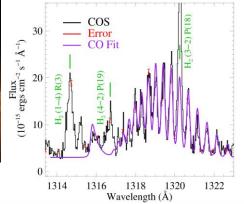
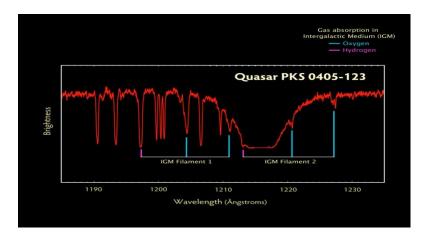


Notional Telescope Design for 10meter LUVOIR Mission

J. Scott Knight


Ball Aerospace

Mission Systems Engineering


A UV-Optical flagship will address major science themes for NASA's Astrophysics Division

Exoplanets and circumstellar disks

Structure and composition of the Intergalactic and Circum-Galactic Medium

Gravitationally lensed high redshift galaxies

Stellar populations, Galaxies, AGN, Quasars, black holes

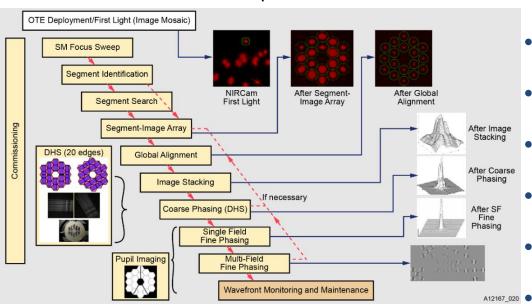
Images Credit: NASA

A large primary aperture enables both high sensitivity and fine spatial resolution

- If larger than practical for a monolith it requires segmentation
- If larger than launch vehicle fairing it requires deployment or assembly
- The full benefits of large size also require stability, precise alignment, precise pointing control
- These issues were resolved for JWST operating in IR. UVoptical solutions may need different approaches, or at least higher precision performance.
- High-contrast Imaging will drive many of the requirements.

Segments should be a net simplification to the system

- Size & shape
- Total number
- Materials
- Manufacturing flow
- Test approach
- Facilities
- Schedule
- Cost

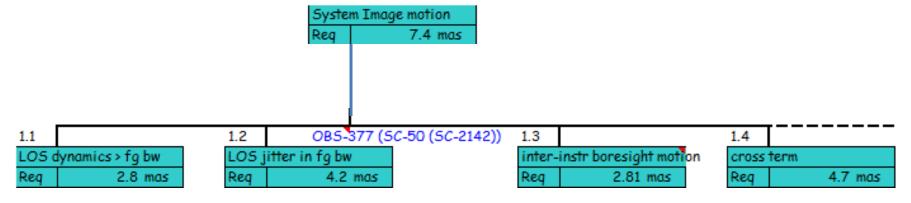

- Control authority
- Sensors
- Actuators
- Structures
- Complexity, reliability

Segmented architecture and control systems make verification and I&T easier/possible

Wavefront Sensing and Control enables precise image quality and Phasing of Primary

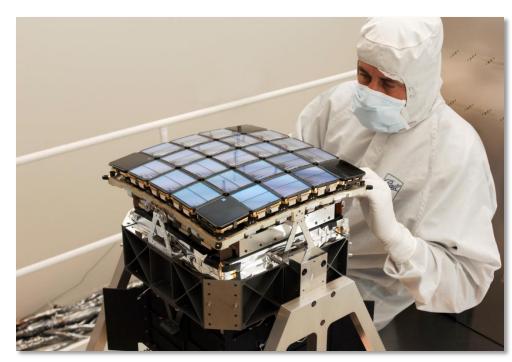
JWST Sequence

- Angular resolution of large diameter telescope
- · Stability for coronagraph
- · Symmetry for gravitational lensing
- Uniformity of PSF over FOV


- System architecture
- WF Sensing instrumentation
- Signal processing algorithms
- Actuators
- Range and resolution
- Update Rate
- Real time & autonomous
- Interaction with thermal, pointing etc.

Fine guidance and jitter control prevents smearing of the images

- For D=10m and λ =500nm, λ /D=10mas
- Drift & Jitter must be a small fraction of this
- Separate Guidance Sensors, HST, JWST, WFIRST Coronagraph
- Or, Guide signal on science focal plane, Kepler,
- Body-point entire observatory, or payload
- and use a Fine Steering Mirror
- Interactions with structural, thermal, pointing and WFC subsystems


JWST Fine Steering Mirror with 24 Hz bandwidth and 16 mas resolution. UV-VIS FSM will need ~< 0.1mas resolution, higher bandwidth and wider range.

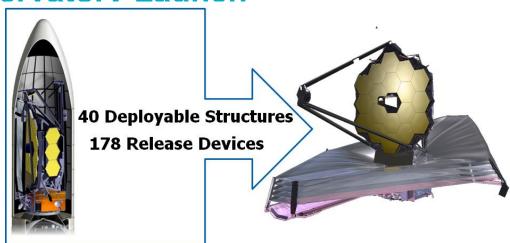
Large Focal Plane Arrays will be needed for resolution and FOV

- If 10 mas pixels
 - 1 Gpx = 32K x 32K
 - 5.3 arcmin FOV
- Detector technologies
 - Modules
 - FPA architecture
- Alignment
 - Electronics, Cables
 - Mass, Volume, Power
 - Thermal
- Data rate and volume
- Serviceability, replacement

The Kepler Focal Plane Array
42 1K x 2K CCDs in 21 modules
4 CCDs for fine guidance
Curved Schmidt focal surface

There are good reasons to consider in-space servicing

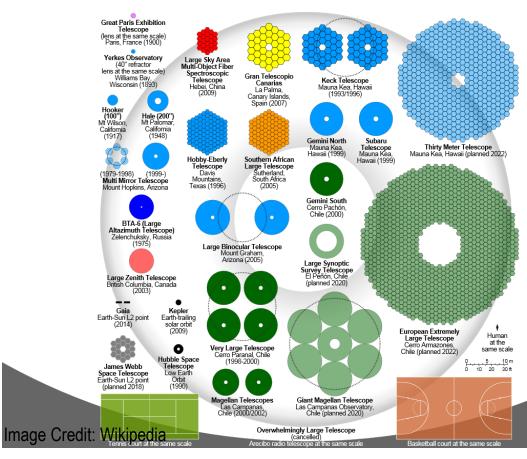
- Replacement of limited-lifetime items
- Replenishment of expendables
- Restoration of degraded or failed components
- Infusion of advanced technologies
- New generations of instruments, capabilities
- Extension of mission lifetime


DARPA's Orbital Express mission demonstrated proximity operations, autonomous rendezvous & soft capture, removal and installation of ORUs, fluid transfer.

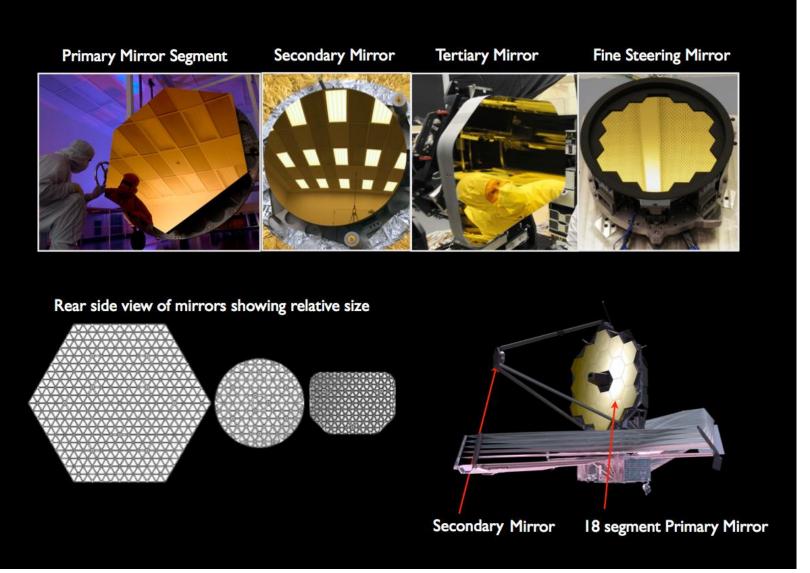
We want a much longer lifetime
Is it better to design for 30 years or Service every 5?

JWST Observatory Launch

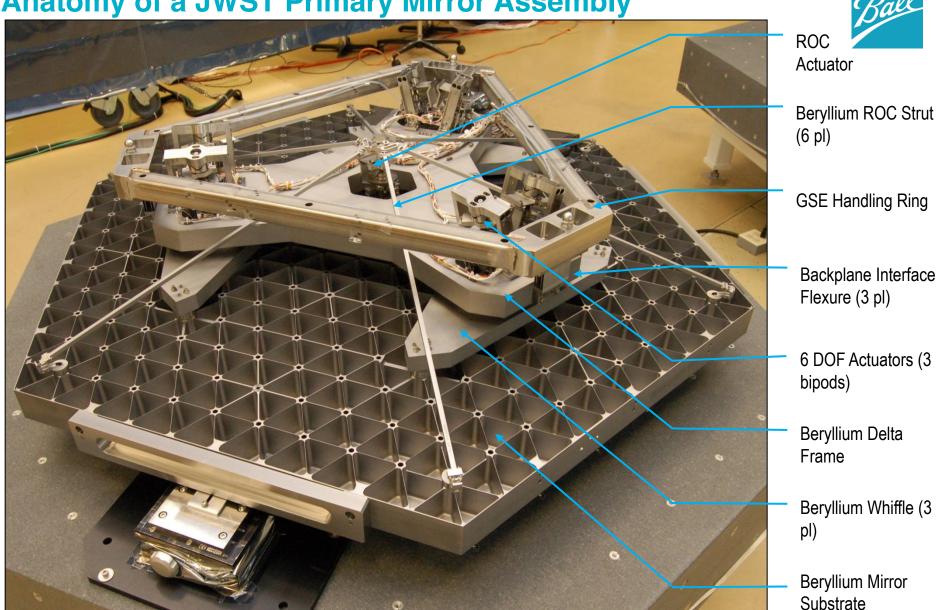
- To fit into the Ariane V launch vehicle, JWST must be folded into a smaller package and then deployed after launch.
- Several major subsystems deploy during the 30-day transit to orbit
 - Solar Arrays
 - High-gain Antenna
 - Sunshield
 - Deployable Tower
 - Secondary Mirror
 - Primary Mirror Wings
- Advances in Deployable technology should be considered for larger, complex missions.


JWST is the closest Space Telescope Analog for Segmented LUVOIR

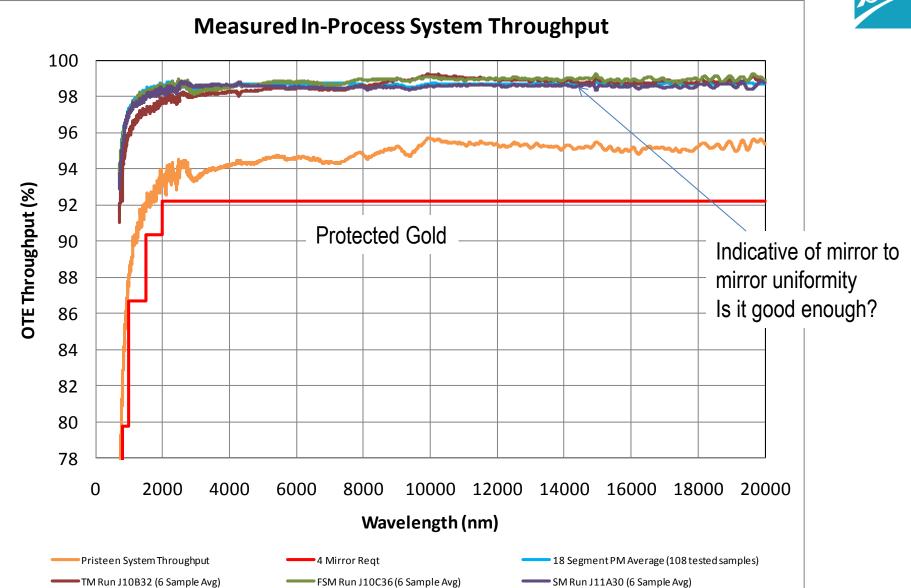
 JWST has design heritage to Keck and ground based-segmented telescopes


LUVOIR would utilize JWST and ground-based (GMTO, TMT, ELT)

segmented technologies



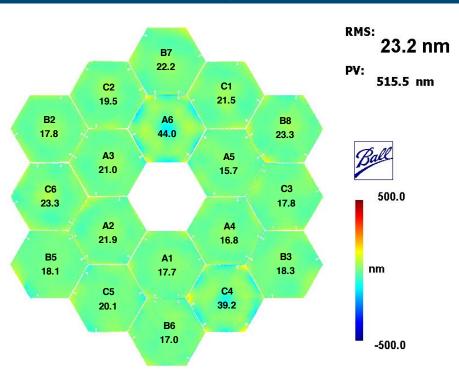
JWST Telescope Mirrors



Anatomy of a JWST Primary Mirror Assembly

JWST OTE Reflectivity Performance

JWST Final Segment Surface Requirements certified at Cryo temperatures


Parameter	Specification	Tolerance	Units	Comments
Requirements for final acceptance testing				
Clear Aperture	*	Minimum	mm^2	*Different for 3 segment types (approx 5 mm from edge)
Conic Constant	-0.99666	+/- 0.0005		
Global Radius of Curvature		+/- 1	mm	
Radius of Curvature Segment to Segment Matching	*	+/- 0.15	mm	*All segments are matched to a single radius value within the global RoC
Prescription Alignment				
Decenter	*	≤ 0.80	mm	* Different for 3 segment types
Clocking	0	≤ 0.65	mrad	
Total Surface Figure Error:				
Total Surface (≥0.08 mm/cycle)	25.8	Maximum	nm rms	Relative to cryo-target map
High Frequency (222 to 0.08mm/cycle)	13	Maximum	nm rms	Relative to cryo-target map
PSD Spike Requirement	3	Maximum	nm rms	Single Frequency Contribution

- These Specs would have to be tightened up considerably for System WFE.
 - Material choice and polishing time
 - Ambient operation is much easier
- Segmentation does allow correction and compensation of many system AI&T, Launch, etc. issues.

Active Architectures allow "Mechanical alignment tolerance on the ground, optical alignment on orbit".

JWST Composite PM Cryogenic Total Surface Figure

Requirement = 25.8 nm rms
Total Measurement + Uncertainty = 25.0 nm rms

- These numbers represent mirrors meeting spec, not necessarily state-of-the-art.
- There are limits to Beryllium Mirrors but mostly polishing time
- Edge polishing requirement not significant for JWST ~5 mm avg specified.
- Mirror Gap is ~7 mm.

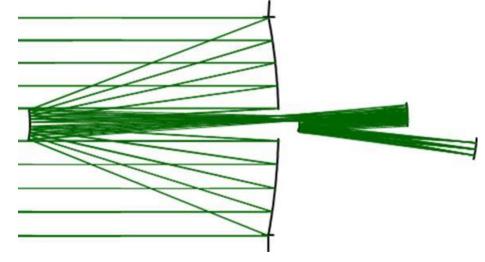
1st order LUVOIR Telescope Design Parameters

- Package: TBD (overall Volume)
- General Class Observatory
 - Narrow FOV = UV/Coronagraph
 - Wide FOV = General UV, Visible, IR Imaging and Spectroscopy
- Design 1:
 - Traditional TMA
 - Circular FOV capability vs. complexity
 - Obscuration ≤ 15% linear
- Design 2:
 - Spherical primary, investigate feasibility of slower net FNO using microscope objective for stage 2 (similar to Hobby-Eberly)
- Design 3:
 - Traditional TMA, relax obscuration constraint
 - Evaluate RMSWFE vs. FOV and optics complexity

LUVOIR Telescope Notional Design

Assume 10 m, on-axis aperture

- Minimize central obscuration
 - Coronagraph and throughput considerations
- Create large FOV with small design residual
 - 10-20 arcmin
 - Maximize Instrument Packaging and Science
- Have accessible intermediate focus
 - UV/Coronagraph Throughput
- Pupil /Field Distortion and Pupil Wander not yet know or constrained
 - JWST Design Driver
- Telescope Final F#/Effective Focal Length not yet chosen
 - Assume desired is 10<F#<24
 - Impacts instrument design complexity
- Primary Mirror ~F# 1.5
 - Polarization effects for faster Primary Mirror
- Overall WFE


17

- Diffraction limited at 500 nm (35 nm rms)
- Try to hold design residual to 16 nm rms
 - This is a large fraction of total WFE 20% of budget
 - JWST is 1.5%

Design 1A: Traditional TMA, 15% obscuration

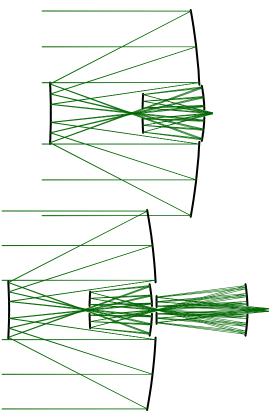
- PM-SM conic only
- PM ~F/1.3, PM-SM length ~11m
- No distortion constraint, curved image
- Holding F/20 (prefers slower)
- FOV results
 - Simple Design: ~8arcmin
 - Complex Design 1: ~10arcmin
 - Complex Design 2: ~10.5arcmin

Aspheric TM, 10' FOV, with fold/FSM

Small Central Obscuration limits WFOV with small design residual

Design 1B: Traditional TMA, 15% obscuration, intermediate image constrained

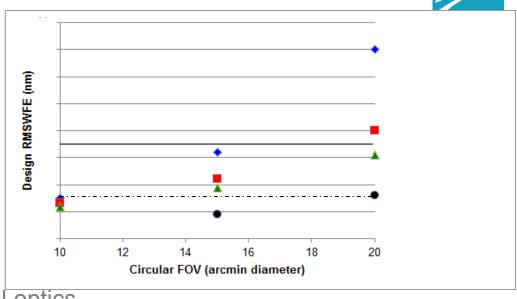
- Traditional TMA, Constrain intermediate image quality
- PM ~F/1.33, PM-SM length ~11.7m, SM-TM length ~18.5m
- No distortion constraint, curved image
- 8arcmin circular WFOV, F/18
 - RMSWFE ≤ 14nm (~16% total budget)
- Intermediate FOV, 10arcsec circular
 - RMSWFE 1.3nm on-axis, 17nm edge of field
 - RMSSPD 0.5µm on-axis, 5µm edge of field
 - Limiting aberration is predominantly field dependent coma, which is predictable and correctable with single lens or as part of coronagraph design
 - UV/Coronagraph FOV is on-axis to PM-SM, outside of WFOV
- Results are roughly consistent with 12m ATLAST design.

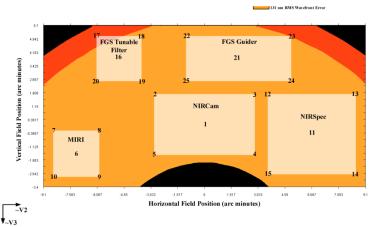

Constraining Intermediate Image reduces FOV. With a small obscuration, a traditional TMA is long.

Design 2: Spherical PM

Ball

- Includes SM to enable space vehicle packaging
- 10m, 10arcmin circular FOV, 30% linear obscuration
- Aspheric SM
- PM F/1.2, PM-SM length 8.5m
- 2 aspheric mirror concave cavity relay, final F# F/2.2
- Design RMSWFE 10nm, curved image

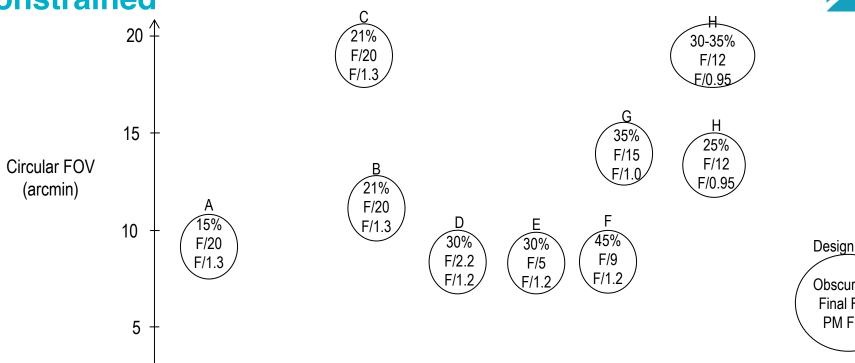



Hard to get a Spherical Primary to Work with small obscuration and slow system.

Design 3: Relax obscuration, FOV/Complexity

Ball

- Constraint set
 - No slower than F/20
 - No distortion or pupil constraints
- Aft optics complexity options
 - 1) Conics
 - 2) More complex
- Conclusions
 - 10-12arcmin FOV with traditional optics
 - 20arcmin FOV possible with complex optics
 - Obscuration ends up ~21% linear
- How big is the needed FOV?


Opening up Central Obscuration opens up design space.

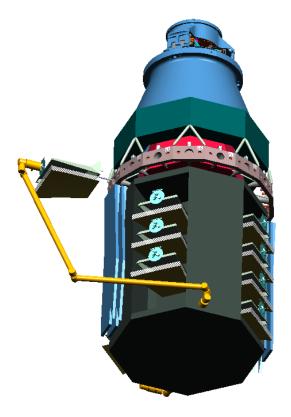
18arcminx9 arcmin

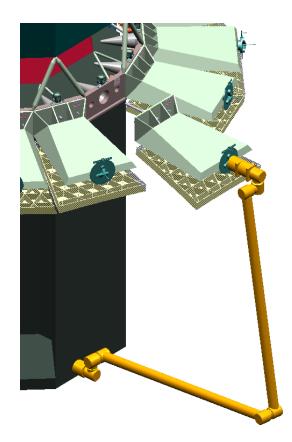
FOV-Obscuration-FNO with design residual

constrained

- A: Traditional TMA, 8-10.5arcmin
- B: Complex 1 TMA, 10-12arcmin
- C: Complex 2TMA, 20 arcmin
- D: Spherical PM, Corrector 1
- E: Spherical PM & SM, Corrector 2
- F: Spherical PM & SM, Corrector 3
- G: Alternative Design1
- H: Alternative Design 2

- Most designs that have a large FOV, require a TMA.
- TMA designs prefer faster PM than F#1.5.
- Larger central obscuration and more complex optics allow a larger FOV.


Summary


- A flagship-class UV-optical observatory will be scientifically compelling.
- Scientifically interesting size will require modularity, segmentation, deployment, assembly etc.
- Technologies will be applicable to systems and missions beyond astrophysics.
- JWST has solved many of the basic issues, but UV optical requirements will be more challenging.
 - Stability, Diffraction-limited WFE, Throughput, Polarization, etc.
- Telescope Design is not a given or fully defined for General Purpose and more work is needed.
 - Small Central Obscuration significantly limits design choices and FOV.
 - Is there a pupil constraint?
 - Is there a field distortion constraint?
 - Is there a desired telescope F#?
- There is also an architecture decision between telescope complexity and instrument complexity.
 - TMT has AO systems in each instrument.
 - WFIRST has correcting optic in each instrument.
 - High Contrast Instrument will have control surfaces.

In-space assembly may have advantages for a large(r) system

- Geometry that provides the most efficient packaging for launch is independent of arrangement of components in the assembled telescope
- Service module that provides launch accommodation does not need to be a precise optical bench. It is a rack for storage & transportation
- Structures and mechanisms that provide precise optical alignments in space do not have to bear launch loads
- Requirements for deployment of components are allocated to robotic arms instead of distributed to multiple subsystems with hinges, actuators, sensors, latches, etc.

These capabilities have wider applicability

- Other users of large aperture visible light imaging could participate in technology development
 - Earth Science & Solar System science
 - Defense & intelligence applications
- Robotic assembly and servicing
 - Applicable to many large systems, not just telescopes
 - Could assist or be supervised by astronauts
- Modularity allows partnerships with many stakeholders, including other nations

A few other things

- Science instruments and components
 - High Contrast Imaging
 - High resolution imaging (UV/VIS)
 - Integral Field and Multi-object spectroscopy
- Management and transmission of high data volumes
 - High bandwidth Communication (Lasercom?) will be of interest to many future applications
 - Avoid limitations faced by HiRISE, Kepler etc.
- Precise, Formation flying to enable consideration of an external starshade