

Candidate concepts for exoplanet detection and characterization

ExoPAG-COPAG meeting 26 April 2011

Charley Noecker Ball Aerospace & Technologies Corp.

- Menagerie of exoplanet direct detection options
 - High level description of each concept
 - Impacts on telescope requirements
- Overview of constraints on synergy

Internal coronagraphs

- Lyot coronagraph
- PIAA or pupil remapping
- Shaped pupil

Superb UV opt

Astrophysics

Telescope

- Visible nulling (VNC)
- Optical Vortex Coronagraph (OVC)

Choice of method for

& characterization

exoplanet detection

External coronagraphs

a.k.a. external occulters

- Hypergaussian petal
- Optimized petal

- On-axis vs. off-axis
- Segmented vs. monolithic
- Optical quality & stability
- Coatings
- Instrument volume
- Fraction of mission time

- TXP terrestrial exoplanet (roughly 0.5-10 M_{\oplus} , rocky)
- HZ habitable zone: range of orbital semi-major axis for which liquid water can exist on the surface of a TXP
- δmag star-planet brightness ratio expressed in stellar magnitudes. Earth-Sun $\delta\text{mag}{\approx}25$ at quadrature
- IWA Inner working angle = smallest angle from star at which a TXP can be detected. Given in multiples of λ/D or in milliarcsec
- Speckles faint variations of brightness in the image, or the optical fields giving rise to them, caused by residual wavefront errors
- DM Deformable mirror, used for real-time wavefront correction to minimize speckles
- Sensitivity floor minimum detectable exoplanet brightness, even for very large integration times, limited by speckle variations

Exoplanet Detection Limit

- Image plane "field occulter", followed by pupil plane "Lyot stop"
 - Blocks ordinary Fraunhofer diffraction from pupil edges
- Residual wavefront amplitude and phase errors cause speckles that can obscure exoplanets
- Deformable mirror enables optimized wavefront correction to drive down these speckles, and create a dark region in image plane

- Wavefront sensing and control is paramount
 - Faint planets \rightarrow faint speckles
 - Iong integration times for wavefront sensing
 - → long times for passive stability
 - Wavefront correction <0.1nm rms
 - Wavefront stability ~0.003nm rms passively for ~hours
- Throughput and image sharpness for exoplanets are key drivers
 - Background-limited detection
 - Need to resolve exoplanet from exozodi dust clouds

→ large telescope diameter, narrow PSF, high throughput

- Trying to get smaller IWA with same telescope (fewer λ/D) makes requirements harder
 - Severely tightens wavefront tolerances
 - Most coronagraphs suffer in throughput, PSF width, & integration time
- Must minimize number of edges in the pupil
 - Pupil mask blocks a substantial area around each gap in pupil
 - More segments, smaller IWA drive <u>sharply</u> lower throughput and fatter PSF

segments \uparrow IWA \downarrow \rightarrow $\left\{ \downarrow$ Throughput \uparrow PSF width

Most internal coronagraphs demand a monolithic unobscured aperture

- Pupil mask blocks a substantial swath around each gap in pupil
- If IWA= N λ /D for some (small) N, then half-swath $\propto \lambda$ /IWA= D/N
- For N=3 (aggressive), we must block
 ~1/3 of width, 43% of area
- For Lyot coronagraph, as for <u>most</u> (not all) kinds of internal coronagraph, a monolithic unobscured aperture is ~<u>required:</u> the only practical option

- Band-limited 4th-order CFO is used for IWA < 4λ/D
- First-tier technical maturity ahead of the others
 - Current performance ~5e-10 in 10% passband
 - Instrument stability demonstration ~ meets requirement for TXPs
- Monolithic unobscured telescope with picometer stability for hours
- 15-20 mirror path → silver coatings in exoplanet channel

4/26/2011

ExoPAG - COPAG mtg | Exoplanet concepts

- Highly aspheric optics remap the uniform top-hat pupil into an apodized beam
 - Focuses to an optimally compact amplitude profile
 - Blocked with hard-edge CFO
 - No Lyot stop needed
- Followed by similar optics to undo remapping and restore the original PSF with wide FOV

- Preserves high mask throughput and narrow PSF even for very small IWA (< $2\lambda/D$)
- Still demands
 - monolithic unobscured pupil
 - picometer stability for (fewer) hours
 - silver coatings in exoplanet channel
- 2nd-tier technology maturity

Shaped pupil coronagraph

- Uses carefully tapered binary pupil mask to construct a compact PSF, then binary field mask to block star
 - Pupil mask is applied after secondary mirror
 - PSF is butterfly-shaped sacrifices north & south while clearing east & west
- No Lyot stop, but significant loss of throughput at pupil mask

- Some designs compatible with obscuration and a few gaps across primary (chord folds)
- Successful designs at $4\lambda/D$
- 2nd-tier technology maturity

ExoPAG - COPAG mtg | Exoplanet concepts

Visible Nulling Coronagraph (VNC)

Achromatic nulling interferometer prepares destructive interference of 2 or 4 copies of telescope pupil, with relative lateral shear

Exit pupil:

 Re-imaging 4-beam exit pupil (red) yields an image of exoplanet system multiplied by sine × sine function:

 The <u>only</u> candidate compatible with segmented telescope when shear = segment spacing

- Bright-port control at 15 Hz
- IWA ~ 2λ /D in some cases
- 2nd-tier technology maturity

Optical Vortex Coronagraph

Uses photon orbital angular momentum (POAM) – vaguely like polarization

Helical mirror/lens

- Also polarization methods
- Mask excludes zero-POAM light on-axis, transmits it off-axis
- Lyot stop traps excluded light

 this is a Lyot coronagraph
 but Lyot mask throughput is
 almost 100%

- Recent demos on binary stars
 - Great strength is IWA ~2 λ /D
 - Still achieving modest contrast
- 2nd-tier technology maturity

External Coronagraphs

- Large occulting mask between star and telescope
 - Typically 50-80m diam and 50-100 Mm from telescope
 - Mm = 1000 km
 - Size driven by small IWA and diffraction
- Compatible with any telescope: obscured, segmented, etc.
- Only need telescope to be diffraction limited
- Petal is tapered to suppress diffraction into shadow
- 2⁺-week slews
 - Lots of astrophysics time
 - Limited agility for exoplanet studies

- Telescope must carry instruments and inter-spacecraft telemetry to help maintain alignment
- Most petal tolerances > cm, some ~0.1mm, a few ~0.01mm
- 2nd-tier maturity, with all issues on occulter

UV coated optics

anet Finder

 Internal coronagraphs have 15-25 mirrors to the exoplanet FPA

→ If throughput is low, we don't want to lose another 50% of exoplanet light to aluminum/ MgFl coatings

 Occulter system could have only 4-5 mirrors to the exoplanet FPA → can afford more loss at UV-coated mirrors
 → might allow UV observations of exoplanets

Instrument volume

- Internal coronagraphs require multiple relay mirrors
 - Volume for folded coronagraph instruments
 - Multiple spectral & polarization channels
 - Competes with wide-field imaging instruments
- Occulter only needs camera with filters, spectrometer with modest spectral resolution

	Lyot or OVC	PIAA	VNC	Occulter
Obscuration	No	No	Yes	Yes
Folding /segments	No	No	Yes	Yes
Telescope stability	<~3 pm 1-10 hr	<∼3 pm/ 1-10 hr	<~3 pm/ 0.1 sec	<40 nm
# mirrors UV coated	≤ 2	≤ 2	≤ 2	more
Planet throughput	10-15%	60-80%	10-15%	80-90%
Smallest IWA	37/D	1-2λ/D	2-37/D	1-2λ/D
Astrophysics time	50%	50%	50%	70-80%

Starting assumption: we must have 60 mas IWA to find enough TXPs

- 4m diam coronagraph → very aggressive 2.4 λ/D instrument
 → monolithic unobscured, few-picometer wavefront stability
 if Lyot → severe cut in throughput, much longer integration times
- 8m diam coronagraph → comparatively modest 4.5 λ/D instrument
 → monolithic unobscured, 0.5-0.8 nm wavefront stability if Lyot → ~40-60% cut in throughput, longer integration times
- Any size with occulter \rightarrow all tough requirements on occulter
 - → any diffraction-limited telescope, 20-40 nm wavefront stability

Controlled WF accuracy				
and stability				

	8m	4m
Focus	2.1 nm	0.016 nm
Astigmatism	2.9 nm	0.022 nm
Coma	0.55 nm	0.003 nm
Trefoil	1.3 nm	0.009 nm
Spherical	0.019 nm	0.003 nm

