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1. EXECUTIVE SUMMARY

In this final report, we document the results of our ROSES Technology Development for Ex-
oplanet Missions (TDEM) two-year research program to advance the technology associated with
using two deformable mirrors to perform amplitude and phase control in a coronagraph. We de-
scribed the the goals of the program in our Technology Milestone Whitepaper, JPL Document
D-81164 dated October, 2013. We will refer to that often in this report.

While we did not meet our milestone, largely due to a reprioritization of facilities at JPL
after the start of the WFIRST/AFTA coronagraph development, we did verify the effectiveness
of using two deformable mirrors to create dark holes on both sides of the image. We achieved a
monochromatic contrast of 3.6 x 107 in the High Contrast Imaging Testbed (HCIT) using one
32 x 32 DM (with 23 x 23 actuators illuminated) and one 64 x 64 DM (with 48 x 48 actuators
illuminated) and a shaped pupil coronagraph, just shy of our primary millstone requirement of
1x 1079

As a reference, our milestones from the whitepaper were:

TDEM Primary Milestone:

o Demonstrate with 90% confidence that the system can achieve symmetric dark holes in
the image plane in monochromatic light with an expected average contrast plus 3-sigma
<1 %1079 from 5-9 A/D using two deformable mirrors in series.

TDEM Secondary Milestone:

o Demonstrate with 90% confidence that the system can achieve symmetric dark holes in the
image plane in a 10% band about the central wavelength with an expected average contrast
plus 3-sigma < 5 x 1079 from 5-9 \/D using two deformable mirrors in series.

In the remainder of this report we describe the design of the shaped pupil coronagraph, the
algorithm development, and the experiments we performed.

2. CERTIFICATION

In this section, we reference the list of items for the certification data package from Section 6
of the milestone whitepaper and identify where they can be found in this report. The certification
item description from the whitepaper is given in italics followed by the reference information in
roman type.

(1) A narrative report, including a discussion of how each element of the milestone was met,
and a narrative summary of the overall milestone achievement.
This narrative report responds to item (1) of the certification data package.
(2) A complete description of the HCIT layout and optical system used with the significant
characteristics.
See Section 5.
(3) The sets of images used for calibration of the reference star.
Calibration was performed using the standard HCIT procedure by the HCIT personnel.
The procedure they follow is to: 1) calibrate the contrast of the quilting order to the main
PSF. 2) put the focal plane mask in place, and 3) use the quilting order peak brightness
from then on to calibrate the contrast in the dark hole (without ever moving the mask
again). We unfortunately don’t have the images used for this process.
(4) Microscope images of the shaped pupil and focal plane masks with simulated PSFs.
See Section 4.
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(5) Calibrated final images of the coronagraph contrast field for each experiment run, for both
the monochromatic and broadband experiments.
See Section 9 for the final calibrated images of the single monochromatic experiment.
There were no broadband experiments as we ran out of time in the facility.
(6) Calibrated curves showing the contrast convergence of the control algorithm for all runs.
See Section 7.3.
(7) A histogram of the brightness distribution of pizels in the dark hole for each of the final
images in the data set and for the combined data.
Since there was only a single experimental run with one final image of the dark hole,
we were not able to produce histograms across multiple images. However, Fig. 8 shows a
histogram of the brightness distribution of pixels (in units of contrast) across the dark hole
for that final image.

3. Success CRITERIA

Appendix A reproduces verbatim the success criteria from the milestone whitepaper. Here we
reference those criteria and indicate where in this report evidence of success or a description of the
process can be found.

Primary Milestone:

(1) The HCIT was successfully brought to vacuum with all alignments completed.

(2) The calibration was successfully completed.

(3) The new Kalman filter was implemented and successfully obtained estimates faster than
the previous method. This was used with stroke minimization to successfully create two
symmetric dark holes.

(4) The mean contrast over the dark hole was computed to be 3 x 1079,

(5) Unfortunately, there was not time to repeat the experiment.

(6) Because there was no time to repeat the experiment, no statistical analysis was completed.

Secondary Milestone:
The Secondary Milestone was not attempted due to lack of access to the HCIT facility.

4. SHAPED PUPIL DESIGN AND MANUFACTURE

One shaped pupil mask was used for this entire experimental run. The shaped pupil is a ripple
mask similar to that used in Princeton’s 2007 run at the High Contrast Imaging Testbed (HCIT) at
Jet, Propulsion Laboratory (JPL).(1) The mask was designed in the ideal case to achieve 1.0 1918
contrast or better at all points in the discovery space, the region of high contrast in a perfect optical
system, which in this case extends from 4.5 to 56 A /D in symmetric 90 degree wedges. This difficult
contrast constraint limited the TWA to 4.5 A/D. The outer working angle was chosen to be 56 A /D
to prevent the PSF copies from DM1 quilting orders from leaking into the discovery space. The
discovery space stretched across two 90° arcs on opposite sides of the image plane. The high design
contrast also limited the transmission of the mask to 15% for an unobstructed circular aperture.
The corresponding focal plane mask was slightly oversized to allow for slight misalignments in
the testbed. It blocked up to an IWA of 4.75 A/D(at 808nm) and left openings 80°-across for
dark hole correction in the 90° discovery region. Because the shaped pupil is a binary mask, it is
fundamentally achromatic and its PSF scales with wavelength. We note that the correction region
of the shape pupil is slightly smaller. This is the sub-region of the discovery space in which the
DM:s recover high contrast from the aberrated PSF. The correction region ranged from a radius of
4.8 A\/D to an x-distance of 9.5 lambda/D over symmetric 80-degree wedges. To avoid accidentally
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(a) 2-D Image of SP Design (b) First Wafter Layout

FIGURE 1. (Left) Two-dimensional image of the 1070, 56 A/D shaped pupil de-
sign. White areas are transmissive. The red circle illustrates the pupil diameter.
(Right) Schematic of the first wafer layout, including several shaped pupils and the
corresponding image plane masks.

measuring pixels obscured by the focal plane mask, in the results quoted below pixels were counted
only from an IWA of 5.0 A\/D over 75-degree openings.

JPL’s Microdevices Laboratory (MDL) fabricated this shaped pupil and others, along with the
corresponding focal plane mask (FPM), using Deep Reactive Ion Etching (DRIE) of a Silicon-On-
Insulator (SOI) wafer. The original wafer was 400 microns thick and was etched down to 40 microns
near the openings for sharper edges. To prevent transmission of light through the mask, the front,
un-etched side of the mask was coated with a 200 nm gold layer. As with the SP manufactured
in 2007, the dashing method was used to prevent the thinning tails of the ripples from becoming
waveguides. In the dashing technique, 25-micron diameter circles were placed where the ripple
tails would be less than 12-microns wide, and the circles are spaced as to conserve the amount of
material that would have been etched out by the ripple tails. The 2007 paper and the milestone
whitepaper have a more detailed analysis and figures that show dashing.(1)

Despite the innovation of 2-D optimized masks to account for obstructed apertures, (2) we
utilized a nearly identical shaped pupil for this series of tests as we used in 2007 because we were
restricted to a transmissive design. The Ripple3 SP used in 2007 had a maximum contrast of
3.0 x 10719 in the discovery space, had edges 50-microns thick, and was aluminum plated.(1) The
main purpose of this HCIT run was to test 2-DM estimation and control methods, so we chose to
use the proven SPP manufacturing technique from before. Fig. 1 shows the design of the pupil and
the wafer layout for etching. Figure 2 shows a microscope image of the final manufactured shaped
pupil for the HCIT tests.

5. TESTBED LAYOUT

In the vacuum chamber of the HCIT as diagrammed in Fig. 3, the beam expands to an off-axis
parabola (OAP1). A 64x64 Xinetics DM with 1-mm pitch is located at a pupil in the collimated
beam and has a 62mm circular stop. The beam reflects off OAP2 and then off DM2 as it converges.
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{a) Full Mask (b) Zoom

FIGURE 2. A microscope image of the manufactured shaped pupil form the mi-
crodevices laboratory. (Left) Full mask image. (Right) Zoom in on the dashing.
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FIGURE 3. Optical layout of the JPL HCIT. The collimated beam propagates from
DMI at the first pupil to OAP2. The converging beam hits DM2 before being
refocused and passing through a shaped pupil. At the next focus the core of the
PSF is blocked with an image plane mask, and the 80° of the 90° search areas are
re-imaged onto the final science camera.

The Lyot occulter plane is empty because the shaped pupil by itself requires neither a Liyot occulter
nor a Lyot stop. After collimating off OAP'3, the collimated beam passes through the shaped pupil.
OAP4 then focuses the beam onto a bowtie-shaped focal plane mask whose sole purpose is to block
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the core of the PSF for better dynamic range on the science camera. Two more OAPs then re-image
the PSE onto the science camera. The camera is on a linear stage to allow for phase retrieval and
DM actuator registration before control and estimation procedures begin.

The HCIT could already accommodate shaped pupil coronagraphs, so the only major re-
configuration was the inclusion of a sccond DM for quasi-static speckle suppression. We would
have preferred to have DM2 in the collimated beam somewhere before the SP, but that would have
necessitated moving all the optics either before or after DM1. Therefore, the fold mirror in the
converging beam after OAP2 was replaced with a 32x32 Xinetics DM.

Princeton operated the HCIT remotely by exchanging FITS files via an FTP server at JPL. All
of Princeton’s two-DM tests were performed in the last two weeks of August 2013, as the earlier
part of the summer was dedicated to setup in the HCIT and adapting our algorithms and model
for the HCIT optical configuration.

6. Two DEFORMABLE MIRRORS IN THE HCIT

The two deformable mirrors are by far the two worst optical surfaces in the system. Fig. 4(a)
shows the shaped pupil and Fig. 4(b) shows the resulting PSF for a flat wavefront. In Fig. 4(c)
we show the image of the shaped pupil with the actual amplitude aberrations (after the phase has
been flattened). The main structure of the amplitude errors matches the quilting pattern of the
DMs. In Fig. 4(d) we can see a simulated image of the aberrated PSF with an average contrast of
9.5 x 1076 from 4 to 9.5 A\/D.

(a) Ideal Pupil (b) Ideal PSF (¢) Aberrated Pupil (d) Aberrated PSF

FIGURE 4. The ideal pupil (a) produces two 90° search areas at better than 1010
contrast (b). With the measured amplitude aberrations provided by the phase
flattening and retrieval procedures at the HCIT (c), the simulated PSF from the
SP has an expected starting contrast of 9.5 x 1078 (d), which agrees well with the
actual measured value of 7.8 x 107%. The PSFs are on a log scale shown by the
gray-scale bars.

Before testing estimation and control algorithms, we ran established HCIT routines to flatten
the exit pupil phase and register the location of the DM actuators. The science camera is on a
linear stage, which allowed phase retrieval of the exit pupil electric field. By poking sets of non-
neighboring actuators and performing phase retrieval each time, the locations and gains of the
actuators for each DM were obtained. The phase at the exit pupil was then flattened and the
resulting electric field was re-obtained via phase retrieval. Flattening the pupil phase decreased the
starting contrast in the correction region from about 10~* to about 1073 contrast. We also used
phase retrieval with and without the SP rotated into the pupil the determine the alignment of the
SP.

To construct the control effect matrix (also called the Jacobian or G matrix) in the final image
plane for each DM, we utilized the flattened electric field from the phase retrieval as our starting
point. Because both DM1 and the SP were in pupils, we simply modeled the SP as being at
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DMI1 and then performed a Fourier transform to the image plane for each actuator. DM2 was
somewhat harder to model. From Zhou and Burge,(3) we see that we can still utilize the Talbot
effect for amplitude and phase control across the whole image plane with DM2 in a converging
beam. Using geometric optics, we find that we can adequately model DM2 as though it were still
in the collimated beam z., = 3.88m downstream of DM1 based on

Zeq = fHapa/ R, (1)
where foapa is the focal length of OAP2 and R is the distance of DM2 to the following focus. The
advantage of modeling DM2 as being in a collimated beam is that it lets us directly use, without any
scaling, the actuator positions obtained via phase retrieval of the exit pupil. The approximation
of DM2 being in a collimated beam is slightly inaccurate because the field in the converging beam
is supposed to be curved, not flat. Because OAP2 has such a long focal length of 1.54m and only
about 23 mm of DM2 is illuminated, however, the small curvature at DM2 is negligible. The error
that this assumption introduces is on par with the uncertainty in the influence function shape and
can thus be ignored.

7. WAVEFRONT ESTIMATION

7.1. Algorithm Development. DM Diversity is the most commonly used technique for wavefront
estimation in high contrast imaging experiments. Other sources contain in-depth derivations,(4; 5)
so we will just summarize here. DM Diversity is a type of focal plane wavefront estimation in which
the wavefront sensor is the science camera to avoid non-common path errors. In DM Diversity a
measurement is the image from a DM probe shape +¢ minus the image from the negative of that
probe shape —¢; this is called a probe image pair. Two image pairs are needed to invert the
measurement and yield the image plane electric field estimate, and three or more image pairs are
necessary for a least-squares estimate. Because of the stability of the HCIT and its high-quality
camera, only two image pairs are typically used there for each iteration. The main drawback of
DM Diversity is that it is a batch process estimator. That is, after each iteration the electric field
estimate is thrown away. Because exposures at high contrast in a space observatory will be hours
long, it would be beneficial to utilize the previous wavefront estimate data to reduce the number of
necessary exposures. This motivated the Kalman filter developed in Groff et al. 2013 that is used
as the standard estimation method at the Princeton High Contrast Imaging Laboratory (HCIL).(5)
The Kalman filter initializes with DM Diversity for the first control iteration and then requires as
fow as 1 image pair for each wavefront estimate update.

7.2. Implementation at the HCIT. Before we could compare DM Diversity and the Kalman
filter at the HCIT, we had to update our implementation of DM Diversity. In our initial one-
sided dark hole tests, our DM Diversity estimator could not replicate the actual image below
about 3 x 10”7 contrast, whereas the implementation previously used at the HCIT still matched at
contrasts on the order of 1072, The issue was that the Princeton estimator relied on the linearized
system model to predict the change in the image plane’s electric field from each probe. The HCIT’s
method used the intensity data from the actual probe images to compute the amplitude change and
the nonlinear model of the system to compute the phase change. Once the Princeton DM Diversity
code was changed to follow the HCIT method, our estimator easily allowed us to control down to
nearly 1079 contrast. The Kalman filter also requires computing the change in electric field at the
image plane from the probes, so we similarly corrected the code for that estimator as well.

The Kalman filter for wavefront estimation needed tuning for the HCIT testbed. We fixed
the value of the sensor noise since the readout noise from the camera was known. The process
noise value was then tuned until the contrast converged the fastest, which occurred at a value
corresponding to about a 3-nm uncertainty in the actuation height. As found by Groff, (5) when
using single image pair updates with the Kalman filter, a good probe is necessary for contrast
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improvement at each iteration of estimation and control. Using the same probe every iteration or
cycling through two or three probes in a set yielded poor contrast convergence at the HCIT. Cycling
through four probe shapes gave good results, so we used four probe pairs for all the Kalman filter
results presented.

7.3. Comparison. After correcting our algorithms and tuning the Kalman filter, we were able to
compare the performance of the two estimators directly. Fig. 5 plots contrast versus number of
images for DM Diversity and the Kalman filter,both with stroke minimization as the controller. We
do not plot the iteration number because DM Diversity requires five images per iteration (1 image
plus 2 probe pairs: IO,I{",I{,I;,IQ_) whereas the Kalman filter requires 5 images for the first
iteration and 3 for each update (1 image plus 1 probe pair: Iy, I}, I; ). We see that the Kalman
filter starts off slightly slower but then reaches 1 x 10~® in half the number of images required by
DM Diversity. Thus, the Kalman filter is more practical for a space mission than a batch process
estimator because it requires far fewer images for estimation.

10 g e T o I e

|---DM Diversity: 2 pair
— Kalman filter: 1 pair |

Contrast

Total Image Count

FiGure 5. Plot showing contrast versus number of images used for two different
estimators in the experimental run at the HCIT. The Kalman filter starts worse but
eventually requires only about half the images that DM Diversity does to reach a
given contrast. Both estimators used stroke minimization for control.

8. WAVEFRONT CONTROL

Assuming a small, complex electric field aberration Ag to the nominal field A and a small DM
surface deformation in phase as ¢, our expression for the electrie field at the pupil plane is

Epnm(&,m) = A&, n)(1 + g(&,n))et?En
~ A&, n)(1 + g(&,n)) +iA(E o€ n) 2)

The propagation to the image plane is encompassed in a linear operator C{-} such that the corrected
field at the final image is

Eeor(w,y) = C{A(S,n)(1 + (&, m)} +iCLA(S, m)e(S, m)}- (3)
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Here we will drop the coordinates for succinctness. For small DM actuation, we can approximate
the second term as a linear control effect matrix (or Jacobian) G times the vector of actuator
commands u,

C{A¢} = Gu, (4)
which lets us write the corrected image plane electric field as
Eeor = Egp +iGu, (5)
where E,, = C{A(1 + ¢)} is the aberrated electric field without DM actuation.
8.1. EFC. This derivation of Electric Field Conjugation (EFC) follows that of Give'on except that
this notation does not split complex terms into real and imaginary parts.(4) In EFC we wish to

cancel the electric field to create a dark hole in a certain region. By setting E.. = 0, we find from
Eq. 5 that the optimal (real-valued) command to minimize the energy in the dark hole is

Uopt = R{IG Ep}
= _I{G_lEab}~ (6)

where R{-} and Z{-} yield the real and imaginary parts, respectively. The matrix G is usually
rectangular and over-determined, so we must take the left pseudoinverse, which is equivalent to a
least-squares error optimization, instead of the inverse

Ugpt = —T{GF Egp}

= —(G*G)"'Z{G*Ey}. (7)
To damp the stroke on the actuators, Give’on augmented the matrices G and Ej, into
= G
G = [QH] (8)
and
- E
Eu= 0], ©)

Substituting G for G and Ey, for Ey, in Eq. 7, we find that the optimal command to conjugate
the electric field while limiting DM stroke is

Uopt = —(G*G + &’ T} ' I{G* Eg}, (10)
which we recognize as a Tikanov regularization with o? as our regularization parameter.

8.2. Stroke Minimization. Another approach, developed by Pueyo et al.,(6) is to minimize the
actuators strokes directly while requiring a contrast goal at each iteration to be met. We can write
this as

Nt
minimize v’ u = Z aﬁ
k=1
subject to Cpy < Crarget; (11)

where ay, is the command to the kth actuator, Cpy is the contrast in the dark hole, and Ciarger is
the target contrast.

The intensity at any point in the image plane is the square of the magnitude of the linearized
electric field

Lim(z,y) = [C{A(E,m)(L + g(&,m))} +iC{A(E, n)$(& )} (12)
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The contrast is the sum of the pixel intensities in the dark hole divided by the number of pixels,
Npiz, and the maximum intensity of the star, Ino . We then have an expression for contrast that is
quadratic in u

C'I)H = “I-i-m (LL', y}HDH/i'Vpi;I:IOO
= (< Eup, Bap > +2R{< Euw,iGu >}+ < iGu,iG’u >)/Np,j_l;lr0(]
= (wTG*"Gu + 20T T{G* B} + B2 Eop)/ NyizIoo- (13)

We use Eq. 13 to write the cost function representing Eq. 11 as

o
Il

u"u+ po(Cor — Crarget)

(HT(Npmfoo]I + poG*G)u + 2p0u’ T{G* Ea} + po(Ejy Egp — N;m‘:rfoocmrgez}) /NpizIoo. (14)

To find the control that yields the minimum of this cost, we take the derivative with respect to u
and set equal to zero

2T = 0= (/N Too) (Npie ool + 10" G)tipt + 201G Eap)
0 = ((Npizloo/ko)l + G*G)ugpt + I{G" Eap}, (15)
before rearranging to obtain
topt = —(G"G + (NpiaToo/ o)1) ' ZI{G" Ep}- (16)

Comparing the optimal commands from Egs. 10 and 16, we see that they are equivalent with the
regularization parameter Npi;Ioo/po = a?. Thus, for a single DM in monochromatic light, the
control command for stroke minimization and regularized EFC are exactly equivalent.

The method to extend EFC at the HCIT and stroke minimization at Princeton to two DMs
was the same. The Jacobians for both DMs, ¢ and G5 were combined into an augmented control

effect matrix
G =[G Ga. (17)

It is possible to choose separate optimization parameters for each DM, but both the HCIT and
Princeton used a single variable for both DMs. Thus, for 2-DM control in monochromatic light,
EFC and stroke minimization stay in the equivalent forms of Eqs. 10 and 16, respectively. Groff
et al.(7) go into additional detail on the differences between EFC and stroke minimization.

8.3. Comparison of Lab Results. Despite having the same derivation for monochromatic light,
the two control techniques differ in their lab implementation and thus vield different results. At the
HCIT, the methodology with EFC is to keep the regularization parameter o as small as possible
so that the contrast is corrected faster at the expense of more actuator stroke. Actuators partially
or fully obscured by the shaped pupil (or the Lyot stop for a Lyot coronagraph) are used only at
medium to high contrast values to prevent large strokes for low-contrast correction. Typically, the
lab operator allows more actuators to be used once the contrast stops converging at the previous
setting. The best regularization parameter at each control iteration is determined experimentally
with a regularization test, in which images are taken at several a? values and the image with the
best contrast determines the next regularization value. This method is sufficient for lab purposes
so long as hysteresis of the actuators is not a concern, but it would not be used in a space mission
because of the increased number of images required.

Princeton implements stroke minimization with the opposite approach of EFC. The regulariza-
tion parameter starts high (for more damping on the actuators) and is decreased until the contrast
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target for the current iteration is met (as indicated in Eq. 11). Thus, all actuators can be used
at each step and the linearized model is more likely to hold because of the small strokes used. In
Princeton’s HCIL, we can use the model of the optical system to determine the best regularization
parameter at each iteration and have achieved our best contrast levels in only 30 control iterations.
(5) In our limited time at the HCIT, we did not get the model-based line search on pig working, so
we instead used the regularization test method for choosing .

¥ {(AD}

10 15

actuator actuator

(b) (c)

¥ (A/D)

actuator actuator

(e) (f)

FIGURE 6. (a) Corrected image after using EFC. Average contrast from 5 to 9 A/D
is 4.15 x 1072, (b) and (c) Voltage maps from EFC for DM1 and DM2, respectively.
(d) Corrected image after using stroke minimization. Average contrast from 5 to
9.5 A/D is 3.58 x 107°. (e) Voltage maps from stroke minimization for DMI and
DM2, respectively. Both (a) and (d) are shown in log scale. Note that the upper
and lower scales are different, highlighting the much smaller stroke from stroke
minimization.

The main implementation differences between the HCIT's EFC and Princeton’s stroke mini-
mization methods were that the HCIT limited the use of partially obscured actuators and they
re-linearized about the new DM settings whenever they included more actuators in their control
matrices. Because of the limited time in which Princeton’s tests were conducted, we did not try
to re-linearize about the previous DM settings once the contrast began to converge slowly. Re-
linearization may indeed speed up the convergence of the control experiment at the expense of only
about 15 minutes per recalculation of the Jacobians on an 8-core workstation running MATLAB.
In Fig. 6, we compare the best results obtained using EFC and stroke minimization. Both meth-
ods achieved essentially the same final contrast, with EFC reaching 4.15 x 1077 in Fig. 6(a) and
stroke minimization reaching in 3.58 x 107 in Fig. 6(d). The strokes on the DMs were significantly
different, however. EFC required a voltage actuation range on DM1 of 66.2 V versus 15.4 V for
stroke minimization. These correspond to expected phase deformation ranges of 0.18X and 0.07A,
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respectively. The strokes for DM2 had ranges of 15.2 V (0.18\) for EFC and 8.1 V (0.10\) for
stroke minimization. In the other 2-DM test using EFC, there were fewer manual adjustments
of which actuators were used. The final contrast in that case was 6.56 x 107 and required DM
stroke ranges about 6x higher than those used with stroke minimization. The results clearly show
that stroke minimization uses much smaller stroke than EFC, even when EFC is carefully adjusted.
In a space mission it will be important to keep the actuator strokes as small as possible for a
model-based calculation of the best regularization parameter at each step. Regularization tests are
impractical for time-constrained space missions, so the larger actuations that EFC tends to make
are less compatible with the DM superposition model currently used.

It is important to note that because of the limited time available a full exploration of all possible
parameters in each method was not attempted. As a result, we are not drawing broad conclusions
that stroke minimization is always better. Rather, it provided a new methodology for exploring
a new part of the parameter space that demonstrated the same contrast is possible with much
smaller stroke on the DMs. Future experimental work would benefit from a careful optimization
and comparison of these two methods.

9. RESULTS

9.1. Experimental Results. Because we used most of the summer adapting and troubleshooting
our algorithms for the HCIT, we had only two weeks to perform all our 2-DM tests. We therefore
chose to utilize that full period for faster monochromatic tests of our control and estimation algo-
rithms. The much lower throughput for broadband experiments would not have allowed us to tune
the Kalman filter and perform several full control runs in the time allotted.

As described in previous sections, our best contrast achieved in symmetric dark holes was
3.6 x 1079 in monochromatic light. Fig. 7(a) shows the full image before correction and Fig. 7(b)
shows after correction. The correction region extended from the radius of the FPM (r = 4.86)\/ D,
since the 808 nm laser was swapped for a higher-power, more stable 790 nm laser) to z = 9.5\/D
over the full 80° arcs passed by the I'PM. The final contrast reported is in the region » = 5.0\/D
to x = 9.5\/D over 75° arcs so that pixels covered by the FPM are not accidentally included in the
contrast measurement. Fig. 8 shows a histogram of the contrast achieved by pixel. This provides
a quantitative picture of the spread of contrast across the dark hole. It shows that the contrast
is tightly clustered around the mean value and better with a relatively small number of pixels at
contrasts greater than 5 x 1079,

9.2. Limitations. The dashing technique used to manufacture the ripple masks could be limiting
the achievable contrast with SPs. Neither in this HCIT run nor the 2007 one did we reach contrasts
below 107%, and both SPs used the same manufacturing method. Note that this is a concern only
for this type of mask; future reflective shaped pupils will not require dashing of small features in
their manufacture.

At the masked center of the PSF in Fig. 7(b), one can see light at 6 x 107Y contrast. This
spot appeared centered at the same location in images with single-sided correction, so we do not
believe it is light diffracting around the FPM. The light is not a Poisson spot because the FPM is
at a focal plane, not a pupil plane. We therefore believe that the spot is the brightest part of the
PSF leaking through the mask, meaning that the attenuation is 6 x 10~? where the silicon FPM is
the full 400 microns thick. Near the edges of the FPM the silicon is only 40 microns thick, but the
PSF is not as bright there and the 200 nm gold layer should be providing most of the attenuation.
Thus, the transmitted light should still be far below the 107Y levels we are reaching.

In Fig. 7(b) we can also see streaks of stray light where the FPM should be blocking the
PSF. The vertical lines in several locations are clearly just saturated pixels bleeding onto their
neighbors. However, the diagonal lines rippling away from the edges of the FPM indicate that light
is diffracting around the FPM or that stray light is in the system. If there indeed is diffraction
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FIGURE 7. (a)The average contrast in the dark hole region is 7.8 x 1076 before
correction. (b) Best contrast achieved with 2 DMs at the HCIT. With correction
the average contrast reached 3.6 x 107%. Both PSFs are on a log scale shown by
the gray-scale bars. The PSF copies centered at = £23\/D are the first quilting
order from DM2.
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FIGURE 8. A histogram of the brightness distribution of pixels (in units of contrast)
in the final measured dark hole.

around the FPM, this effect will need to be modeled and fixed before SP coronagraphs can reach
sub-10"7 contrast levels.

The DMs imposed several contrast limitations. As shown in Fig. 4(c), even after the phase is
flattened the quilting of the DMs produces large amplitude errors in the initial exit pupil electric
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field. DM2 is known to have especially poor surface flatness because it is one of the older DMs
at the HCIT, and having a rough surface in the converging beam instead of a collimated beam is
even more detrimental to the contrast.(8) When the illuminated field in Fig. 4(c) is normalized to
the maximum amplitude, the average amplitude is 0.82 with a standard deviation of 0.05. These
DM-based reflectivity errors are several orders of magnitude larger than the requirements on other
optics in a high-contrast imaging system and need to be addressed.(8) Having DM2 under-filled
(approximately a 23-actuator diameter circle was illuminated) in the converging beam helped to
contain the diffracted energy outside the nominal beam diameter, but it also limited the maximum
possible OWA to about 11.5 A/D. From using phase flattening, a significant cylinder was actuated
on DMI1 that maxed out 5 centrally-located actuators and placed several more very close to the
upper voltage limit. This probably had a small but noticeable effect on the final achievable contrast.
In future tests, we would like to limit the stroke used in the phase flattening procedure to still allow
for every actuator the full range normally used by stroke minimization.

10. CONCLUSIONS

Despite not achieving the milestone level for monochromatic light nor even attempting the
secondary milestone in a 10% band, we consider this TDEM project a success, Within the first
year of the project we designed and manufactured a shaped pupil, installed it in the HCIT testbed,
installed a second deformable mirror, rewrote the control code, and were able to successfully create
two symmetric dark holes for the first time (which still has not been replicated), achieving an
average contrast of 3.6 x 1079, only a small factor above our goal. In hindsight, allotting only 2
months for the HCIT experiments was far too optimistic (and significantly shorter than any other
TDEM utilizing the HCIT). It took most of the summer to find a second operational DM, install
it, calibrate, and rewrite all the code to work with the diverging beam among other changes. That
left only 2 weeks to run the experiments (and that was with the generous delay of the experiments
following ours). Ounly having time to perform a single experiment also meant that we could not
perform the statistical analysis described in the whitepaper.

Unfortunately, because of only having time to run a single test, we were not able to perform a
thorough investigation of the possible limitations (some of which are deseribed in Section 9.2). Of
course, most TDEM experiments in the HCIT reached a contrast limit that was imposed by the fa-
cility. Only now is detailed work being done to model the HCIT in enough detail to determine these
various limiting factors and their affect on contrast. Nevertheless, we believe that the most likely
culprit limiting our contrast was the shaped pupil mask itself, either electric field affects through
the small openings or resolution limits of the manufacturing process. Both of these problems go
away with the move to reflective shaped pupils made from Black Si. Future experiments with Black
Si should resolve this.

Had we been able to use the facility a second time in the second year of the grant we believe
we could have improved on the limitations and reached closer to our milestones, as well as attempt
polychromatic control. However, by January 2014 the HCIT had been shifted for use by the
WFIRST/AFTA project. Nevertheless, that time was well used developing new mask designs and
the reflective shaped pupil process that is now being used for the shaped pupils for AFTA.

In addition to achieving two symmetric dark holes, we demonstrated the effectiveness of our
newer algorithms, stroke minimization and a Kalman filter for estimation. As described, the strokes
in our tests were significantly lower than those using EFC and we were able to converge with less
than half the number of images. This Fall we will be rewriting the HCIT nominal code to utilize
the Kalman filter for all future testing.
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APPENDIX A. SUCCESS CRITERIA FROM WHITE PAPER

The success of the experiment is measured by achieving the primary and secondary milestones
in a reasonable number of experiments with repeatable experimental conditions. This demonstrates
the basic feasibility of using two deformable mirrors in series to achieve high contrast dark holes on
both sides of the image plane, both monochromatically and in 10% bands. We do not claim that
this validates a particular design or approach that can be moved quickly to space nor do we make
claims regarding how the results within the controlled HCIT environment might be extrapolated
to a space mission. The success criteria can then be described as follows:

Primary Milestone:

(1) Initialize the HCIT at vacuum and complete all alignments using one of the monochromatic
lasers (or the broadband source with a 2% filter).

(2) Calibrate the high-contrast coronagraph field as described in § 4.2.

(3) Perform the wavefront estimation and control process and take contrast measurements in
the high-contrast dark hole as described in § 4.4.

(4) Compute the mean contrast over the dark hole as described in § 4.3.

(5) Repeat the experiment from scratch N, times.

(6) Using the analysis procedure described in § 4.5, verify success by calculating the milestone
success metric given in Eq. 25 for the monochromatic contrast requirement of 1 x 1077,

Secondary Milestone:

(1) Initialize the HCIT at vacuum and complete all alignments using one of the monochromatic
lasers (or the broadband source with a 2% flter).

(2) Switch to the broadband supercontinuum source and dial in the appropriate 2% filters using
the filter wheel. Calibrate the high-contrast coronagraph field as described in § 4.2.

(3) Perform the wavefront estimation and control process and take contrast measurements in
the high-contrast dark hole as described in § 4.4. For broadband, experiments will be
performed using a single narrow band measurement and wavelength extrapolation as well
as sequential measurements in each of the five narrow bands.

(4) Compute the mean contrast over the dark hole as described in § 4.3 by averaging the
measurements in each of the five bands.

(5) Repeat the experiment {rom scratch N, times.

(6) Using the analysis procedure described in § 4.5, verify success by calculating the milestone
success metric given in Eq. 25 for the broadband contrast requirement of 5 x 1079,
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APPENDIX B. TABLE OF ACRONYMS

[ Acronym | Meaning
DM Deformable Mirror
FPM Focal Plane Mask
FTP File Transfer Protocol
HCIL High-Contrast Imaging Laboratory
HCIT High-Contrast Imaging Testbed
TWA Inner Working Angle
JPL Jet Propulsion Laboratory
MDL Microdevices Laboratory
NASA National Acronautics and Space Administration
OAP Off-axis Parabola
PSE Point Spread Function
SOl Silicon-On-Insulator
Sp Shaped Pupil
TDEM Technology Development for Exoplanet Missions
TRL Technology Readiness Level

TABLE 1. A list of acronyms used in the report and their meanings.
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