Toward an optimal LINEAR sensing and calibration strategy for high contrast imaging

Introduction to ... Linear Dark Field Control (LDFC) ... and other useful tricks

Olivier Guyon (UofA) Kelsey Miller (UofA) Johanan Codona (UofA)

May 5, 2016

Linear Dark Field Control (LDFC)

Speckle intensity in the DF are a non-linear function of wavefront errors \rightarrow current wavefront control technique uses several images (each obtained with a different DM shape) and a non-linear reconstruction algorithm (for example, Electric Field Conjugation – EFC)

Speckle intensity in the BF are linearly coupled to wavefront errors \rightarrow we have developed a new control scheme using BF light to freeze the wavefront and therefore prevent light from appearing inside the DF

Bright field speckles in ½ field dark hole

LDFC vs. EFC

LDFC improves wavefront control loop speed by ~20x (more starlight is used for the measurement) and does not require DM modulation. Linear loop is simpler, more robust that state of the art.

EFC

- Requires ≈4 images
- Competes with science measurement: dark field needs to be broken
- Time aliasing effects and confusion between incoherent residual and time-variable coherent residual
- Sensitive to (exo)zodi unless probes are large
- Sensitive to dark current and readout noise unless probes are large
- Sensing relies on DM calibration and system model
- Difficult to measure/verify G-matrix
- Only uses $\approx 15\%$ spectral band
- Only uses dark field area
- Single polarization
- Non-linear loop (convergence, computing power)

LDFC

- Single image
- Maintains dark field during measurement: 100% duty cycle
- More robust against temporal effects: speckle variations have small negative effect on loop
- Insensitive to (exo)zodi
- Robust against dark current and readout noise (photon noise > readout noise)
- Sensing relies on camera calibration
- Response matrix obtained from linear measurements
- Can use pprox 100% spectral band
- Can use whole focal plane (if combined with EFC)
- Dual polarization (if detector(s) allow)
- Linear loop: simple matrix multiplication

Application to NASA missions

We assume here:

- 2.4m telescope, 10% efficiency, 400nm-900nm LDFC bandwidth
- 1e-9 contrast dark field speckle sensing, $m_V = 5$ star
- 1e-8 incoherent background (zodi + exozodi + detector)

0.2 ph/sec/speckle, 2ph/sec for background.

Bright speckle level	Relative modulation	Absolute change	1mn SNR	Camera dynamical range
1e-4 (20000 ph/sec)	0.6%	6.3e-7 (127 ph/sec)	7.0	1e5
1e-5 (2000 ph/sec)	2%	2.01e-7 (40.2 ph/sec)	7.0	1e4
1e-6 (200 ph/sec)	6%	6.43e-8 (12.86 ph/sec)	7.0	1000
1e-7 (20 ph/sec)	21%	2.1e-8 (4.2 ph/sec)	6.9	100
1e-8 (2 ph/sec)	73%	7.3e-9 (1.46 ph/sec)	5.65	10
1e-9 (0.2 ph/sec)	300%	3e-9 (0.6 ph/sec)	3.13	1

Case study for WFIRST:

LDFC control bandwidth is 10mn, compared to several hr for state of the art EFC

Key benefits:

- LDFC enables close loop aberration control on science targets, as opposed to the current "set and forget" scheme → deeper contrast can be maintained, and system can be more resilient to small wavefront changes
- LDFC is also a powerful aid to PSF calibration. During science exposures, LDFC images provide live telemetry of wavefront changes.

LDFC is particularly well suited to track cophasing errors on a segmented aperture, using diffraction features created by segments

LDFC ↔ LOWFS

(iii) Tilt

(b) On-sky

(i) Reference

(iv) Focus

Response Matrix

Residuals

Ref: Singh et al.

Warning !

LOWFS control should NOT use Zernikes...

it should control the modes it can see, and not attempt to control its null space Knowledge of statistical WF variations should be included

Overall challenge: figuring out and exploiting linear relationships

Overall challenge: figuring out and exploiting linear relationships

Problem statement

How do we find the the <u>optimal</u> (least square) linear filter **F** that minimizes:

Solution: extract linear dependencies from previous measurements

"history" vector H of $n \times m$ coefficients:

$$\mathbf{H}(t) = \begin{bmatrix} \tilde{w}_{0}(t) \\ \tilde{w}_{1}(t) \\ \vdots \\ w_{m-1}(t) \\ \tilde{w}_{0}(t-dt) \\ \vdots \\ w_{m-1}(t-dt) \\ \vdots \\ w_{m-1}(t-(n-1)dt) \end{bmatrix}$$

$$\mathbf{F}^{i} = \begin{bmatrix} ar_{0,0}^{i} & ar_{1,0}^{i} & \dots & ar_{m-1,n-1}^{i} \end{bmatrix}$$

The predicted value is obtained as an linear sum of previous wavefront sensor measurements :

$$\hat{w}_i(t+\delta t) = \mathbf{F}^i \mathbf{H}(t) \tag{3}$$

To find the optimal filter, we first consider a training set, consisting of l vectors **H**, arranged in a $n \times m$ by l data matrix

$$\mathbf{D} = \begin{bmatrix} \mathbf{H}(t) & \mathbf{H}(t - dt) & \dots & \mathbf{H}(t - (l - 1)dt) \end{bmatrix}$$
(6)

and the corresponding a-posteriori measured wavefront variable values arranged in a 1 by l matrix $\tilde{\mathbf{P}}_i$:

$$\tilde{\mathbf{P}}_i = [\tilde{w}_i(t+\delta t) \quad \dots \quad \tilde{w}_i(t+(l-1)dt+\delta t)]$$
(7)

The algebraic representation of equation 4 is

$$min_{F^i} ||\mathbf{F}^{\mathbf{i}} \mathbf{D} - \tilde{\mathbf{P}_i}||^2 \tag{8}$$

By taking the transpose of the quantity to be minimized, we recognize the classical least-square problem

$$||\mathbf{D}^T \mathbf{F}^{i^T} - \tilde{\mathbf{P}_i}^T|| \tag{9}$$

yielding the filter solution

$$F^{i} = \left((\mathbf{D}^{T})^{+} \tilde{\mathbf{P}}_{i}^{T} \right)^{T}$$
(10)

According to equation 10, the regressive filter ${\cal F}$ can then be written as

$$\mathbf{F}^{i} = \tilde{\mathbf{P}}_{i} \mathbf{U} (\mathbf{\Sigma}^{+})^{T} \mathbf{V}^{T}$$
(13)

and the predicted value is

$$\hat{w}_i(t+\delta t) = \tilde{\mathbf{P}}_i \mathbf{U}(\mathbf{\Sigma}^+)^T \mathbf{V}^T \mathbf{H}(t).$$
(14)

Simple example: TT errors averaging + prediction

time step

Simple example: TT errors averaging + prediction with accelerometer telemetry (3-step lag)

Simple example: TT errors averaging + prediction with accelerometer telemetry (3-step lag)

100x better accelerometer precision

