The James Webb Space Telescope: The Next BIG Step in Exoplanets

C. Beichman, John Krist, Tom Greene, M. Rieke, Rene Doyon, et al.

> ExoPag Meeting, Reno NV Oct 14 2012

JWST In a Nutshell

- BIG, COLD Telescope
 - 6.5m and 40K
 - Diffraction limited ~2 μm
 - 131 nm wavefront error
- Big Budget
- 4 Instruments
- Stable L2 orbit
- Major components being delivered
- Some assembly required
- Launch by 2018₋₀⁺

4 Main Science themes

First Light and Reionization:

Conduct deep surveys and follow-up spectroscopy for z~7-15

The Assembly of Galaxies:

Measure shapes and colors of galaxies, identify young star forming clusters

The Birth of Stars & Planets:

Identify and characterize protostellar objects, probe low and high mass ends of IMF Follow chemistry through different phases of star formation

Planetary Systems and the Origins of Life:

Image and characterize young gas giants Characterize planetary atmospheres Study planet-debris disks interactions Study KBOs as debris disk parent bodies Reno NV ExoPag

JWST Instruments

Opportunities for ExoPlanet Science

Planet Imaging with JWST

- Coronagraphs in 3 instruments
 - NIRCAM Lyot coronagraph for $\lambda{>}2~\mu m$ with both wedge- and circular occulters.
 - MIRI has 3 λ -specific 4-Quadrant phase masks plus classical Lyot coronagraph
 - NIRISS non-redundant mask (NRM) for high spatial resolution images
 - Ground-space competition
 - 8-10 m ground-based telescopes w ExAO win at $\lambda{<}2~\mu{m}$ and/or for IWA<500 mas
 - JWST sensitivity advantage at λ>3 μm where space background dominates over diffracted & scattered starlight 10/14/2012

NIRCAM Imaging

Multiple Lyot coronagraphs tuned for JWST/NIRCAM filters placed to study hot Jupiter atmospheres

Red = F460Green = F410MBlue = F360N

Multi-filter

Combined, Unsubtracted

Orient 1 – Orient 2 (10º) Simulation by John Krist

Direct Imaging of HR8799

- Highly stable PSF (few nm drift over few hours) with roll subtraction enables imaging of bright planets w/o coronagraph
 - SNR>50 on (50 Myr, 5 Mjup) at 3-5 μm in 1800 sec
 - SNR>5 on (50 Myr, 0.5 Mjup) at 5 μm
- Better PSF, higher throughput but lower contrast
- Simulation properties in F405N narrow-band filter
 - 1000×0.181 subarray exposures (8.3" FOV) incl 4 roll angles
 - Known planets b,c,d,e (all 5 Mjup, 50 Myr COND models)
 - Plant 4 more planets at 0.5", 1.5", 2.5", and 3.5" (0.5 Mjup, 50 Myr)

Coronagraph Status

- Coronagraphic masks fabricated by JPL and installed into NIRCam at LM
- Analysis suggests negligible impact of higher WFE segments when placed under struts hidden by Lyot mask

Figure 5. Azimuthal average profiles for F460M (long wavelength wedge) computed within sectors $\pm 30^{\circ}$ from the vertical axis.

10-

10

10-5

10-

5

Normalized intensity

Theoretical Spectra of EGPs

NIRISS: Aperture Interferometric Imaging (AMI)

- Non redundant mask providedes very high resolution (0.5 λ/D) at moderate contrast (10⁻⁴) and limited outer working angle.
- Medium-band filter set optimized 10 for exoplanet SED; good 5 diagnostic of Teff and Log g.
- Complements NIRCam & MIRI.

Pupil mask

Non Redundant Mask ResIn~0.5 λ/D_{base} (70 mas) out to OWA~ λ/D_{ap} (400 mas) at 4.6 µm

• Fourier Transform amplitude

Visibility amplitude)

10/14/2012

Interferogram

Comparison of Coronagraphic Capabilities: Ground and Space

Sample of Nearby Young Stars

SIM Young Star Project217Spitzer FEPS Project306Spitzer plus nearby A stars188Nearby M stars (< 15 pc)</td>196

Cluster	Age (Myr)	Distance (pc)	Cluster	Age (Myr)	Distance (pc)
β Pic	20	10-50	Pleiades	125	130
Tucanae	20	45	Chamaeleon	1-10	140
Horlogium	30	60	Taurus-Aurigae	1-10	140
TW Hya	10	60	Upper Sco	1-10	145
ScoCen	5-20	130	IC2391	50	155

Imaging Score Card

• NIRCAM/MIRI: highest sensitivity/contrast over large field.

- TFI/NRM: Youngest, closest-in planets
- Ground-based: Higher mass planets, closest-in (TMT)
- Unique JWST science for nearby M stars too faint for Extreme AO

	Avg Mass	Avg. Age	Avg SMA
Instrument	M_{Jup}	(Myr)	(AU)
NIRCam F440W	1.2	90	105
NIRCAM F356W	1.8	62	110
$TFI/NRM ~(\sim F440N)^1$	2	16	35
$TFI/NRM (\sim F440N)^2$	4	10	45
$\mathrm{MIRI}/\mathrm{FPQM}$	2.6	21	53
P1640	5.0	14	85
TMT	3.8	20	70

10/14/2012

JWST (20 μm)

Spitzer (24 µm)

Visible (HST)

JWST Extends Spitzer/Herschel/HST Results on Circumstellar Disks

Fomalhaut: HST images show evidence for exosolar planets

- Probe debris disks to complete picture of disk evolution
- Resolve disks & structures looking for rings, gaps, etc. Planets?
- Maps of scattered light and thermal emission to trace dust populations, composition (3 μm ice feature), planet interactions
- Combined NIRCAM & MIRI observations for scattered and thermal emission

Simulation by John Krist

F360M coronagraph simulation of the HD 92945 debris disk. Disk is ~1/20th of β Pic disk, 6x10⁻⁴. Two 1000 sec exposures with 10 degree rotation, 2nm RMS change and 15 mas position shift Reference PSF with a 5 nm change an another 15 mas offset The PSF was subtracted from each and then the two registered in orientation and added.

Kuiper Belt Objects As Debris Disk Parent Bodies

Spectra from D = 220 km "KBO", Clark et a 2005

Phoebe • Filter photometry of dozens of KBOs with d>100 km at

- R~100 to investigate surface properties

Nearby Y Dwarfs: The Closest Planets?

- WISE & Spitzer objects
 - Т~300 K
 - Mass ~1-20 M_{Jup}
 - Ages ~0.1-5 Gyr
 - Distances < 20 pc
- Astrometry and binarity
 - 100-200 mas parallax and
 10s mas orbital motions
 detectable w. ref stars
- Bright sources (≥100 µJy)
 - Grism and NIRSpec spectra
 - Compare with spectra of bound planets formed via disk fragmentation

10/14/2012

JWST Transit Science

 High SNR/precision photometry & spectra from stable L2 orbit will revolutionize transit observations: 7.6xSNR(Spitzer), 2.7xSNR(HST) • Wide spectral coverage (0.5-20 μ m) and resolution (R~5-2,000)

planet, see radiation from

planet's atmosphere

Transit Science Opportunities

- Characterize Earths/Super Earths transiting M dwarfs
- Dayside temperature from secondary eclipse depths
- Composition (K, Na, CO₂, CH₄, H₂O), atmospheric structure from multi-band secondary eclipses
- Global atmospheric circulation from full-phase light curves
- Validate & characterize smallest Kepler

candidates orbiting brightest stars 10/14/2012

Majeau, Agol & Cowan 2012

All JWST Instruments Will Be Used For Transits

Instrument	λ	R	FOV	Application	
Mode	(μ m)	(λ/δλ)			
NIRCam	0.6 - 2.3	4, 10, 100	2 x (2.2' x 2.2')	High precision light curves of	
Imaging	2.4 - 5.0	4, 10, 100	2 x (2.2' x 2.2')	primary and secondary	
NIDC		4 10 100	T 11	eclipses.	
NIKCam	0.0 - 2.3	4, 10, 100	Image diam.	High precision light curves of	
Phase Diversity			- 57 pixels	transits for bright targets that	
Imaging			- 114 pixels	need to be defocused to avoid	
				minimum t _{int}	
MIRI	5 - 29	4-6	1.9' x 1.4'	High precision light curves of	
Imaging				secondary eclipses.	
			1		
NIRISS grism	0.7-2.5	2000	slitless	High resolution spectra	
NIRCam	2.4 - 5.0	1700	2 x (2.2' x 2.2')	High precision transmission	
Spectroscopy				and emission spectroscopy	
NIDCores	10 50	100 1000	1 67 - 1 67 -14	Toomaniation and emission	
Spectroscopy	1.0 - 5.0	2700	1.0" X 1.0" SHU	and emission and emission	
spectroscopy		2700		planets.	
MIRI	5 - 11	100	Slitless	High precision emission	
Spectroscopy				spectroscopy	
MIRI	5.9 - 7.7	3000	3.7" x 3.7"	High precision emission	
Spectroscopy	7.4 - 11.8	3000	4.7" x 4.5"	spectroscopy	
	11.4 - 18.2	3000	6.2" x 6.1"		
	17.5 - 28.8	3000	7.1" x 7.7"		

NIRCam Can Study Bright Stellar Transits

Subarray	Exposure	Rate	Brightestin Brightest		S ize	Size Long-
Size (Pixels)	Time(sec)	(sec)	focus Source	defocused	Short-λ	λ
			(K mag) Source		(arc sec)	(arc sec)
				(K mag)		
16x16	.00256	.00768	5.3	N/A	0.5	1.0
48x48	.023	.069	7.6	N/A	1.5	3.1
96x96	.092	.28	9.2	3.8	3.0	6.2
160x160	.256	.77	10.3	3.4	5.1	10.4
320x320	1.02	3.1	11.8	N/A	10.1	20.8
640x640	4.1	12.2	13.3	N/A	20.3	41.6
1024x16	0.16	0.48	3.3	> N/A	N/A	Grism spec.
Full Frame*	10.6	31.8	14.3	N/A	135*	135

- Subarrays to observe bright stars with grism
- NIRCam weak lenses to defocus stars at short lams for better sampling and less saturation on bright stars (2" - 4" diameter)

NIRISS: Near-IR Transit Spectroscopy

- Spectral resolution: 700, slitless, cross-dispersed
- Simultaneous wavelength range: 0.7-2.5 μm
 - Includes key atmospheric features of H₂O, CO₂ and CH₄
- Optimized for bright targets: J>5 mag

- Spectrum is defocussed along spatial direction for high dynamic range operation and to minimize systematic errors due to flatfield (intra-pixel response) and jitter.

GJ1614b with NIRISS (~7 hrs, 5 visits)

10/14/2012

Spectra Need Bright

Transit Targets

- Ground-based surveys have identified planets transiting bright stars (117 objects w K<11 mag) with many more to come
- **TESS** would find tens of super Earths orbiting bright stars...
- ...but FINESSE team has identified >100 objects suitable for detailed spectra NOW
- Stay tuned for downselect in March!

10/14/2012

JWST Detectors Capable of High Precision Transit Performance

 H2RG device similar to JWST detectors show noise performance <50 ppm and potentially as good as <20 ppm

•Decorrelation removes disturbances due to pointing motion,

temperature drifts, etc • Testbed investigating spectroscopic performance. Initial results <50 ppm for simulated spectra 10/14/2012

Reno NV ExoPag

Goals for Exoplanet Community

- Make the "<u>New Worlds</u> of "New Worlds, New Horizons" a reality
- Reclaim JWST from cosmologists

- Win more than our fair share with a goal of capturing 25% of
 - mission time
- Plan comprehensive science programs
- Start preparing now to make sure JWST will do all that it is capable of providing for exoplanets

Optimize JWST For Exoplanet Observations

- Careful pupil alignment and optimized wavefront for coronagraph campaigns
- Multi NIRCam readouts
 - Fast subarray readout for transit target in grism module
 - Slower, full array for pointing references in other module
- Long duration, highly stable uninterrupted data acqn periods essential. JWST limit of 9,000 sec problem if not mitigated
- High cadence data storage for light curves (10-30 sec)
 10/14/2012 Reno F

