

Overview of External Occulter concepts

ExoPAG 2 – SAG 5 progress report

Charley Noecker

SAG 5 - State of External Occulter Concepts and Technology

- Introduction
- Summary of current mission concepts
 - Flagship class (ASMCS)
 - Probe class (JWST)
 - Other
- Requirements overview
- Technology status

Introduction

• Objectives:

- Describe the features of external occulter concepts for direct detection imaging of exoplanets
- Summarize the various estimates of potential scientific harvest
- List the technology tall poles and assess the prospects
- Provide information to JWST on the state of occulter technology
- Participants: members of the principal advocacy teams for external occulters
- Product: report on challenges and potential benefits of external occulter missions
 - Top-level instrument concepts (summarizing ASMCS studies and other sources)
 - Published estimates of exoplanet science harvest
 - Known technology challenges and plans for addressing them
- This is a preliminary sketch of a response to that charge

- Two spacecraft instead of one
 - "Flat space" orbits: L2 or drift-away
- Inner working angle is decoupled from telescope diameter
- Star suppression tolerances fall on starshade, not telescope
 - Tolerances of microns to meters
 - Any diffraction limited telescope
 - High optical throughput
- Few visits \rightarrow Make each one count
 - High throughput short integration
 - Choose tough requirements on "systematic floor"
 - Spectroscopy on the first visit

Starshade sizing

- Define Fresnel number F = $R^2/\lambda Z$
 - Starshade radius = R Distance to telescope = Z
 - Optical wavelength λ
- Design requirements:
 - Deep shadow at the telescope $(10^{-9}-10^{-10}) \rightarrow F > 10^{-10}$
 - IWA (inner working angle) α ~ 50-100 mas
 - Longest science λ ~ 0.5–1.0 μm
- Then $R = F\lambda/\alpha \sim 30-60 \text{ m}$ and $Z = R/\alpha \sim 30,000 - 80,000 \text{ km}$ (=30-80 Mm)

Telescope sizing

- IWA is defined by R and Z, ~independent of telescope size
 - Width of shadow at telescope depends weakly on R, Z
- Could in principle operate with IWA << λ/D

Telescope diameter

- But telescope angular resolution is needed
 - Isolate pointlike exoplanets from exozodiacal dust profile
- Typically want IWA >~ 2 λ /D to resolve ambiguity in image
 - Rough estimate TBD
 - This rule of thumb is broadly applicable for exoplanet direct detection
- If λ_{max} =1µm, α =100 mas, we want D > 4m as usual!

- Starshade manufacturing, testing, and deployment
- Starshade-Telescope alignment
- Large thruster systems

Starshade manufacturing, testing, and deployment

- Large deployable "optic"
 - Binary & paraxial, not a mirror/lens
- Diameter ~30-60m
 - Lightweight materials
 - Folded into 5m launch fairing
 - More than 12 petals, and each must deploy reliably
- Perimeter edge sharpness
 - To limit solar stray light in telescope

- Position tolerances ~ mm to m
 Shape tolerances ~ µm to mm
 - Later presentation
- Full-scale pre-launch testing of diffraction is impossible
 - Propagation distance ~6-12 R_{\oplus}
 - Instead use precision shape measurements in the lab, and optical diffraction modeling

Starshade-Telescope alignment

Science telescope & field stars

Retro

Antipode field stars

Science star

Science star

Science Telescope &

shadow sensor

- Typical 3o tolerance ~5 mas
 1m lateral / 40,000 km
 - Looser (5%) along LOS
- Coarse sensor: RF ranging
 - Between s/c, and DSN-to-s/c
- Medium sensor: Astrometric
 - Astrometric telescope on one space-craft views its partner spacecraft against a background of stars
 - Measures angles precisely to acquire alignment with science star

Science star

Antipode field

Occulter & Astrometric

Sensor

- Fine: Shadow sensor
 - For λ > science passband, star diffraction into shadow increases, as Poisson spot returns
 - Center that spot in telescope pupil
 - Direct lateral-position measurement, high SNR

6/25/2010

1.5

Alignment sensing for two mission concepts

With dedicated telescope (Flagship mission concept)

- Medium: Astrometric sensor
 - 100 mas quality is off the shelf
 - Guide slew to onset of shadowing: starshade between science star and telescope
 - Fine: Shadow sensor
 - Straightforward instrument build
 - Excellent SNR, accuracy for alignment

Starshade with JWST (**Probe** mission concept)

- Medium: Astrometric sensor
- Fine: Astrometric sensor
 - → Starshade must autonomously maintain alignment
 - No new instruments on JWST
 - No telecom modifications either
 - Astrometric sensor on starshade observes JWST and science star
- This puts harder requirements on astrometric sensor
 - There is no real alternative

"Fuel Is Science"

- Science is limited by number of stellar visits in a mission
 - Initial detection, characterization
 - Return for more characterization
- Visits limited by fuel
 - Typical 1 star/2 weeks for 5 years requires total $\Delta v \sim 10,000$ m/s
 - High I_{sp} thrusters needed \rightarrow fuel mass ~900-1200 kg Xenon
 - Fuel consumed on <u>each slew</u> \propto 1/(slew time T):

SEP: $(50 \text{ Mm})(20^{\circ})$ in 12 day

150 stars \rightarrow 10 km/sec

 \rightarrow 67m/s stop-to-stop

 Number of stars observed in entire mission depends directly on fuel mass
 g·I_{sp}·T_M mfuel

Typical slew distance between stars

External occulter mission concepts

- Flagship class (NWO, THEIA/XPC)
 - 4m telescope "HST2"
 - Starshade radius ~30m
 - 50-70 mas IWA
 - ~30 HZs for Earth-size planets

- Probe class NWP
 - JWST or another diffraction-limited visible-NIR telescope in flat space
 - Jovian planets & few Earths
- Probe class O3
 - 1.1m dedicated UV-vis telescope
 - 30m diam starshade
 - Jovian planets & few Earths
- Others with small telescope and small starshade

- Concept description including cost category
- Summary of expected science harvest
- Technology tall poles
- Examples:
 - THEIA/XPC O3
 - NWO NWP
 - And others

Current status

- Soummer et. al. have studied a filter change on JWST that would enhance it as an exoplanet hunter with a starshade
- Kasdin et.al. have studied a mission concept (O3) with a small dedicated UV telescope and starshade
- A team including members of JPL, Northrop Grumman, Ball, and Princeton have worked successfully to reconcile differences in tolerance allocations and performance
 - A full budget incorporating multiple simultaneous errors is within reach
 - Likely two separate budgets, due to design differences

Next steps

After error budgets have settled

- Revisit design trades
- Reassess technology readiness levels
- Technology Development Funding
- External review of designs and TRLs
 - Independent validation of advocate claims
 - Support robust technology roadmaps

References

- Incomplete...
- Astro2010 white papers
- ASMCS final reports
 - http://newworlds.colorado.edu/documents/ASMCS/ asmcs_documents.htm
- High-level journal or conference papers

Shaklan tolerance paper