ExoPAG SAG 13: Exoplanet Occurrence Rates and Distributions

Ruslan Belikov
NASA Ames Research Center
on behalf of SAG13

SAG13 members

Belikov, Ruslan (Chair, rulsan.belikov@nasa.gov)

Stark, Christopher (Co-chair)

Batalha, Natalie (Steering Committee)

Burke, Chris (Steering Committee)

Angerhausen, Daniel

Apai, Daniel

Bendek, Eduardo

Bennett, David

Blackwood, Gary

Boss, Alan

Brown, Robert

Bryden, Geoff

Cahoy, Kerri

Catanzarite, Joe

Ciardi, David

Cowan, Nick

Danchi, William

Domagal-Goldman, Shawn

Dressing, Courtney

Foreman-Mackey, Daniel

Fressin, François

Gaudi, Scott

Ge, Jian

Gould, Andy

Hogg, David W

Howard, Andrew

Kasting, James

Kopparapu, Ravi

Macintosh, Bruce

Mandell, Avi

Mendez, Abel

Meyer, Michael

Morgan, Rhonda

Mulders, Gijs

Nielsen, Eric

Petigura, Erik

Ragozzine, Darin

Roberge, Aki

Savransky, Dmitry

Serabyn, Gene

Shao, Mike

Solmaz, Arif

Sparks, William

Stahl, Philip

Stapelfeldt, Karl

Still, Martin

Suzuki, Daisuke

Swain, Mark

Traub, Wes

Turnbull, Margaret

Unwin, Stephen

Vanderbei, Robert

Walkowicz, Lucianne

Charter

Over 5000 exoplanets and exoplanet candidates have been discovered to date. Many studies have been published and are on-going to determine exoplanet occurrence rates and distributions, particularly for potentially habitable worlds. These studies employ different statistical and debiasing methods, different definitions of terms such as eta_Earth and habitable zone, different degrees of extrapolation, and present distributions in different units from each other. The primary goal of this SAG is to evaluate what we currently know about planet occurrence rates, and especially eta_Earth, by consolidating, comparing, and reconciling discrepancies between different studies. A secondary goal is to establish a standard set of occurrence rates accepted by as much of our community as possible to be used for mission yield estimates for missions to be considered by the decadal survey.

v.1 of standards document created

Key objectives and questions:

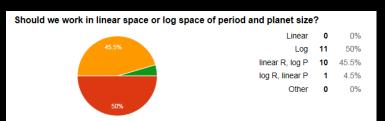
 Propose standard nominal conventions, definitions, and units for occurrence rates/ distributions to facilitate comparisons between different studies.

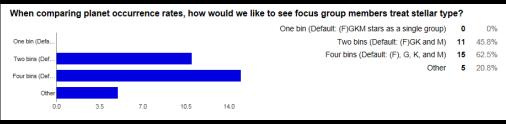
Current focus

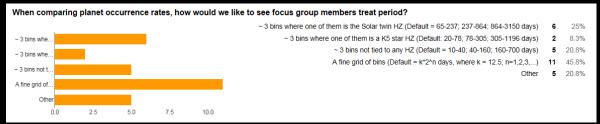
2. Do occurrence estimates from different teams/methods agree with each other to within statistical uncertainty? If not, why?

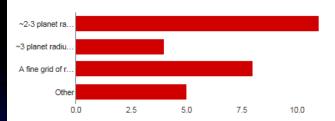
Future activity

→ 3. For occurrence rates where extrapolation is still necessary, what values should the community adopt as standard conventions for mission yield estimates?




Status and delivered products


- July 21st: SAG approved by APS
- July Oct: discussions and online poll helped converge to a consensus on standard eta bins
 - https://docs.google.com/forms/d/14dBTg7hHmqxvfwoNXfsTENQ4afIUtBxfw4WBt3WtR78/ viewanalytics
- Oct: Draft "standard eta bins" document created
 - delivered to Kepler hack week, where selected etas were calculated by 9 participants, all within statistical uncertainty of one another
- Nov: Final v.1 "standard eta bin" approved by SAG13 members
 - http://exep.jpl.nasa.gov/exopag/
- Dec Jan: Computation / crowdsourcing of SAG13 eta tables
 - 5 so far
 - Preliminary comparisons show consistency in some etas as well as disparity in others


Completed online poll

When comparing planet occurrence rates, how would we like to see focus group members treat planet radius?

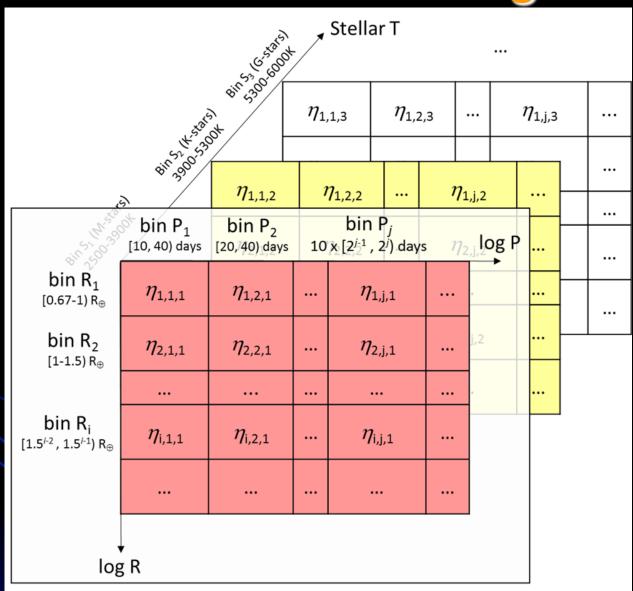
~2-3 planet radius bins where one of them is rocky (Default = 1-1.5 Earth radii, and > 1.5 Earth radii)

11 47.8%

~3 planet radius bins not tied to rocky planets (Default = 1-2; 2-4; 4-8)

4 17.4%

A fine grid of radius bins (Default = 2^n Earth radii, where n=-1,0,1,2,...)


Other

5 21.7%

- 24 participants
- Exposed key challenges and concerns
 - Saved for posterity: https://docs.google.com/forms/d/ 14dBTg7hHmqxvfwoNXfsTENQ4aflUtBxfw4WBt3WtR78/viewanalytics
- Facilitated convergence to consensus on standard eta definitions

Standardized eta grid

Selected eta comparisons from Hack Week

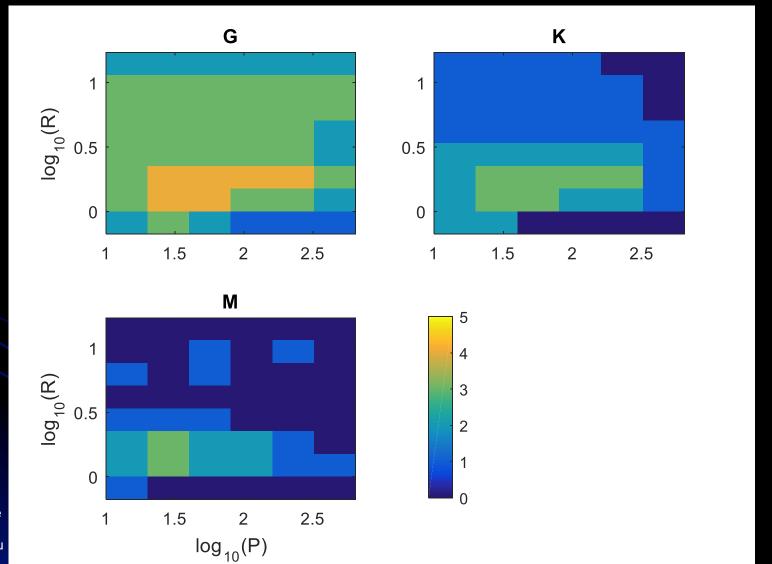
η _{3,3,G}	0.089 +/-0.018	0.100 +0.018 -0.021	0.089 +/-0.017	0.083 +0.021 -0.017	0.086 +/-0.017	0.088 +/-0.07	0.092 +/-0.018	0.091 +0.01 -0.009
$\eta_{2,3,\text{M}}$	0.3 +/-0.11	0.26 +/-0.11 -0.08	0.23 +/-0.09	0.23 +0.1 -0.08	0.32 +/-0.1	0.26 +/-0.09	0.25 +/-0.1	0.185 +0.064 -0.052
η _{3,3,K}		0.12 +0.04 -0.03	0.1 +/-0.027		0.077 +/-0.024	0.1 +/-0.027		0.108 +0.004 -0.013
$\eta_{2,3,K}$		0.06 +0.02 -0.01	0.06 +/-0.014		0.051 +/-0.013	0.06 +/-0.014		

Cuts:

- 1. e_cycle > 0.33
- 2. T_span*e_cycle > 365.25*2
- 3. MES >= 15
- 4. Log(g) > = 4
- 5. 1.5 <= Rp < 2.3 (SAG13 j=3)
- 6. 20 <= P < 40 (SAG13 i = 2); 40 < = P < 80 (SAG13 i = 3)
- 7. 2400 <= T < 3900; 3900 <= T < 5300; 5300 <= T < 6000 (SAG13 M, K, G),

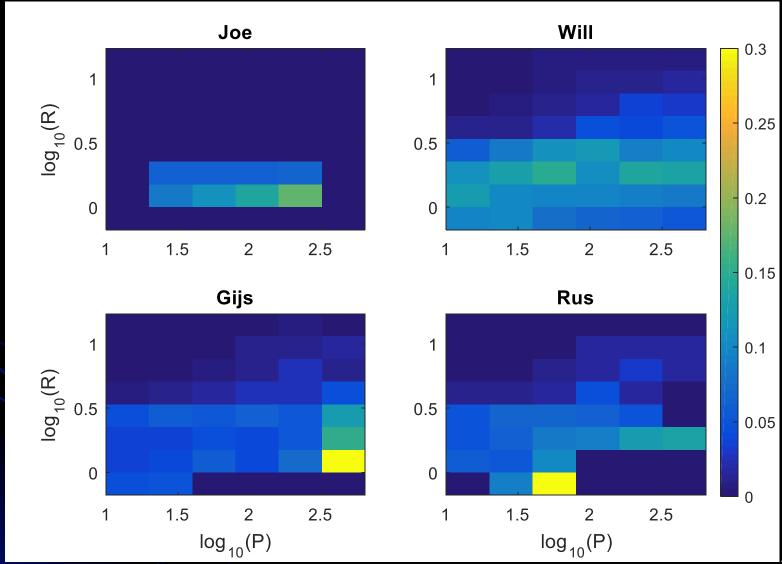
Current activity: crowdsourcing eta values

Focus group members


(i.e. SAG13 members who agreed to perform computations)

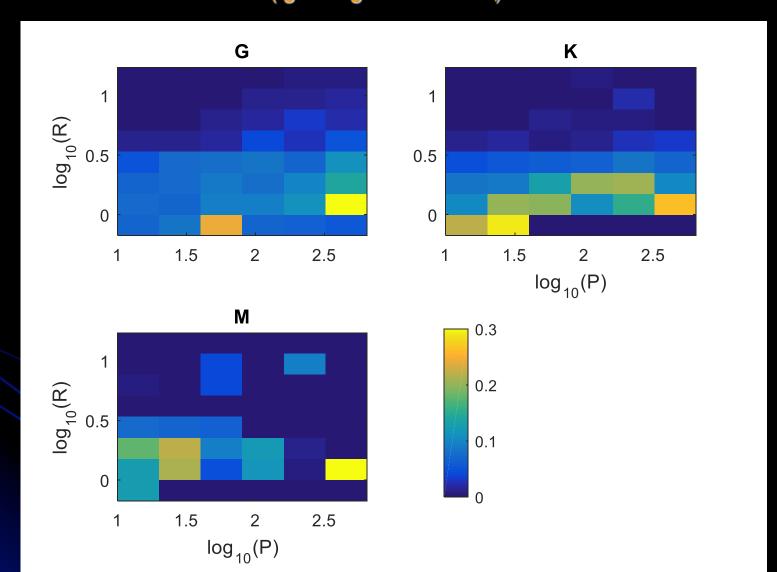
- Batalha, Natalie
- Belikov, Rus *
- Burke, Chris
- Catanzarite, Joe *
- Farr, Will *
- Foreman-Mackey, Daniel
- Howard, Andrew
- Kopparapu, Ravi *
- Mulders, Gijs *
- Petigura, Erik
- Traub, Wes

* values submitted


Number of submissions of preliminary eta values so far

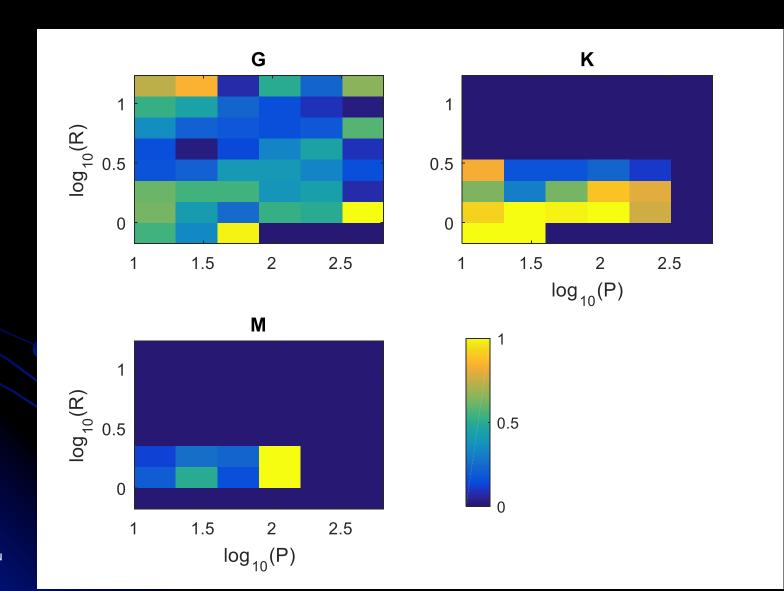
Data from:
Joe Catanzarite
Will Farr
Ravi Kopparapu
Gijs Mulders
Rus Belikov

Example: eta value submissions for G-stars



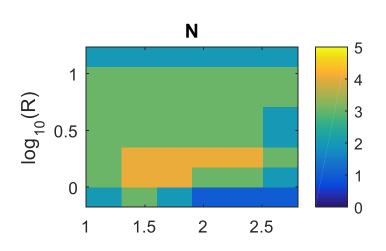
Data from:
Joe Catanzarite
Will Farr
Ravi Kopparapu
Gijs Mulders
Rus Belikov

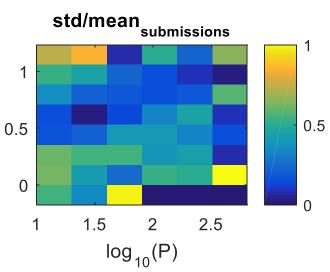
10

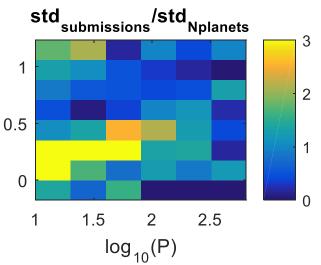

Means (ignoring NaN values)

Data from:
Joe Catanzarite
Will Farr
Ravi Kopparapu
Gijs Mulders
Rus Belikov

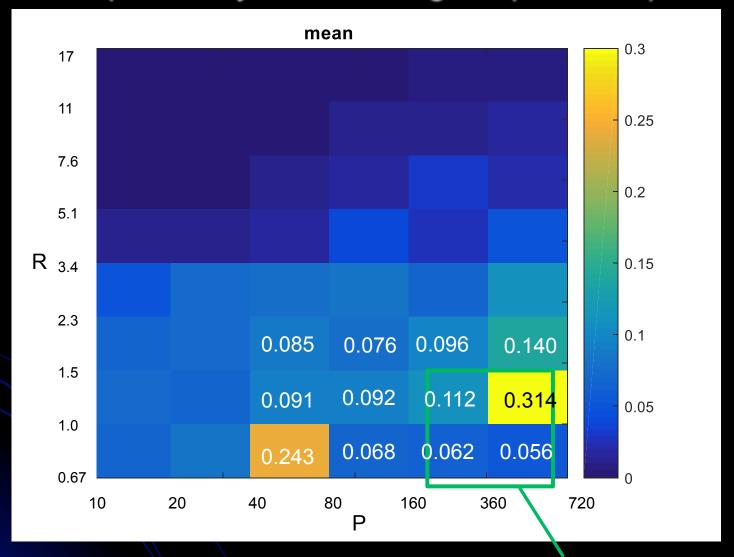



Standard deviation / mean (ignoring NaN values)





Statistics for G stars



Preliminary look at

potentially habitable regime (G-dwarfs)

~0.5

Conclusions

- SAG13 converged on a consensus for "standard eta bins"
 - http://exep.jpl.nasa.gov/exopag/ (Navigate to SAG13 section)
 - In the process of crowdsourcing and analyzing values
- New members welcome (especially if you can compute occurrence rates)
 - Please email ruslan.belikov@nasa.gov
 - next meeting / telecon is this Thursday at 4pm