NASA illustration of *Kepler* 42 Muirhead, Johnson, Apps et al. (2012)

Design Requirements for Precision Radial Velocimetry

Phil Muirhead Caltech Postdoctoral Scholar (on behalf of John Johnson)

PLANETQUEST

Revealing Signs of Life

2015

SIM PlanetQuest

Discovering Nearby Terrestrial Planets

Keck Interferometer

Statistics of Planetary Systems

202

"Conduct Advanced Telescope Searches for Earth-like Planets and Habitable Environments Around Other Stars"

Kepler

- A Renewed Spirit of Discovery — President George W. Bush January 2004

2006

PLANETQUEST

"Conduct Advanced Telescope Searches for Earth-like Planets and Habitable Environments Around Other Stars"

- A Renewed Spirit of Discovery — President George W. Bush January 2004

255 * (Radius of Star [Solar Radii])(1/2) * (Mass of Star [Solar Mass])(-1/6) * (Orbital Period [Days] / 365)(-0.3333) * (T eff[Kelvin] / 5777)

^{255 * (}Radius of Star [Solar Radii])^(1 / 2) * (Mass of Star [Solar Mass])^(-1 / 6) * (Orbital Period [Days] / 365)^(-0.3333) * (T eff[Kelvin] / 5777)

Precision Radial Velocity Requirements

Photon Noise

- Telescope Area * N nights per year
- Spectrometer Resolving Power (R>50k)
- Spectrometer simultaneous bandwidth (~100s nm)

Systematic Noise

- Stability and calibration (~1 um physical)
- Stellar jitter. Rotating spots and p-modes
 - Stationary noise process, overcome with high *cadence*

Precision Radial Velocity Requirements

- Photon Noise
 - Optimize by — Telescope Area *
 - Spectromete
 - Spectrometer
- CALCULATION Jus bandwidth (~100s nm)

JUK)

- Optimize by Systematic Noise
 - Stability a
 - Stellar jitte
 - Stationary
- SIMULATION and EXPERIMENT me with high cadence

Bottom, Muirhead, Johnson, Blake *submitted to PASP*

Quantitatively assess survey yield as a function of Doppler spectrometer specifications:

- Resolution
- Wavelength coverage

Photon Noise (fundamental limit)

Relative Doppler precision for fixed integration time, star at 10 pc

Relative integration time to detect a planet in the HZ, star at 10 pc

Relative integration time to detect a planet in the HZ, star at 10 pc

Relative integration time to detect a planet in the HZ, star at 10 pc

RECONS 7 pc Sample

 Mike calculated number of stars you can survey for 5 M_{Earth} planets in the HZ for fixed observing time and tele size

RECONS 7 pc Sample

 Mike calculated number of stars you can survey for 5 M_{Earth} planets in the HZ for fixed observing time and tele size

Iodine-Calibrated Regime

 500 to 620 nm best place to search for habitable-zone planets around nearby G,K & early-M dwarfs via the Doppler method.

 But so far we have only considered photon noise

Systematic Noise

(defined as a noise source we cannot isolate)

Instrumental Profile Stability: Dominant Effect

Instrumental Profile Stability: Stabilize with Fiber Scrambling

RV precision for Tau Ceti

That Leaves Jitter and Short-period Planets

- Both can be overcome with *high-cadence* observations.
- An RV measurement *every night*.
- Project Minerva

Johnson, Wright, McCrady, Swift, Muirhead, Bottom, Hogstrom

PLANETQUEST

- IP Stability
 - Iodine + Fiber
- High Cadence
 - Dedicated instrument and telescope

Revealing Signs of Life

Discovering Nearby Terrestrial Planets

Keck Interferometer

Statistics of Planetary Systems Velocities 10 cm/s

Radial

2015

"Conduct Advanced Telescope Searches for Earth-like Planets and Habitable Environments Around Other Stars"

- A Renewed Spirit of Discovery — President George W. Bush January 2004

2006

Future of Radial Velocities

 High TRL barge is headed towards big dedicated spectrographs, big telescopes, laser combs...

...but low TRL speed boats are fun

New Low TRL Project: LAEDI

- Lock-in Amplified Externally Dispersed Interferometer
- 2012 JPL DRDF award winner!
- P. Muirhead, G. Vasisht (Co-Pis), K. Wallace, R. Jensen-Clem, M. Bottom,
 - J. Johnson

New Project: LAEDI

Uses a zeroreadnoise detector

Single-mode fiber feed for high coherence

Frequency lockedlaser for mm/s OPD calibration.

New Project: LAEDI

Spectrograph first light on FRIDAY! Thanks to students Rebecca Jensen-Clem and Michael Botto

255 * (Radius of Star [Solar Radii])^(1 / 2) * (Mass of Star [Solar Mass])^(-1 / 6) * (Orbital Period [Days] / 365)^(-0.3333) * (T eff[Kelvin] / 5777)