

Exoplanet Exploration Program Overview

Presented to the

Exoplanet Exploration Program Analysis Group

(ExoPAG)

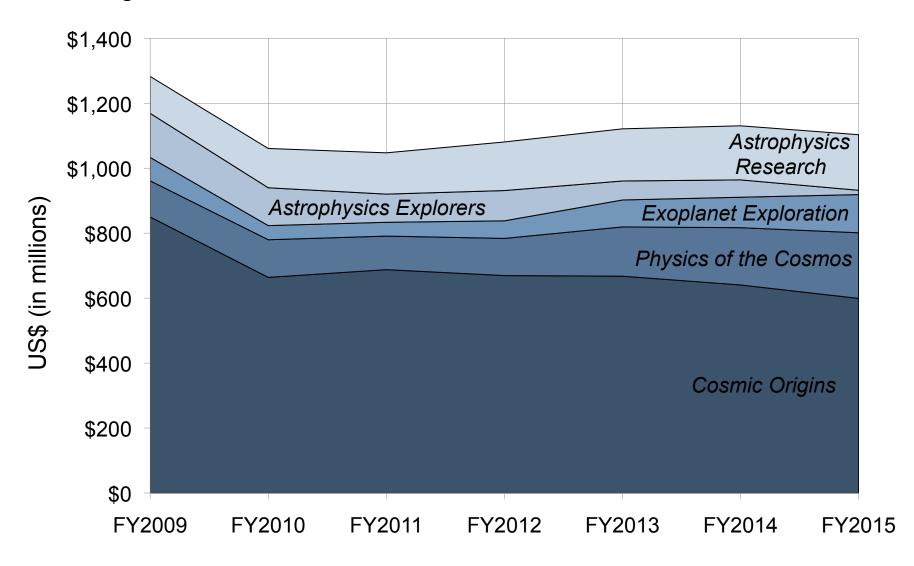
24 June 2010

Pasadena, CA

Dr. Douglas M. Hudgins

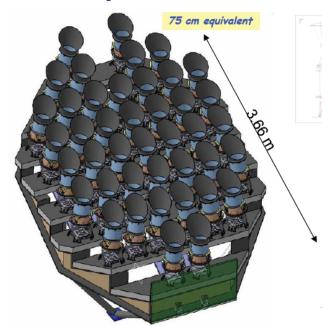
Exoplanet Exploration Program Scientist Astrophysics Division Science Mission Directorate NASA Headquarters

NASA Science Mission Directorate


Budget Profile 2009 – 2015 (President's FY11 Budget Request)

NASA Astrophysics Division

Budget Profile 2009 – 2015 (President's FY11 Budget Request)


Astro 2010 Decadal Survey Report

Insert recommendations here

ESA's PLATO Mission

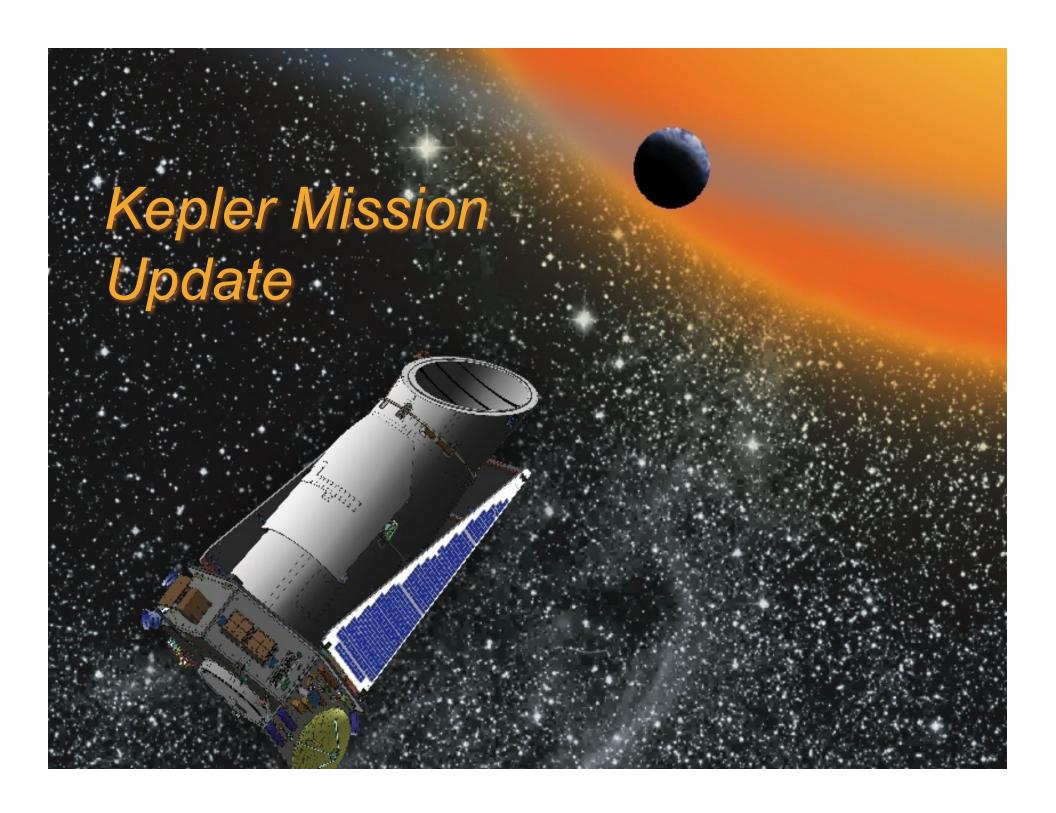
- PLATO = <u>PLA</u>netary <u>Transits and Oscillations of stars</u>
- One of three M-Class Cosmic Visions missions under consideration by ESA (Euclid, Solar Orbiter)
- Down-select to two missions anticipated November 2011 for launches in 2017, 2018.
- Currently laying groundwork for possible US participation, <u>if</u> consistent with recommendations of Decadal Survey
- Objective: Detect and characterize planetary systems, particularly earth-like in habitable zone
- <u>Techniques</u>: High-precision Photometry, detection by transits, asteroseismology, ground based spectroscopy
- Instrument: Multiple telescopes surveying a very wide field of view
- Observing strategy: 2 long runs (2-3 years)
 + several short runs

Science Goals of PLATO

- The primary goal of PLATO is to provide a full statistical analysis of exoplanetary systems around stars that are bright and nearby enough to allow for simultaneous and/or later detailed studies of their host stars.
 - 1,000-3,000 very bright stars (<8 mag) for exoplanets with spectroscopic follow-up
 - 20,000 stars (<11 mag) for planets and asteroseismology (2% mass, 10% ages)
 - 250,000 stars at lower sensitivity for exoplanets (<12 mag)
- As a secondary objective, PLATO will also perform seismic analysis for a very large sample of stars all across the HR diagram, also without detected exoplanetary systems.
- Long (2 and 3 yr) survey of 5,700 sq. deg. includes many more bright stars than Kepler for exoplanets plus asteroseismology characterization of host stars
- Step & stare survey >16,000 sq. deg (40% of sky, or more with longer mission) to identify planets around nearest, brightest stars suitable for spectroscopic follow-up (2-6 months per field)

Possible NASA Collaboration/PLATO Mission

- Total U.S. contribution to mission ~20% of the total mission value to ESA
 - NASA is participating in Definition Phase studies with ESA to identify potential contributions to the scientific payloads
 - Additional potential contributions (e.g. spacecraft hardware, ground segment contrib., launch segment contrib., etc.) also to be defined during the Definition Phase
 - Data processing and calibration activities count toward the U.S. contribution
 - Funding to selected scientific participants for data exploitation (i.e., science data analysis, interpretation) does not count toward the U.S. contribution
- Possible U.S. participation through member states proposing to the ESA AO will count toward the total U.S. contribution
- NASA will appoint proportionate representation to the Euclid and PLATO mission-level science teams
- All data will eventually be archived and made accessible for further scientific exploitation by the broader scientific community


Possible NASA Collaboration/PLATO Mission

U.S. Contributions to PLATO in Three Categories

- Scientific investigations and payload/instrumentation contributions competitively selected through an open NASA-sponsored AO shortly after the release of the decadal survey
- Non-payload space vehicle/mission components, such as spacecraft subsystems or ground/launch segment contributions, to be provided by the appropriate NASA program
- Additional U.S. scientific or institutional contributions (not funded by NASA) to European-led proposals selected via the ESAAO process.

U.S. Participation in Mission Optimization Studies

- Two US scientists assigned to study team to guide concept development and ensure consistency with mission science goals.
- US Engineering support to guide concept development and identify niches for NASA contributed hardware and ground support.
- NASA will receive the Astro 2010 decadal survey recommendations before committing to providing contributions to PLATO mission.
- JDEM, SIM, and other scientifically related efforts will continue with FY2010 activities as planned.

