kl ¼

Z Z

P
gk uð Þgl vð Þ

Z Z

P
! u0; v0ð Þh u0 ! uð Þh v0 ! vð Þ du dv du0 dv0: ðA4Þ

System (A4) has a form identical to system (17) and can be solved with the same technique.
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