Error budgeting and tolerancing of starshades for exoplanet detection Stuart Shaklan* C. Noecker, T. Glassman, A. Lo, P. Dumont, J. Kasdin, E. Cady, R. Vanderbei, P. Lawson

> SPIE Meeting 7731 July 2, 2010

*Jet Propulsion Laboratory, California Institute of Technology Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

Goals and Overview

- Group effort, started late summer 2009.
- Develop accurate yet tractable optical models.
 - Evaluate performance in the image plane.
- Identify the main perturbations to be analyzed.
- Establish performance goals and an approach to evaluating performance.
- Present a representative error budget for a strawman mission.

Sample Problem: 61 m Starshade

- Hypergaussian design, similar to NGAS baseline but slightly different inner and outer radii (see Glassman et al, this conference).
- Telescope: 4 m diameter, unobscured.
- Bandpass: UV to NIR

Parameter	Symbol	Value
Solid disk radius	а	12.5 m
Gaussian radius parameter	b	12.5 m
Petal shape parameter	n	6
Occulter separati on	F	80,000 km
Number of petals	Р	16
Tip cutoff point	r _{tip}	30.6 m

Models

- NGAS: "spectral integration method" (Glassman 2010 in prep)
- JPL: Analytical approximation for nominal field (Vanderbei et al ApJ, 665, 794-798 (2007)) and ensemble of small slits (512 per petal edge) around perturbation area (Dumont et al Proc. SPIE 7440 (2009))
- JPL also used the method of Dubra and Ferrari (Am. J. Phys., 67, 87-92 (1999)) to get nearly identical results.
 - U. Colorado has been using this approach too.

Image Plane Results

0.3 um

78 mas

Stuart Shaklan

August 2, 2009

Model Agreement in the Telescope

Perturbation is 10⁻⁴ proportional width error of a single hypergaussian petal.

Perturbation List I

- Petal Rigid Body Motions
 - 6 DOFs
 - In plane radial and lateral translation, in plane rotation matter most
- Petal Bending
 - Polynomial forms
 - In plane: quadratic, higher
 - Out of plane: quadratic, higher
- Manufacturing errors
 - Petal length (tip clip)
 - Petal width (proportional or uniform)
 - In-plane sine-wave errors on edges
 - Symmetric (Width)
 - Antisymmetric (wiggle): much less important than symetric
 - Petal edge step
 - Out of plane sine-wave errors

Perturbation List II

- Global: apply identical errors to all petals
- Modal: bend, twist, deformation of starshade
- Cross-track (telescope/starshade/star alignment)
- Holes (direct leakage of starlight)
- Starshade tilting: Not a perturbation per se, but couples out-of-plane errors to projected shape errors.
- Incoherent scatter (sunlight, mainly)
 - Edges, reflections

- Analyze sensitivity to perturbations
 - Find amplitude that scatters light at 10⁻¹² at the Inner Working Angle (IWA).
- Individual petal and global perturbations
- Set up an error budget that meets science requirements.
 - -r.m.s. contrast, mean scatter level

NASA

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Optimized Occulter Design

Occulter design for our study. Located \sim 39,000 km from the telescope, the Fresnel number is 29.6 at the shortest wavelength 0.25 um, and 13.5 at the longest wavelength 0.55 um.

Radial Shift

Proportional Width

Lateral Shift

Linear In-Plane Bend

Quadratic In Plane Bend

Symmetric Sine Wave

Antisymmetric Sine Wave

Clipped Petal Clip

July 2, 2010

Elliptical In Plane

Perturbations vs. Wavelength

Single Petal

Global

-10

"Perturbations vs. Wavelength

Random petal errors + Global

Perturbation: Proportional Width

Perturbations vs. Wavelength

Random petal errors + Global

Cumulative

Log of the contrast for the ideal starshade. The images are a composite of the uniformly weighted bandpass 0.25 - 0.55 um

Single-Petal Sensitivity for 10⁻¹² peak contrast

		90 mas		Glaceman			
No.	Perturbati on	Amplitude	Wa	SPIE 2010			
1	Proporti onal width	3.06E-05		5.00E-05			
2	Tip clip	9.13		20			
3	Radial shift	0.35					Thicurarle
4	Quadrati cout-of-plane bend	>500				Glassman	
5	lateral shift	0.20			Design	Hypergaussian	Opti mized
6	In plane rotati on	4.97		5	Band (um)	0.3 - 0.8	0.25 - 0.55
7	In plane quadrati ic bend	32.32		50	IWA _{ti (} mas)	80	90
, 8	Symmetric sine wave 1 cycles	89.67		300	Sep (km)	80000	39000
0	Symmetric sine wave 1 cycles	35.07		300	D _{ti k} m)	62.6	34
9	Symmetric sine wave 2 cycles	30.82			L _{retal} (m)	17	6.5
10	Symmetric sine wave 4 cycles	4.05			N.	16	30
11	Symmetric sine wave 8 cycles	3.29		3	petals	Ĩ	30
12	Symmetric sine wave 12 cycles	9.02			Dtel (m)	4	2
13	Symmetric sine wave 16 cycles	30.71					
14	Symmetric sine wave 20 cycles	59.68					
15	Anti symmetric sine wave 4 cycle:	63.40		90			

Global Sensitivity for 10⁻¹² peak contrast

		90 mas		75		
No.	Perturbati on	Amplitude	Wavelength (um)	Amplitude	Wavelength (um)	Units
1	Proporti onal width	1.03E-05	0.50	1.03E-05	0.50	n/a
2	Tip clip	6.67	0.55	6.67	0.55	mm
3	Radial shift	0.11	0.55	0.11	0.55	mm
4	Quadrati cout-of-plane bend	> 500	0.35	>500	0.35	mm
5	lateral shift	12.30	0.55	9.60	0.55	mm
6	In plane rotati on	157.62	0.55	157.62	0.55	mm at ti p
7	In plane quadrati cbend	>500	0.55	>500	0.55	mm at ti p
8	Symmetric sine wave 1 cycle	31.16	0.50	31.16	0.50	um
9	Symmetric sine wave 2 cycles	12.27	0.50	12.27	0.50	um
10	Symmetric sine wave 4 cycles	1.21	0.55	1.21	0.55	um
11	Symmetric sine wave 8 cycles	2.18	0.30	2.18	0.30	um
12	Symmetric sine wave 12 cycles	6.96	0.25	6.96	0.25	um
13	Symmetric sine wave 16 cycles	24.48	0.25	24.48	0.25	um
14	Symmetric sine wave 20 cycles	38.76	0.25	38.76	0.25	um
15	Anti symmetric sine wave 4 cycles	>500	0.55	>500	0.55	um

Science Requirements

- From many studies
- ∆mag = 26
- IWA <100
- Mean scatter < 10⁻¹⁰
- SNR > 4
- Requires r.m.s. of speckle noise floor to be $< 10^{-11}$
- Evaluate in IWA swath, width matched to core of PSF

Error Budget: Combining Terms

 $\sigma^2 = \langle I^2 \rangle - \langle I \rangle^2 - \sigma_h^2$

IWA swath: 90 +/- 23 mas

 σ^2 = variance of speckles with same spatial scale as PSF

 σ_b^2 = variance of uniform component of light

It can be shown that:

$$\sigma^2 = 2 \langle I_b \rangle \langle I_r \rangle + \sigma_r^2$$

 $\langle I_b \rangle$ = mean value of uniform background. Comes from global terms

 $\langle I_r \rangle$ = mean value of non-uniform light. Comes from single-petal terms

= variance of non-uniform light. Comes from single-petal terms.

Error Budget Sensitivities

- For each perturbation, for a given amplitude, at each wavelength (7 bands) compute:
 - Single petal: compute I_r and σ_r^2 for a given 1-sigma perturbation amplitude.
 - Multiply by N_{petal} for $<I_r>$ and σ_r^2 for all petals
 - Global petal: compute I_b for a given tolerance perturbation amplitude.
- Repeat for all perturbations.
- Structural mode: compute I_r and σ_r^2
- Allocate perturbation amplitudes and tolerances.
- Combine using $\sigma^2 = 2\langle I_b \rangle \langle I_r \rangle + \sigma_r^2$

Starshade Error Budget Structure

Allocation to meet Science Requirements

		Single	Global		rms	Global
No.	Perturbati on	Petal 1-	tolerance	Units	contra <i>s</i> t	Mean
		sigma				Contrast
1	Proporti onal width	2.50E-05	2.00E-05	n/a	2.6E-12	1.6E-12
2	Tip clip	4	4	mm	2.6E-13	3.3E-13
3	Radial shift	0.25	0.20	mm	2.2E-12	1.4E-12
4	Quadrati cout-of-plane bend	150	75	mm	2.0E-14	7.0E-15
5	lateral shift	0.15	1	mm	1.9E-12	6.5E-15
6	In plane rotati on	2	2	mm at ti p	9.8E-13	7.4E-17
7	In plane quadrati cbend	5	5	mm at ti p	1.4E-13	4.8E-17
8	Symmetric sine wave 1 cycles	25	25	um	1.9E-13	1.8E-13
9	Symmetric sine wave 2 cycles	5	10	um	6.1E-14	2.4E-13
10	Symmetric sine wave 4 cycles	3	1	um	3.1E-12	4.7E-13
11	Symmetric sine wave 8 cycles	4	2	um	3.7E-14	1.3E-14
12	Symmetric sine wave 12 cycles	5	5	um	1.3E-14	1.9E-14
13	Symmetric sine wave 16 cycles	25	10	um	1.5E-13	3.4E-14
14	Syymmetric sine wave 20 cycles	25	10	um	9.2E-14	2.0E-14
15	Anti symmetric sine wave 4 cycles	10	50	um	3.9E-13	5.6E-16
16	In plane ellipti cal truss deform.	n/a	0.02	eccentricity	1.6E-16	1.8E-16

Performance

wavelength (um)	0.25	0.3	0.35	0.4	0.45	0.5	0.55
rms	4.9E-12	7.8E-12	5.0E-12	5.3E-12	5.7E-12	8.4E-12	9 .4 E-12
mean	4.2E-12	5.2E-12	4.9E-12	5.7E-12	6.3E-12	9.8E-12	1.1E-11

Requirement: $rms < 10^{-11}$, Mean $< 10^{-10}$

- Verification: to verify that the error budget equation is correct, we performed Monte Carlo simulations.
 - Single petal perturbations normally distributed with r.m.s. from green column (previous slide)
 - Global perturbations = +/- yellow values.
 - Structural perturbation = +/- blue value.
 - All were uncorrelated.
- We recorded rms and mean contrast in the IWA annulus and saw that they matched the results predicted from the combination equation, shown in the above table.

Conclusions

- Satisfying agreement on perturbation sensitivities
 - Three different diffraction algorithms agree well
 - Hypergaussian and optimized petal shapes have very similar sensitivities
 - Agreement on list of perturbations to consider
- We have developed budgets including random and global (identical on all petals) perturbations
 - Based on optical sensitivities
 - Combination of terms verified with Monte-Carlo simulations
 - SNR>4 for optical bands with respect to systematic uncertainties from starshade disturbances
 - Key perturbations: radial petal translation, ripples at 4-8 cycles/ petal length
 - Correlation between petals amplifies the performance degradation

Future Work

- Work in progress and for the future
 - Develop budget spreadsheets for communicating/reporting, system engineering
 - Design and evaluate budgets for both characterization and detection
 - Study calibration and neutralization, such as spinning the occulter
 - Consider perturbations with starshade tilted or decentered from the star
 - Refine allocations, compare different designs, revisit design trades
 - Revisit technology readiness assessments