Completeness and astrometry

Bruce Macintosh(LLNL)

Questions and Goals

Questions we're asking

- 1. Does knowledge of which stars have earthlike planets (from any source) help with an imaging mission?
- 2. Does information about the system architecture rapidly multiply value of orbital information from an imaging mission?
- 3. Does detailed knowledge of planetary orbits from astrometry help with an imaging mission?

Questions we're not asking (but Lisa is)

 How important are masses to scientific understanding of systems

Goals

- Find general scaling laws rather than mission-specific facts
- Be clear and realistic about dependences (e.g. on eta_earth)
- Compare to other sources of information

Model uncertainty in mass/luminosity

Coronagraph completeness

Coronagraph completeness

Completeness

Effects of target selection for 0.16" IWA Depth of search (completeness * stars)

Effects of target selection for 0.16" IWA

Steps

- Agree on figures of merit
- Calculate using existing tools and uniform assumptions
- Come up with basic scaling laws

Long term:

 Incorporate astrometry into one channel of a double-blind study?

Space astrometry

- 0.9 μas per measurement
- 5 year baseline
- N=100 to 1285 visits per star
- No stellar activity noise
 - JPL models indicate this is small
- No systematic threshold
- Blind spot from 0.9-1.1 years

Blind spot effects

Blind spot effects

Blind spot effects

Astrometry comparison to Doppler searches

