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ABSTRACT

We describe the influence of Fresnel propagation in apodized-pupil coronagraphs and introduce a methodology to
compensate for propagatedwavefront aberrations.We start from the Fresnel integral and derive an analytical closed form
for the propagatedfield at an arbitrary distance froma pupil. In a second part, we show that the propagation of the corona-
graphic term can be neglected with sufficiently oversized optics. Then we derive a k-Fourier expansion of the aberration
at an arbitrary plane in the optical train of a telescope. Finally, we present a series of wavefront actuators, based on mul-
tiple deformable mirrors, that possess adequate chromatic behavior to correct for the dominant terms of this expansion.

Subject headinggs: instrumentation: adaptive optics — instrumentation: high angular resolution

Online material: color figures

1. INTRODUCTION

Recent work in coronagraphic design and adaptive optics has enabled considerable progress toward a feasible visible-light exoplanet
observatory. In particular, apodized-pupil coronagraphs have been intensively studied; while Aime et al. (2002) highlighted the ex-
istence of analytical optimal apodizations, Spergel & Kasdin (2001) and, later on, Kasdin et al. (2003) devised a simple method to
generate these apodizers using shaped pupils. In the meantime, the feasibility of an experimental dark hole featuring a depth of 10 orders
of magnitude has been proved (Trauger & Traub 2007). This wavefront controller is designed to optimally suppress off-axis starlight for
a specific wavelength, and under a broadband illumination the magnitude of the residual halo is an increasing function of bandwidth.
This effect is due to wavelength-independent reflectivity errors in the optics, to the nonlinear behavior of phase errors, and to Fresnel
effects along the optical path. While Noecker et al. (2003) and Give’on et al. (2003) have presented solutions to monochromatically
compensate for the first two phenomena, the third has not received much attention. In particular, for slow optics the nature of an
aberration, phase or amplitude, changes as an effect of transverse propagation. Indeed, for a space-based coronagraph, Shaklan &Green
(2006) showed that propagation effects are the source of phase-induced amplitude errors that cannot be corrected polychromatically by
using only a single deformable mirror (DM), thus creating severe surface and reflectivity requirements for a broadband instrument.

The purpose of this paper is to introduce a formalism to treat the wavelength dependence of aberrations that will allow creation of a
broadband null by means of several DMs adequately positioned, as suggested by Shaklan & Green (2006) in their initial paper. In
classical adaptive optics, the telescope is modeled as a pupil propagating according to ray optics, the aberrations are suppressed using a
DM in this pupil plane, and the final image is created by a lens taking the Fourier transform of the flat wavefront. In this communication,
we account for the Fresnel propagation between the pupil and the DM, our goal being to develop an understanding of both the phase and
amplitude mixing and the wavelength dependence of the aberration at the location of the DM. Then we will be able to develop a
multiwavelength estimation scheme in order to create a polychromatic starlight null in the image plane.

2. FRESNEL PROPAGATION OF HARMONIC ABERRATIONS

In a typical imaging system, diffraction analysis considers only the Fraunhofer transformation due to the imaging element, resulting in the
usual point-spread function (PSF) at the image plane. However, a careful Fresnel analysis of the electric field’s propagation along the op-
tical axis between pupils reveals distortions in the wavefront beyond simple ray optics. These distortions can have a significant impact on the
final image. These effects are usually mitigated by oversizing the imaging elements. That is, when the imaging optics, of diameter L, are large
comparedwith the pupil, of diameterD, andwhen the propagation distance z is short, the effects of such propagation are considered negligible.
A common quantifier of the range of validity of this ray-optics approximation is the Fresnel number, F = D2 /kz. If F is very large, then it is
legitimate to assume that the pupil propagates according to ray optics. The main purpose of this paper is to discard this approximation in the
context of high-contrast imaging, in order to develop amore accuratemodel of coronagraphic adaptive optics (AO).Our approach relies on an
analytical derivation of the Fresnel diffraction, presented in this section. Assuming the geometry of Figure 1, we derive the field distribution at
a distance z downstream of the pupil plane P0, with arbitrary apodization A(x, y), to plane Pz. This will provide the needed information to
predict the effect of a DM at plane Pz and allow us to calculate the final PSF due to an imaging element after the DM.

2.1. Propagation Followed by an Imaging Element

We begin by examining the Fresnel transformation of an arbitrary field followed by a perfect imaging lens.

Theorem 1. Consider an arbitrary complex electric field, E0(x, y), at plane P0. Suppose this field is propagated to plane Pz, at a
distance z from P0, via a Fresnel integration,

Ez(u; v) ¼
e ikz

ikz

ZZ
E0(x; y)e

i!½(x#u) 2þ( y#v) 2%=k z dx dy: ð1Þ
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This propagation is immediately followed by an infinitely large lens, forming an image a distance f away. Then the intensity at the image
plane, I(", #), is exactly the modulus squared of the Fourier transform of E0.

Proof. The Fresnel transformation in equation (1) is a convolution between the complex electric field at P0 and a Gaussian kernel. Its
Fourier conjugate can thus be written, where carets represent the Fourier transform,

Êz($; %) ¼ e ikzÊ0($; %)e
#i!k z($ 2þ% 2) ð2Þ

(Goodman 1968). Since the infinite lens produces a Fraunhofer integral, its action is to take the Fourier transform of the field Ez. The
intensity distribution in the image plane is therefore given by

I("; #) ¼ jÊzj2 ¼ jÊ0j2: ð3Þ
&

In this paper we are mainly concerned with propagations between an entrance pupil and a deformable mirror and among multiple
DMs to study the consequences of Fresnel distortions onwavefront control. An important consequence of Theorem 1 is that the location
of the final, imaging lens is unimportant. As long as the lens (or mirror) is adequately oversized, we can treat it as lying at the DM’s
location and compute the final image-plane intensity as a simple Fourier transform of the field leaving the last DM. This result can be
extended to the case of multiple propagations, when the beam is reflected by several fold mirrors or goes through an intermediate focus.

Corollary 1. Consider an arbitrary complex electric field, E0(x, y), at plane P0. Suppose this field is propagated to planes Pz1; z2 , . . . , zp
via a number p of Fresnel propagations of distances z1, . . . , zp. Assuming that all the optics are aberration-free and infinitely large, then
the intensity at the image plane, I(", #), is exactly the modulus squared of the Fourier transform of E0.

Proof. Since the optics are infinite and the p optics do not add an extra aberration, then the field distribution before the final imaging
element can be written as

Ez1þ(((þzp (u; v) ¼ e
ik
P p

j¼1
zj

!Op

j¼1

e i!(x
2þy 2)=k zj

"
) E0(x; y); ð4Þ

where the circled cross stands for a multiple convolution. In the Fourier domain, this distribution can be written as

Êz1þ(((þzp ($; %) ¼ e
ik
P p

j¼1
zj e

#i!k($ 2þ% 2)
P p

j¼1
zj Ê0($; %): ð5Þ

As shown above, the propagation consists only of a phase term in the Fourier domain, meaning that it does not affect the intensity
distribution in the image plane:

Iz1þ(((þzp ¼ jÊ0j2: ð6Þ
&

We are also mainly interested in apodized systems, where the entrance field E0 is given by a real amplitude function, A(x, y), times a
constant, uniform wavefront. We use the notation F zA to represent the Fresnel transform of the apodization,

F zA(u; v) ¼ e ikz

ikz

ZZ
A(x; y)e i!½(x#u) 2þ( y#v) 2%=k z dx dy; ð7Þ

Fig. 1.—Coordinate systems for Fresnel diffraction. Any design that involves Fresnel effects can be reduced to this scheme by a change of variables. The plane P0 is
the pupil plane of the telescope. The distribution E0(x, y) is then propagated over a distance z to the plane Pz, where the wavefront actuator is located. The field after the
actuator is then Fourier-transformed to yield the image I(", #).
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the Fourier transform of which is then given by

dF zA($; %) ¼ e ikzÂ($; %)e#i!k z($ 2þ% 2): ð8Þ

Theorem 1 then leads to the identity

I("; #)¼
#### dF zA

!
"D

kf
;
#D

kf

"####
2

¼
####Â
!
"D

kf
;
#D

kf

"####
2

: ð9Þ

Consequently, in the case of infinite optics it is not necessary to carry out a full treatment of the Fresnel integral if one seeks to predict
the intensity distribution at the final focal plane of a telescope.

2.2. Propagation between Conjugate Planes

There exists another remarkable plane in the optical train of the telescope, called the conjugate of the pupil, where the Fresnel integral
simplifies dramatically. Consider the same pupil distribution E0(x, y) followed by a lens located at a distance z from the pupil. Then
geometric optics predicts that an image of the pupil will form at a distance z0 from the lens such that 1/f =1/z þ 1/z0, where f is the focal
length of the lens. A full analytical treatment of the Fresnel integral shows that the field distribution Ezþz 0 (u, v) at a distance z0 from the
lens and the initial distribution E0(x, y) are related as follows:

Ezþz 0 (u; v) ¼ # z0

z
e i!(z

0=z)(u 2þv 2)=kf E0

!
# z0

z
u;# z0

z
v

"
: ð10Þ

The intensity distribution at this plane is a scaled version of the original incident intensity. For any plane other than the image and the
conjugate planes, the full Fresnel integral must be solved in order to predict the field distribution.

2.3. Finite Entrance Pupil and Aberrations

In this section, we examine the Fresnel propagation of an explicitly aberrated wavefront. To begin, we simplify by considering only a
phase aberration, &(x, y), on the input field at plane Pa. The field distribution, E0(x, y), is then given by

E0(x; y) ¼ A(x; y)e i&(x; y) ’ A(x; y)½1þ i&(x; y)%; ð11Þ

where we have assumed a small phase aberration, &T1. Under this approximation, a phase error becomes an imaginary disturbance of
the field in the pupil plane. Likewise, when a DM is inserted in the pupil plane, its first-order effect is amodification of the imaginary part
of the field. The more general case of an arbitrarily large phase distortion along with amplitude variations will be treated below.

To derive the propagation of the aberrated pupil distribution in equation (11), we separate the problem into the calculation of two
different integrals: the propagation of the aberration, which will be fully derived analytically, and the propagation of the finite
apodization function, which is represented by equation (7):

Ez(u; v) ¼
e ikz

ikz

ZZ
A(x; y)½1þ i&(x; y)%e i!½(x#u) 2þ( y#v) 2%=k z dx dy

¼ F zA(u; v)þ e ikz

kz
e i!(u

2þv 2)=k z
ZZ

A(x; y)&(x; y)e i!(x
2þy 2)=k ze i2!(xuþyv)=k z dx dy; ð12Þ

where we have multiplied out the exponential. One can now recognize that the second Fresnel integral is the Fourier transform of
the product of two functions. It can thus instead be expressed as a convolution of two Fourier integrals, evaluated at (u/kz, v/kz):

Ez(u; v) ¼ F zA(u; v)þ e ikz

kz
e i!(u

2þv 2)=k zfFT ½A(x; y)% ) FT ½&(x; y)e i!(x 2þy 2)=k z%g
###
(u=k z; v=k z)

: ð13Þ

Wehave thus separated the problem into the convolution of two Fourier integrals. The first one carries information about the apodization
and the finiteness of the entrance aperture, A(x, y), while the second integral corresponds to the propagation of the aberration to the
second plane, Ez(u, v).

In order to carry out the second Fourier transform analytically, we expand &(x, y) in a harmonic series. As mentioned above, we only
consider the first-order expansion of a phase error for the present derivation. Since any pupil-plane function can be extended to a
D-periodic function and thus decomposed into a Fourier series, our final result will be easily generalizable to amplitude or higher orders
of the phase expansion. We thus express the phase error as

&(x; y) ¼
X

n

X

m

2!bm;nk0
k

e i2!(nxþmy)=D ¼
X

n

X

m

&m;n(x; y); ð14Þ

where the bm;n are small and dimensionless and k0 is the central wavelength in the spectral band where the observations occur.
Linearity allows us to separately examine the propagation of each of the terms, which we call Em;n

z (u, v). To find this, we substitute
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a single term from the expansion in equation (14) into equation (13) and write the convolution using the independent variables $
and % ,

Em;n
z (u; v) ¼ e ikz

kz
e i!(u

2þv 2)=k z
ZZ

Â($; % )FT ½&(x; y)m;ne i!(x
2þy 2)=k z%g

###
(u=k z#$; v=k z#%)

d$ d%;

¼ e ikz

kz
2!bm;nk0

k

ZZ
Â($; %)e#i!k z($ 2þ% 2)e i2!($uþ%v)

ZZ
e i2!(mxþny)=Dei!½(x#uþk z$) 2þ( y#vþk z%) 2%=k z dx dy d$ d%; ð15Þ

where we have collected all the (x, y)-dependent terms in the second integral and completed the square of the exponential in that same
integrand. The integrand of the first integral is given exactly in equation (8), which we recognize as the propagation of the apodization
function. Computing the propagation of a harmonic aberration has thus been reduced to the computation of the following integral for
each harmonic term:

1

kz

ZZ
e i2!(mxþny)=De i!½(x#u#k z$) 2þ( y#v#k z%) 2%=k z dx dy ¼ ie i2!½n(uþk z$)þm(vþk z%)%=De#i!k z(n 2þm 2)=D 2

: ð16Þ

Em;n
z (u, v) then simplifies to

Em;n
z (u; v) ¼ ie ikz

2!bm;nk0
k

e i2!(nuþmv)=De#i!k z(n 2þm 2)=D 2

ZZ
Â($; %)e#i!k z($ 2þ% 2)e i2!(nk z$þmk z%)=Dei2!(u$þv%) d$ d%: ð17Þ

Equation (17) is the inverse Fourier transform of dF zA($, %) multiplied by a harmonic term; thus, using the Fourier shift theorem,

Em;n
z (u; v) ¼ ie i2!(nuþmv)=De i!k z(n

2þm 2)=D 2F zA
!
u# nkz

D
; v# mkz

D

"
; ð18Þ

which yields, once all the terms of the initial harmonic series have been added, the final expansion that is expressed in the following
lemma:

Lemma 1. Consider the propagation of the pupil of a telescope whose transmittivity function is given by A(x, y) and that is subject to a
phase aberration &(x, y). Assume moreover that the phase errors are small enough so that a first-order approximation holds and that
they can be expanded in a Fourier series &(x, y) =

P
m,n(2!bm;nk0 /k)e i2!(mx+ny)/D. Then the propagated field can be written as a

function of the Fresnel transform of the apodization F zA(u, v),

Ez(u; v) ¼ F zA(u; v)þ i
X

m

X

n

2!bm;nk0
k

e i2!(nuþmv)=De#i!k z(n 2þm 2)=D 2F zA
!
u# nkz

D
; v# mkz

D

"
: ð19Þ

2.4. Interpretation of This Result

This expansion is an analytical closed form for the propagation of an aberrated field. It is composed of the Fresnel-propagated
apodization function, F zA(u, v), and an additional sum due to the propagation of the aberration. In this sum, each term consists of a
harmonic aberration windowed by a shifted F zA(u, v) and multiplied by the angular spectrum factor. First note that the propagation of
the initial amplitude distribution, and of the sharp edges, which cause many numerical problems in particular, is all contained in F zA.
The location of this propagated apodization is shifted, and the shift depends on the spatial frequency. The exponential angular spectrum
factor that is present for each spatial frequency is identical to the one for an infinite aperture, as presented by Goodman (1968).

The propagation of sharp edges contained in F zA(u, v) is the central problem of numerical calculations associated with Fresnel
propagation. We show in the next section that the problem can be further reduced to the propagation of open square apertures. The
shifted pupil function can be explained by considering that each harmonic component behaves as a diffraction grating and shifts
F zA(u, v) to the location of the first diffraction order. For reasonably large optics, kz/D is a very small number, and thus this shift is
extremely small compared with the size of the pupil.

Of more interest is the angular spectrum factor, since it is responsible for a real-imaginary coupling of the Fourier coefficients that
is often called phase-induced amplitude error. To illustrate this, consider the two terms associated with bm;n and b#m;#n = b)m;n in
equation (19),

i2!bm;nk0
k

e i2!(nuþmv)=Dei!k z(n
2þm 2)=D 2F zA

!
u# nkz

D
; v# mkz

D

"

þ
i2!b)m;nk0

k
e i2!#(nuþmv)=De i!k z(n

2þm 2)=D 2F zA
!
uþ nkz

D
; vþ mkz

D

"

* i2!k0
k

e i!k z(n
2þm 2)=D 2F zA(u; v)(bm;ne

i2!(nuþmv)=D þ b)m;ne
#i2!(nuþmv)=D)

* i2!k0
k

F zA(u; v)e i!k z(n
2þm 2)=D 2

Re (bm;ne
i2!(nuþmv)=D): ð20Þ

PUEYO & KASDIN612 Vol. 666



Thus, what was a purely imaginary aberration in plane P0 became both real and imaginary at plane Pz. Consequently, a device purely
correcting for imaginary disturbances in plane Pz, such as a DM, would not be able to compensate for the real part of the propagated
aberration. Moreover, the nonlinear wavelength dependence of this coupling makes the polychromatic compensation of these effects a
challenging problem. For low-to-mid spatial frequencies, Shaklan & Green (2006) simplified this problem by carrying out a first-order
expansion of the angular spectrum factor,

i
2!k0
k

F zA(u; v)e i!k z(n
2þm 2)=D 2

Re (bm;ne
i2!(nuþmv)=D) ’ F zA(u; v) Re (bm;ne

i2!(nuþmv)=D)

$
i
2!k0
k

þ 2!2z(n2 þ m2)k0
D2

%
; ð21Þ

which shows that to the first order in !z(n2 þ m2)k0 /D2, phase-induced amplitude errors are wavelength independent.

2.5. Harmonic Expansion of the Apodization

Previously we derived the analytical propagation of a harmonic aberration transmitted by an arbitrary apodizer in terms of the Fresnel
transform of the apodizer,F zA(u, v); our final step is to derive an analytical expression for this distribution in terms of special functions.
In the calculations leading to Lemma 1, the assumption of phase-only errors was made for purposes of illustration; the exact same
approach could be carried out using amplitude errors.

This can be generalized to the following theorem:

Theorem 2. Consider the propagation of the pupil of a telescope whose complex transmittivity function is given by A(x, y)h(x, y),
where A(x, y) is a real apodization function and h(x, y) is a complex disturbance at the pupil plane. Assume moreover that h(x, y) is
inscribed within a square of size D so that it can be decomposed in a complex Fourier series: h(x, y) =

P
m,nhm;ne

i2!(mx+ny)/D. Then the
propagated field can be written as a function of the Fresnel transform of the apodization F zA(u, v),

Ez(u; v) ¼ F zA(u; v)þ
X

m

X

n

hm;ne
i2!(nuþmv)=De#i!k z(n 2þm 2)=D 2F zA

!
u# nkz

D
; v# mkz

D

"
: ð22Þ

We can use Theorem 2 to further simplify the Fresnel propagation of the apodization A(x, y). We decompose A(x, y) into an amplitude
Fourier series multiplied by a top-hat function. To simplify, we consider the case of an apodization inscribed in a square aperture,

A(x; y) ¼ !D(x; y)
X

m;n

a0m;ne
i2!(nxþmy)=D; ð23Þ

where the coefficient a00;0 corresponds to the on-axis transmittivity of the apodization. Then the pupil can be propagated over a distance z
by using equation (19). The information about the shape of the apodization is contained in the a0

m;n
, and the new transmittivity function is

an open aperture of size D: !D(x, y). The propagated field is thus

F zA(u; v) ¼
X

m

X

n

a0m;ne
i2!(nuþmv)=De#i!k z(n 2þm 2)=D 2F z!

!
u# nkz

D
; v# mkz

D

"
; ð24Þ

where F z!(u, v) is the Fresnel transform of a square aperture, which can be expressed in terms of the special functions
Ð
sin '2 d' andÐ

cos '2 d'. Figure 2 illustrates a scheme that first decomposes the pupil into Fourier series, propagates each component analytically,
and recombines them according to equation (23). Consequently, we have reduced the propagation of an arbitrary apodized pupil to one
oscillatory integral that is the Fresnel integral for an open square aperture. Putting equations (19) and (24) together, we can obtain a final
analytical expression for Ez(u, v).

This expansion of the apodization function can be very useful in the practical case offinite optics, for which Theorem 1 does not hold
exactly. Because it is based on well-known tabulated functions, it provides a quick method to numerically evaluate a relationship
between oversizing of the optics and contrast degradation due to Fresnel effects.

3. EVALUATION OF CONTRAST DEGRADATION IN THE CASE OF FINITE OPTICS

Theorem 1 states that in the case of infinite optics,F zA(u, v) can be replaced by A(u, v) in Theorem 2 without any consequence to the
contrast level. However, practical implementation of a coronagraph requires finite optics, though ones that are generally oversized
compared with the size of the pupil. The purpose of this section is to study the effect of this field truncation and to derive an upper bound,
which is a function of the oversizing, for the contrast degradation due to these propagation effects. Suppose the optics are oversized by a
factor of ( compared with the size of the pupil. Then the truncated, propagated field is given by

½F zA(u; v)%(D ¼ !(D(u; v)
X

m;n

a0m;ne
#i!k z(n 2þm 2)=D 2

e i2!(nuþmv)=DF z!D

!
u# nkz

D
; v# mkz

D

"
: ð25Þ

This pupil field yields the following image-plane distribution:

½bF zA(u; v)($; %)%(D ¼
X

m;n

a0m;ne
#i!k z(n 2þm 2)=D 2

FT

$
!(D(u; v)e

i2!(nuþmv)=DF z!D

!
u# nkz

D
; v# mkz

D

"%
($; %):
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In order to quantify the error due to truncation of the propagated field, this distribution is compared with the ideal one for infinite optics:

½bF zA(u; v)($; % )%(D # e#i!k z($ 2þ% 2)Â($; %)

¼
X

m;n

a0m;ne
#i!k z(n 2þm 2)=D 2

FT

'
½1#!(D(u; v)%e i2!(nuþmv)=DF z!D

!
u# nkz

D
; v# mkz

D

"(
($; %):

Fig. 2.—Illustration of the Fresnel propagation of a arbitrary pupil using Fourier decomposition. (a) Decomposition of the apodization function into a Fourier series
truncated by a top-hat function. (b) Separation of the harmonic component and the top-hat function. (c) Separate propagation of the two components. Note that the shift
in the propagated top-hat function has been exaggerated. (d ) Recombination and summation in order to obtain Ez(u, v). As shown in x 3, this approach enables us to
derive an upper bound on propagation errors. Moreover, it provides a scheme to compute Fresnel transforms semianalytically with all the edge propagation effects
included in F z!(u, v).
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We now show that these errors can be bounded by a small number and thus be treated as any other wavefront aberration. Each term in
the summation can be isolated and simplified using the Fourier shift theorem:

e#i!k z(n 2þm 2)=D 2

FT

'
½1# !(D(u; v)%e i2!(nuþmv)=DF z!D

!
u# nkz

D
; v# mkz

D

"(
($; %)

¼ FT f½1# !(D(u; v)%e i2!(nuþmv)=DF z!D(u; v)g($; %): ð26Þ

To compute a tractable metric associated with Fresnel propagation errors, wewill for each term of this sum integrate the energy in a finite
region of the image plane Rm;n around the core of the shifted pattern associated with a given spatial frequency:

Z

Rm; n

##FT f½1# !(D(u; v)%e i2!(nuþmv)=DF z!D(u; v)g($; %)
##2d$ d%

¼
Z

R0;0

##FT f½1# !(D(u; v)%F z!D(u; v)%g($; %)
##2d$ d%; ð27Þ

where R0;0 is a region of the same size asRm;n centered around the core of the non-aberrated PSF. Finally, we use this change of variable
for each term in the summation and use a squared version of the triangle inequality to derive an upper bound for the error due to the
propagation of the apodization,

Z

R0;0

##½ dF zA($; % )%(D#e#i!k z($ 2þ% 2)Â($; %)
##2d$ d%

+ 2
X

m;n

ja0m;nj
2

Z

R0;0

##FT f½1# !(D(u; v)%F z!D(u; v)g($; %)
##2d$ d%

¼ )Fres((;D; z)T0; ð28Þ

where we have used Parseval’s theorem applied to the Fourier expansion of the aberration to replace
P

m,n |a
0
m; n|

2 by T0, the Airy
throughput of the apodization. Consequently, we have derived an easily computed bound for errors induced by the propagation and
truncation of the apodization function. Figure 3 shows the results of computing )Fres((, D, z) as a function of the oversizing parameter
and the propagation distance. The error is an increasing function of the propagation distance z and a decreasing function of the oversizing
coefficient (. For ( larger than 5, the bound reaches a plateau close to a 10#10 error. While this is only a bound and the same calculation
should be carried out without using the triangle argument, it is sufficient to prove that with sufficiently oversized optics, errors due to
propagation of the apodization are below the target contrast. From now on, we will assume that the optics are large enough that we can
safely substitute F zA(u, v) = A(u, v) without altering the final results.

4. WAVELENGTH EXPANSION OF THE PROPAGATED FIELD

In order to correct for the propagated wavefront errors in equation (22) using awavefront actuator located right before the last imaging
element, one first needs to understand the real/ imaginary nature of this wavefront and its wavelength dependence. This is the topic of this
section, where we seek a wavelength expansion of the Fourier coefficients of a wavefront that has been reflected by several optics and
gone through several propagations. The following section will show how wavefront actuators involving several DMs present a wave-
length dependence that can perfectly cancel the lower order terms of this k-Fourier expansion and thus yield a polychromatic high-
contrast image. Current experiments use only one DM to correct for both amplitude and phase monochromatically. Indeed, Noecker
et al. (2003) and Give’on et al. (2003) solved the real / imaginary uncertainty by showing, using symmetry considerations, that a DM, a
phase-only actuator, could correct for amplitude errors by creating a dark hole in one half of the final image plane. While elegant, this
method does not take full advantage of the actuator density,N actuators per unit of surface, of the DM, since the total size of the dark hole
is limited toNk /4D, half the size possible if the DMwere only correcting for phase errors. Of more critical importance is the wavelength
dependence of this actuator: it can only correct for (1/k)-dependent phase errors and thus cannot perfectly compensate for amplitude
errors polychromatically.

The approach presented in this paper is of tremendous usefulness when it comes to generalizing this first generation of algorithms to
polychromatic light. In order to understand the chromatic behavior of the field in plane Pb, we will proceed through a systematic k-expansion
of equation (22). To do so, we discard the linearity approximations made in x 2.

4.1. Wavelength Expansion before Propagation

In this section, we relax our rather strong assumptions on the size of the phase-only wavefront error to derive a more general expres-
sion that includes both amplitude and phase errors. Consider the case of an aberration in phase and reflectivity in an unpropagated pupil
plane:

E0(x; y) ¼ A(x; y)½1þ r(x; y)%e i&(x; y): ð29Þ
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The amplitude and the phase error can each be expanded in a Fourier series,

r(x; y) ¼
X

m;n

am;ne
i2!(mxþny)=D; &(x; y) ¼

X

m;n

2!bm;nk0
k

e i2!(mxþny)=D ð30Þ

with a#m;#n = a)m;n and b#m;#n = b)m;n. The bm;n are again dimensionless coefficients that represent the phase shift introduced by a
surface corrugation of one of the optics at the wavelength k0. When the illumination wavelength is such that k > k0, this phase shift
decreases. We then take a Taylor expansion of the exponential, as suggested by Give’on et al. (2006):

e i&(x; y) ¼ 1þ i
X

m;n

2!bm;nk0
k

e i2!(mxþny)=d #
X

m;n

X

p;q

4!bm;nbp;qk
2
0

k2
e i2!½(mþp) xþ(nþq)y%=D þ O(b3

m;n); ð31Þ

where we have only shown the first three terms. Despite the complex notation chosen for our Fourier coefficients, we can show that the
second-order term is real. To see this, we can come back to the expression before the expansion, where & is real,

e i& ¼ 1þ i&# &2

2
þ ( ( ( þ i l

&l

l!
þ ( ( ( : ð32Þ

Consequently, the odd terms are imaginary and the even terms are real. This expression for the phase is then plugged into the field
distribution at the pupil:

½1þ r(x; y)%e i&(x; y) ¼ 1þ
X

m;n

am;ne
i2!(mxþny)=D þ i

X

m;n

2!bm;nk0
k

e i2!(mxþny)=D

þ i
X

m;n

X

p 0;q 0

2!bm;nap;qk0
k

e i2!½(mþp) xþ(nþq)y%=D #
X

m;n

X

p 0;q 0

4!bm;nbp;qk
2
0

k2
e i2!½(mþp)xþ(nþq)y%=D þ O(b3

m;n):

Fig. 3.—Upper limit for the contrast degradation due to Fresnel effects, as a function of the propagation distance. Right, the numerical scheme used to compute the
bound; left, results for a 5 mm pupil. This size was chosen in order to obtain a proper sampling of the propagated field using reasonably sized arrays. For ( > 5, the error
due to propagation of the apodization is below 10#10. Since Fresnel effects are a decreasing function of the pupil size, this result can be generalized to larger pupils. [See
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Consequently, this field distribution can be written as

E0(x; y) ¼ A(x; y)

!
1þ

X

m;n

X

k>1

i k
c#k
m;nk

k
0

kk
e i2!(mxþny)=D

"
; ð33Þ

where c0m;n = am;n, c
#1
m;n = bm;n þ

P
p,q ap;qbm#p; n#q, c

#2
m;n =

P
p, q bp;qbm#p; n#q, and c#3

m;n = O(b3
m;n).

4.2. Propagation of This Expansion

Once expanded, E0(x, y) in equation (33) is propagated using Theorem 2 in order to derive the distribution in plane Pz:

Ez(u; v) ¼ F zA(u; v)þ
X

m;n

X

k>0

i k
c#k
m;nk

k
0

kk
e#i!k z(n 2þm 2)=D 2

e i2!(muþnv)=DF zA
!
u# mkz

D
; v# nkz

D

"
: ð34Þ

Exoplanet detection only requires active correction for low-to-mid spatial frequencies, allowing us to only consider terms for which
(n, m)TD2 /kz and to neglect the shift in the propagated apodization. In any case, the angular spectrum factor can be written as a
Taylor series:

e#i!k z(m 2þn 2)=D 2 ¼ 1þ
X

p>0

1

p!

$
# i

!kz(m 2 þ n2)

D2

%p
: ð35Þ

Substituting this into the (m, n)-term in equation (34) yields

X

k>0

i k
c#k
m;n

kk
X

p>0

1

p!

$
#i !kz(n

2 þ m2)

D2

%p
¼

X

k>0
p>0

(#1p)
p!

i k#p
c#k
m;nk

k
0

kk#p

$
!z(m2 þ n2)

D 2

%p
: ð36Þ

By changing the index in the wavelength series, the field in plane Pz can be expressed through the following k-Fourier expansion:

Ez(u; v) ¼ F zA(u; v)

!
1þ

X

m;n

Xþ1

k¼#1
i k
d#k
m;nk

k
0

kk
e i2!(muþnv)=D

"
; ð37Þ

where again d#m;#n = d)m;n. These coefficients can be related to the Fourier coefficients of the initial aberration. Since there are three
small quantities in this expansion, am;n, bm;n, and !k0z(n2 þ m2)/D2, we can write the orders around k = 0 as follows:

k ¼ #2 : k2 : d 2
m;n ¼ O

!
am;n

!
!zk0

n2 þ m2

D2

"2"
; ð38aÞ

k ¼ #1 : ik1 : d1m;n ¼
!zk0(n2 þ m 2)

D2
am;n þ O

!
bm;n

!
!zk0

n2 þ m2

D2

"2"
; ð38bÞ

k ¼ 0 : k0 : d 0
m;n ¼ am;n #

4!2zk0(n2 þ m2)

D2
bm;n(1þ am;n)þ O

!
b2
m;n

!
!zk0

n2 þ m2

D2

"2"
; ð38cÞ

k ¼ 1 : ik#1 : d#1
m;n ¼ 2!bm;n(1þ am;n)þ O

!
b2
m;n!zk0

n2 þ m2

D2

"
; ð38dÞ

k ¼ 2 : k#2 : d#2
m;n ¼ (2!bm;n)

2 þ O

!
b3
m;n!k0z

n2 þ m2

D2

"
; ð38eÞ

k ¼ 3 : ik#3 : d#3
m;n ¼ O(b3

m;n): ð38f Þ

In the image plane, the field distribution will consist of shifted copies of the PSF. The intensity due to a given pupil-based spatial
frequency is

Im;n($; %) ¼ jF zA($# m; % # n)j 2
####
Xþ1

k¼#1
i k
d#k
m;nk

k
0

kk

####
2

: ð39Þ

Thus, we quantify the efficiency of different wavefront correction algorithms by computing the magnitude of the coefficient weighting
the shifted PSF:

Im;n(k) ¼
! X

k even

d#k
m;nk

k
0

kk

"2

þ
!X

k odd

d#k
m;nk

k
0

kk

"2

: ð40Þ
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Consequently, the dominant terms in the dm;n expansion derived above are mainly responsible for the contrast degradation due to prop-
agated aberrations. Note that because of speckle-speckleE-field interactions, Im;n(k) is not rigorously the value of the intensity distribution at
any point in the image plane. However, it provides a useful metric that immediately translates our k-Fourier expansion into contrast.

4.3. Generalization to Multiple Optics

The goal of anywavefront actuator is to reduce intensity error below 10#10 of the peak. For instance, assume that there is a deformable
mirror right before the final imaging element and that it acts as a controllable phase actuator, modifying the imaginary, (1/k)-dependent
part of the field distribution. To relate the effect of a deformation to equation (37), one can see that it can correct only for the i d#1

m;nk0/k
part of the k-Fourier expansion. Of course, it has been extensively proved in the literature that it can perfectly cancel for all the terms in
this expansion under monochromatic illumination. In polychromatic light, however, a residual halo appears. To see this, we place a DM
in plane Pz and obtain the field distribution at this plane,

Ez(u; z) ¼ F zA(u; v)

$
1þ

X

m;n

!X

k>0

i k
d#k
m;nk

k
0

kk
e#i!k0z(n 2þm 2)=D 2# i

bDMm;nk0
k

"
e i2!(muþnv)=D

%
; ð41Þ

where the Fourier coefficients of the aberration are composed of two terms: a sum corresponding to the propagation aberration, and an
i/k term that is the effect of the DM, the bDMm;n being the Fourier coefficients of the DM surface. In this configuration, choosing

bDMþ
m;n ¼

X

k

d#k
m;n

kk0
if m > 0 for all n; bDM#

m;n ¼ #(bDMþ
m;n )) if m < 0 for all n ð42Þ

leads to a perfect extinction at k = k0 and a residual halo under polychromatic illumination. Better broadband performance could be obtained
with one DM, assuming that the imaging optics are separated from plane Pz by a distance zDM. Then the field at the location of the final lens
would be

EzþzDM(u; z) ¼ F zþzDMA(u; v)

$
1þ

X

m;n

!X

k>0

i k
d#k
m;nk

k
0

kk
e#i!k0z(n 2þm 2)=D 2 # i

bDMm;nk0
k

e#i!k zDM(n 2þm 2)=D 2

"
e i2!(muþnv)=D

%
;

where the DM surface expansion has been propagated as in the previous section. Then, by adequately choosing bDMm;m and zDM, all the terms
with k > 0 and that depend on bm;n in equations (38a)Y(38f ) would be canceled, and the broadband performance, while still not perfect,
would be considerably enhanced. Another way to state this feature is that propagated phase errors can be corrected broadband using a
DM in a plane that is conjugate to the initial pupil. However, there is an important caveat: if the optical train of a telescope reflects off
several mirrors and undergoes multiple propagations, implementing such a correction scheme would imply one DM per aberrated optic.
This would prohibitively increase the cost and the reliability of the system. For the remainder of this workwewill discard this solution and,
instead, focus on finding an analytical expression for the field distribution after multiple propagations that is of the form of equation (37).
The following theorem states such a result:

Theorem 3. Assuming that the optics are sufficiently oversized in the sense of x 3, and dealing with spatial frequencies such that
(m, n)TD2 /kz, the field in any plane of the optical train of a telescope, after an arbitrary number of reflections on aberrated optics
and propagations, can be expanded using the following k-Fourier expansion:

E(u; v) ¼ A(u; v)

!
1þ

X

m;n

X

k

i k
f #k
m;nk

k
0

kk
e i2!(muþnv)=D

"
; ð43Þ

where f #k
#m;#n = ( f #k

m;n)
). That is, the odd terms in the wavelength expansion are imaginary and the even terms are real.

Proof. We proved in the previous subsection that this property is true for one propagation.Wewill thus proceed by induction. Assuming
that equation (43) is true after P propagations and that the resulting field lands on aberrated optics with an amplitude error given by an
a(Pþ1)
m;n series and a phase error by a b(Pþ1)

m;n series, the field is then propagated over a distance zPþ1. Since we assume that the property is
true for P propagations, the field EzP (x, y) admits an expansion that has the form of equation (43), with an f (P);#k

m;n series. The P þ 1
aberrated optic introduces errors that can be collected together in a k-Fourier series as

EzP;R(u; v)

EzP (u; v)
¼ 1þ

X

m;n

X

k>0

c(Pþ1);#k
m; n kk0

kk
e i2!(muþnv)=D: ð44Þ

The reflected field is the product of the f (P);#k
m;n series and the c(Pþ1);#k

m;n series:

EzP;R(u; v) ¼ F zPA(u; v)

$
1þ

X

m;n

X

k 6¼0
l>1

!
i k
f (P);#k
m;n kk0
kk

þ i l
c(Pþ1);#l
m;n kl0

kl

"
e i2!(muþnv)=D

þ
X

m;n

X

p;q

X

k 6¼0
l>1

i kþl
f (P);#k
m;n c(Pþ1);#l

p;q kkþl
0

kkþl
e i2!½(mþp)uþ(nþq)v%=D

%
: ð45Þ
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The first term presents the property of equation (43), since it is a linear combination of terms that satisfy it. A more careful look at the
summation associated with the cross product shows that it exhibits an i kþl/kkþl dependence that satisfies equation (43) as well. Thus, we
can put all the coefficients with the same k-dependence together and write

EzP ;R(u; v) ¼ F zPA(u; v)

!
1þ

X

m;n

X

k 6¼0

i k
g(Pþ1);#k
m;n kk0

kk
e i2!(muþnv)=D

"
: ð46Þ

Finally, this result can be propagated another time. Using Theorem 2, and neglecting the mkz/D shifts, we find

EzP ;R; zPþ1
(u; v) ¼ F zPþ1

½F zPA(u; v)%
!
1þ

X

m;n

X

k 6¼0

i k
g(Pþ1);#k
m;n kk0

kk
e i!k zPþ1(m

2þn 2)=D 2

e i2!(muþnv)=D

"
: ð47Þ

Using Corollary 1 and the fact that the optics are oversized in the sense of x 3, we can write F zPþ1
[F zPA(u, v)] = A(u, v) and include the

tiny contrast degradation due to the propagation of the apodization in the wavefront error. Taking a Taylor expansion of the zPþ1-
dependent angular spectrum factor, as carried out in detail in the previous section, leads to an expansion in the form of equation (43).&

This result highlights a fundamental property that a DM-based wavefront actuator must exhibit in order to correct propagated
wavefronts under broadband. That is, in order to eliminate one given term in the k-Fourier expansion, the actuator has to exhibit a
controllable mode that behaves as i k /kk . For the purpose of this work, we only focus on actuators that correct for terms that are of the first
or second order in am;n, bm;n, and !k0z(n2 þ m2)/D2. Indeed, typical values of these dimensionless quantities are between 10#2 and
10#3. Third-order terms would yield a residual intensity always below 10#12. As shown in equations (38a)Y(38f ), this corresponds to
correcting for the f 0

m;n, f
#1
m;n, and f #2

m;n terms. Note that while f 1m;n is also a second-order term, it yields a residual halo below 10#10 for
projected values of the reflectivity errors, so we will not attempt to correct for it.

5. CORRECTION SCHEMES USING MULTIPLE DEFORMABLE MIRRORS

5.1. Monochromatic Dark Hole

Malbet et al. (1995) presented a numerical proof of the feasibility of a DM to generate a high-contrast dark hole in the image plane of a
telescope. Recent works (referenced above) have refined this idea and proved that a contrast of 10 orders of magnitude could be obtained
monochromatically. While these algorithms create a dark hole for a given wavelength, contrast is degraded when bandwidth increases.
This is illustrated in Figure 4 (top left), where one DM has been set up to correct perfectly for all the aberrations at k0 = 600 nm. This
corresponds to setting the DM to the deformation shown in equation (42). Then, by plugging this deformation into equation (41), the
residual halo Im;n(k), introduced in equation (40), can be evaluated and integrated over the bandwidth "k,

IDHm;n ¼
1

"k

Z

"k

####
X

k

i k f #k
m;n

kk0
kk

# ibDMm;n
k0
k

####
2

dk ’
a2
m;n

"k

Z k0þ"k=2

k0#"k=2

!
1# k0

k

"2

dk: ð48Þ

The f 0
m;n ’ am;n term in the k-Fourier expansion is then primarily responsible for the residual polychromatic halo.

Unfortunately, this approach ignores any knowledge of the wavelength dependence of the aberrated wavefront. In this section we will
assume that there exists an estimation scheme for the coefficients f km;n, discriminating the different k-dependences for each spatial fre-
quency. For the remainder of this section, we focus on methods that use this knowledge in order to create a polychromatic null that does
not vary with bandwidth.

5.2. Monochromatic Phase Conjugation

We first assume a single deformable mirror and consider a phase-only control algorithm that sets the DM such that only the f #1
m;n

coefficients, which behave as i/k, are canceled:

bDMm;n ¼ #f #1
m;n: ð49Þ

Since this approach does not attempt to correct any of the other wavelength-dependent terms, it is chromatic and behaves worse than the
dark-hole approach under a narrow band. Nevertheless, we include it here because it has the merit of presenting a contrast leakage that
can be easily linked to second-order phenomena. Indeed, after such a correction there are three dominant sources of contrast degradation
that are of the same order of magnitude: reflectivity nonuniformities and phase-induced amplitude errors, which are both contained in
f 0
m;n, and second-order phase errors due to frequency folding, the leading term of f #2

m;n. The residual intensity after correction is thus

IPCm;n ¼
1

"k

Z

"k

####
X

k 6¼1

i k f #k
m;n

kk0
kk

####
2

dk ’ IPC;0m;n þ IPC;#2
m;n þ O(b6m;n); ð50Þ

where IPC;0m;n corresponds to the wavelength-independent part of the residual halo,

IPC;0m;n ¼ 1

"k

Z

"k

'
a2
m;n þ

!
2!bm;nk0

k

"2$ !z(m2 þ n2)k
D

% 2(
dk; ð51Þ
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and IPC;#2
m;n corresponds to the 1/k2, frequency-folding, component of that residual wavefront,

IPC;#2
m;n ¼ 1

"k

Z

"k

!
4!2bk; lbp;qk2

0

k2

"2

dk; ð52Þ

with n = k # p and m = l # q as presented by Give’on et al. (2006). In an effort to reduce the polychromatic halo below IDH, the
remainder of this paper will consider the addition of several DMs and prove that polychromatic starlight extinction is feasible. The
next subsection shows how wavelength-independent aberrations, responsible for IPC;0, can be canceled, followed by the case of
1/k2 errors.

5.3. Amplitude Correction Using Two Cascaded Deformable Mirrors

Wavelength-independent aberrations, given by f 0
m;n, are the main source of contrast degradation once phase errors have been

corrected. They arise from two separate phenomena: reflectivity nonuniformity and phase-induced errors due to Fresnel propagation.
Shaklan & Green (2006) first realized that this second effect could be used to our advantage as far as wavefront stability is concerned.
Consider two DMs separated by a large distance zDM, as shown in Figure 5. The Fourier coefficients of the deformation of the two
deformable mirrors are written as bDM1

m;n and bDM2
m;n , and we assume that their reflectivity is uniform. Then, using Theorem 3, we can show

that the field right after the second DM is given by equation (43). One can then prove that the leading terms of this expansion are

f (2DM;0)
m;n ¼ 2!2zDM(m

2 þ n2)

D2
bDM1
m;n ; f (2DM;#1)

m;n ¼ 2!(bDM1
m;n þ bDM2

m;n ): ð53Þ

Fig. 4.—Simulations of the effects in the image plane of several wavefront corrections with one DM. We created the aberration by randomly generating the coef-
ficients of the three leading terms of the k-Fourier expansion, { f 0

m;n, f
#1
m;n, f

#2
m;n}. Their rms values were chosen arbitrarily as {10#3, 10#2, 10#4}. We assumed a perfect

deformable mirror that can correct any deformation and a perfect estimator that provides adequate control signals to the DM. Top left, dark-hole (DH) algorithm,"k =
0 nm; top right, DH algorithm,"k = 200 nm; bottom left, DH algorithm,"k = 400 nm; bottom right, phase conjugation,"k = 400 nm. A dark-hole algorithm perfectly
corrects for all the aberration only for the central wavelength k0. [See the electronic edition of the Journal for a color version of this figure.]
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In theory, higher order coefficients could be corrected instead using the DMs; however, since we only have 2 degrees of freedom, we
choose to control the largest f km;n. Since the k = 0 and k = #1 modes in the k-Fourier expansion of the cascaded DM setup are con-
trollable, there exists a set of deformations that perfectly cancel them. Then the residual intensity becomes

I 2DMm;n ¼ 1

"k

Z

"k

####
X

k 6¼0;1

i k f #k
m;n

kk0
kk

####
2

dk ’ IPC;#2
m;n : ð54Þ

This proves that two cascaded deformable mirrors can correct for imaginary 1/k terms and real wavelength-independent terms.
Simulations of such a correction are shown in Figure 6; a net gain in polychromatic contrast can be observed. After such a correction, the
1/k2 aberrations, IPC;#2

m;n , the result of frequency folding of phase errors, are responsible for the chromatic contrast floor. The following
subsection shows how to reduce this floor further by using a Michelson interferometer.

5.4. Correction of Frequency Folding Using Two Deformable Mirrors in an Interferometer

The idea of using DMs in an interferometric configuration was first introduced by Littman et al. (2003) in order to compensate for
reflectivity nonuniformities. They showed that this configuration resulted in a 1/k2 dependence and thus would lead to chromatic
leakage when correcting wavelength-independent errors (Pueyo et al. 2005). We propose here to take advantage of this dispersion in
order to correct for errors due to frequency folding. We consider a setup with three deformable mirrors, as shown in Figure 5, that

Fig. 5.—Multiple-DM setup that corrects for multiple orders in the k-Fourier expansion. Left: Two sequential DMs separated by a propagation over a known
distance zDM can correct for { f 0

m;n, f
#1

m, n}. Right: One DM followed at the distance zDM by a Michelson interferometer equipped with two other DMs can correct for
{ f 0

m;n, f
#1
m;n , f

#2
m;n}.

Fig. 6.—Same as Fig. 4, but for multiple DMs. Left: Two sequential DMs correct for phase and k-independent errors,"k = 400 nm; a halo due to frequency-folding
errors remains. Right: The introduction of a third DM in aMichelson configuration enables one to correct for these errors,"k = 400 nm. [See the electronic edition of the
Journal for a color version of this figure.]
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includes an initial DM followed at a distance zDM by a Michelson interferometer. The transfer function of the interferometer is given
by

E3(x; y)

E2(x; y)
¼ cos

'
!

k
½hDM2(x; y)# hDM3(x; y)%

(
e i!½hDM2(x; y)þhDM3(x; y)%=k ð55Þ

’
!
1# 1

2

'
!

k
½hDM2(x; y)# hDM3(x; y)%

(2"
e i!½hDM2(x; y)þhDM3(x; y)%=k; ð56Þ

where the hDMr(x, y) are the heights of the two DMs and are related to the Fourier decomposition of the phase shift through the
relationship hDMr(x, y) =

P
m,n bDMr

m;n k0e
i2!(mx+ny)/D. Combining this result with Theorem 3, we can prove that the field distribution right

after the beam splitter has the form of equation (43), with 3 degrees of freedom that allow correction for three wavelength orders in the
f #k
m;n:

f (3DM;0)
m;n ¼ 2!2zDM(m

2 þ n2)

D2
bDM1
m;n ; f (3DM;#1)

m;n ¼ !(2bDM1
m;n þ bDM2

m;n # bDM3
m;n ); ð57Þ

f (3DM;#2)
m;n ¼ !2

2

X

p;q

(bDM2
p;q # bDM3

p;q )(bDM2
m#p;n#q # bDM3

m#p;n#q): ð58Þ

This arrangement compensates polychromatically, with three deformable mirrors, for the three main sources of contrast degradation
presented above. A simulation of this polychromatic correction is presented in Figure 6. As shown in Figure 7, the slices along the high-
contrast line of the PSF quantify the progression of the depth of the AO-generated null whenDMs are added. Themethod presented here
uses only three DMs, and an experimental implementation is feasible, even if the constraints on the optical design of an experimental
setup are quite severe. Our approach takes optimal advantage of these 3 degrees of freedom using an a priori theoretical model to
estimate the wavelength dependence of the speckle field in the presence of Fresnel propagation. The remaining terms of the expansion
presented in x 3 are the source of a residual halo that can be quantified using themultiwavelengthmethodology presented in this paper. In
a final section, we will generalize our wavefront-control scheme to systems of multiple deformable mirrors that can correct for these
higher orders and show that for any number of DMs, a null can only be created up to a maximum outer working angle.

6. SURFACE REQUIREMENTS AND OUTER WORKING ANGLE LIMIT

6.1. Surface Requirements

As illustrated in the simulations above, adding deformable mirrors reduces the residual polychromatic halo. It is however of the
utmost importance to determine how much this improvement enables us to relax the requirements on the surface and the reflectivity of
the optics. That is, wewish to find themaximummagnitude of the coefficients {am;n, bm;n} of each optic for which the residual halo after
correction would still be below the target contrast. Since the schemes presented in the previous section only correct for first- and second-
order terms under a broadband illumination, the requirements will be driven by the higher order terms in equation (43), and the
{am;n, bm;n}will be constrained under a value that would lead the polychromatic halo due to these terms to be above 10#10. If the surface
and reflectivity qualities achievable using a state-of-the-art manufacturing technique are within this requirement, then one can conclude

Fig. 7.—Slices of the several polychromatic PSFs presented above "k = 400 nm. Schemes involving one DM can only correct for the i/k component of the
aberration for this bandwidth: on the right, the level of the corrected PSF using a dark-hole correction is about the same as for phase conjugation. For three DMs, the
leading terms of the k-Fourier expansion can be canceled, and the ideal PSF is retrieved. [See the electronic edition of the Journal for a color version of this figure.]
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that the correction scheme is successful. In order to quantify this as a function of the bandwidth for the several DM configurations
presented above, we use the same approach as in equation (48):

Ip DMs
m;n ("k) ¼ 1

"k

Z

"k

####
Xþ1

k¼#1
i k f (#k)

m;n

kk0
kk

#
X0

k¼#( p#1)

i k f (DM;#k)
m;n

kk0
kk

####
2

dk; ð59Þ

where p corresponds to the number of DMs used and the { f DM;#k
m;n }k=0, . . . , p are chosen such that Ip DMs

m;n = 0.
Then, by constraining Ip DMs

m;n ("k) = 10#10 and writing explicitly the lowest-order terms on the right-hand side of equation (59) as a
function of bm;n and am;n, one can derive the surface and reflectivity requirements associated with this level of residual intensity. Fig-
ure 8 shows level sets of the surface requirements as functions of the spatial frequency and bandwidth. As expected, the requirements are
a decreasing function of the bandwidth, and they are infinite for"k = 0, which is not shown in our logarithmic stretch. When there are
only two DMs, the plateau for low spatial frequencies corresponds to chromatic leakage due to frequency-folding errors. Note that
adding cascaded DMs relaxes the contrast for low spatial frequencies but makes the slope of these requirements steeper. Thus, when the
target contrast is 10#10, for sufficiently high spatial frequency the surface requirement with multiple DMs becomes tighter than the
classical k /10,000 requirement without any wavefront compensation. The next subsection explores this observation and explains it in
terms of an outer working angle (OWA) limit due to our control scheme.

6.2. Outer Working Angle Limit

As shown in x 4.3, we chose to expand the k-dependence of each spatial frequency in a Laurent-type expansion and to control the
larger terms, that is, { f 0

m;n, f
#1
m;n, f

#2
m;n}, using a limited number of DMs. However, as shown in equations (38a)Y(38f ), this expansion is

Fig. 8.—Surface requirements for a target contrast ofC = 10#10 as a function for bandwidth and spatial frequency. If the power spectral density of the optics is below
this requirement, then the contrastC can be achieved after wavefront compensation. Top left: For a one-DM control scheme, the plateau at low spatial frequencies is due
to frequency-folding errors and the slope to phase-induced amplitude errors. Top right: By adding one DM, sequential configuration, the phase-induced amplitude errors
are corrected and consequently the requirement at high spatial frequencies is loosened; the cutoff frequency is higher. Bottom: The Michelson corrects for frequency-
folding errors and thus the plateau disappears, relaxing the requirements even more. [See the electronic edition of the Journal for a color version of this figure.]
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carried out assuming that !k0z(n2 þ m2)/D2T1. Clearly, this approximation breaks down for high spatial frequencies, and we would
expect any control scheme based on this approximation to fail. In Figure 9, we show the surface requirements for a broadband null
yielded by compensation with q DMs, even though we showed earlier that two would be sufficient for a planet-finding contrast. The
resulting requirements converge for a specific spatial frequency that can be derived as follows in the case of two sequential DMs. In order
to evaluate the phase requirements, we assume that the optics do not possess reflectivity errors. For two sequential DMs, equation (54)
gives an expression for the polychromatic halo. By inspection of equations (38a)Y(38f ), the leading term of the k-expansion of the f #k

m;n
after correction is given by the bm;n-dependent term:

I 2DMm;n ¼ 1

"k

Z

"k

####i
2!2bm;nk0z2(n2 þ m 2)2

D4
k
!
1# k2

0

k2

"####
2

dk; ð60Þ

where we have assumed that the controllable f #1;2DM
m;n degree of freedom provided by the wavefront actuator perfectly compensates for

the f #1
m;n term at k = k0 and is the main source of the leakage otherwise. This halo is an increasing function of the spatial frequency. We

define nlimit as the spatial frequency for which the surface requirement is the same with or without the wavefront actuator. Assuming a
10#10 target contrast, the surface requirement without any compensating optics is bm;n < 10#5; for an actuator with two sequential DMs,
it is given by inverting equation (60). By equating these two requirements, we can solve forNlimit = (n

2
limit þ m2

limit)
1/2, which yields, after

some algebra,

Nlimit ¼
Dffiffiffiffiffiffiffi
k0z

p 31=8

21=8("k=k0)1=4
: ð61Þ

Note that for"k = 0 this bound does not exist. Another upper bound in OWA, which has not been considered in this work, is the limit due
to the finite number of actuators on the DM, which is roughly given by Nactuators /2. Thus, for a 96 ; 96 actuator DM, spatial frequencies
above 48k/D are uncontrollable. In contrast, if we assume a 1 cm pupil under a central wavelength of 1 *m, and with"k/k0 = 0.4, we see
that a propagation of 1 m yields a Fresnel-inducedOWA limit ofNlimit = 10, which is well below the actuator limit of 48.While this limit is
not a showstopper, it does provide guidance in how fast a system needs to be to overcome the Fresnel limits and thus should be considered
early in the optical design of such a coronagraph.

7. CONCLUSION

In this paper, we first presented an analytical treatment of Fresnel propagation in telescopes and derived a closed form for the
propagated aberrated wavefronts. This methodology allowed us to bound the change in PSF structure due to Fresnel effects and to show
that it can be lowered to the level of regular amplitude aberrations in the case of sufficiently oversized optics. We then delved into the
polychromatic correction of propagated wavefront aberrations using a Fourier methodology. We first highlighted the dominant chro-
matic terms in the k-expansion of the Fourier coefficients of the wavefront error. Then we presented a series of configurations using
several DMs that take advantage of such a set of measurements in order to create a polychromatic null. Finally, we derived the surface
requirements for each configuration and derived an outer working angle limit for these compensation schemes that is due to the high

Fig. 9.—Surface requirements due to Fresnel propagation for a bandwidth of"k/k0 = 0.1. As a theoretical exercise, we assumed a control scheme that would correct
up to order q in !k0z(n2 þ m2)/D2: { f #1

m;n, . . . , f
q
m;n}. Solid line, requirement due to the zeroth-order phase errors f #1

m;n; dotted line, requirement due to the first order, f 0
m;n;

crosses, requirement due to the second order, f 1m;n; circles, requirement due to the third order, f 2m;n; squares, requirement due to the first order, f 3m;n. We note that correcting
higher orders relaxes the requirement for low spatial frequencies but increases the negative slope of the requirement in such a way that they all meet the zeroth-order
requirement for a spatial frequency Nlimit.
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coupling of amplitude and phase errors for high spatial frequencies. These concepts ought to be coupled with wavefront-sensing
schemes based on wavelength diversity, which will be the topic of a future communication and tested in the Princeton Terrestrial Planet
Finder laboratory. While our approach has been carried out in the case of a space telescope, it can been generalized to study the
chromaticity of quasi-static speckles for ground-based high-Strehl systems and is thus useful for the understanding of extreme adaptive
optics PSFs.
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