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significance of the result can only be evaluated with a full detection efficiency/sensitivity
analysis including events with no known planets. Second, Gould et al. (2010) report the
frequency of planets and claim that a typical lens star mass is 0.5 M⊙, but the lens star
masses are measured for only six of their 13 microlensing events, and these show a variety
of masses including several K dwarfs.

For three of the Gould et al. (2010) events without mass measurements, no estimate of the
host mass is possible, and the masses of the other four are estimated using a Bayesian estimate
based on the observed microlensing properties and a Galactic model prior, which tends to
favor M dwarfs since they are the most common stars. We implicitly assume that all stars
are equally likely to host a planet at a given separation, even though core-accretion theory
and RV studies indicate that the probability of having a planet should depend on stellar
mass. In the case of MOA-2011-BLG-293, I found the Bayesian probability distribution for
the lens mass peaks at 0.4 M⊙, but there is a significant probability for the lens star to be
more massive (Yee et al. 2012). Since the mass ratio in that event is large (q ∼ 0.005), one
could argue for an additional Bayesian prior giving preference to larger stellar masses since
the planet is so massive. Hence, because the results of a Bayesian analysis depend on the
input priors, actually measuring the masses of the lenses is vitally important to confirming
that they are M dwarfs and for using the frequency of microlensing planets to distinguish
between planet formation by core accretion and formation by gravitational instability.

The mass of the host star is usually well-estimated for transit and RV surveys, but in
microlensing we often have very little information about the lens stars. By definition, when a
microlensing event occurs, the source and lens are superposed. During the event, the source
is magnified and contributes the majority of the light. Even when the source is unmagnified,
since microlensing observations are conducted in very crowded fields, other, unrelated stars
often fall within the seeing-limited PSF, which is at best FWHM∼1′′. Figure 4 compares
seeing-limited and AO observations of MOA-2011-BLG-293, showing the high density of
stars. Thus, the light from the lens stars cannot be isolated with normal, seeing-limited
observations, so the lens masses are generally unknown.

Figure 4: CTIO H-band images of MOA-2011-BLG-293 showing the magnified (left) and
unmagnified (center) target. The red box matches the area of the baseline image from Keck
(right), which reveals many stars of similar brightness to the unmagnified target.

Measuring the Frequency of Planets Around M Dwarfs

I will solve the problem of lens star masses using AO images from a large telescope. The
increased resolution allows the combined light from the source and lens star to be isolated
from any blended stars. The source flux is measured from the microlensing fit, and then any
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Figure 3. Error ellipses (1 σ ) for the event shown in Figure 2 using Earth-orbit-
only (green), geosynchronous-only (red), and combined (black) information.
The lightcurve asymmetry (Figure 2) due to Earth’s orbit yields only 1-D
parallax information, but this serves as a critical check on the accuracy of
the geosynchronous-orbit parallax. The secondary minimum at πE,N ∼ −0.07
is due to (β → −β) degeneracy. In this example, it is disfavored by ∆χ2 = 11
based on geosynchronous data and by 15 based on all data. The analytic error
estimate (based on infinite data) is shown in cyan.
(A color version of this figure is available in the online journal.)

high-magnification events (and infinite observations) is

σ (πE,⊙,∥) =
√

3
N

σ0

Fs

(
tE

58 day

)−2

η−1, (16)

where 58 days is one radian of Earth’s orbit and η is the
projected Earth–Sun separation in AU at time t0. Since η ∼ 1
for bulge observations made during the equinoxes, the ratio of
geosynchronous-to-Earth parallax errors is

σ (πE)geosynch

σ (πE,⊙,∥)Earth
≃ 20

(
tE

20 day

)2
β

0.05
= tE

1 day
βtE

1 day
. (17)

Since the effective βtE ! P = 1 day, this implies that the Earth-
orbit parallax will essentially always yield a precise check on
the geosynchronous parallax in one direction.

6. DISCUSSION

The derivation underlying Equation (15) breaks down for
teff " P : the errors continue to decline with falling β, but no
longer linearly. They also become dependent on the orientation
and phase of the orbit in a much more complicated way. From

the present perspective, the main point is that the formula with
β → P/tE provides an upper limit on the errors for events with
yet higher peak magnification.

Next, the errors derived here assume a point-lens event.
However, since the observations would be near-continuous, it
is likely that caustic crossings or near approaches would be
captured. As pointed out by Honma (1999), such caustic effects
can significantly enhance the signal.

Another feature of these (and most) parallax measurements is
that they work better at low mass, simply because πE ∝ M−1/2

is bigger. Space-based microlensing measurements have the
potential to directly detect the lens when it is more massive
(so, typically, brighter). For example, as the lens and source
separate after (or before) the event, their joint light becomes
extended and the centroids of the blue and red light separate (if
the source and lens are different colors). These effects allowed
Bennett et al. (2006) and Dong et al. (2009) to measure the
host masses in two different planetary events using follow-up
HST data. Because geosynchronous parallax works better at
low mass, while photometric/astrometric methods work better
at high mass, they are complementary.

Finally, I note that such parallaxes would be of great interest in
non-planetary events as well. Without θE, such measurements do
not yield masses and distances, but they do serve as important
inputs into Bayesian estimates of these quantities. Moreover,
since the direction of πE is the same as that of the lens-source
relative proper motion µrel, a parallax measurement provides an
important constraint when trying to detect/measure the source-
lens displacement away from the event. If the magnitude µrel
can be measured from these data, then so can θE = µreltE, which
in turn yields the mass and distance.

This work was supported by NSF grant AST 1103471 and
NASA grant NNX12AB99G.
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significance of the result can only be evaluated with a full detection efficiency/sensitivity
analysis including events with no known planets. Second, Gould et al. (2010) report the
frequency of planets and claim that a typical lens star mass is 0.5 M⊙, but the lens star
masses are measured for only six of their 13 microlensing events, and these show a variety
of masses including several K dwarfs.

For three of the Gould et al. (2010) events without mass measurements, no estimate of the
host mass is possible, and the masses of the other four are estimated using a Bayesian estimate
based on the observed microlensing properties and a Galactic model prior, which tends to
favor M dwarfs since they are the most common stars. We implicitly assume that all stars
are equally likely to host a planet at a given separation, even though core-accretion theory
and RV studies indicate that the probability of having a planet should depend on stellar
mass. In the case of MOA-2011-BLG-293, I found the Bayesian probability distribution for
the lens mass peaks at 0.4 M⊙, but there is a significant probability for the lens star to be
more massive (Yee et al. 2012). Since the mass ratio in that event is large (q ∼ 0.005), one
could argue for an additional Bayesian prior giving preference to larger stellar masses since
the planet is so massive. Hence, because the results of a Bayesian analysis depend on the
input priors, actually measuring the masses of the lenses is vitally important to confirming
that they are M dwarfs and for using the frequency of microlensing planets to distinguish
between planet formation by core accretion and formation by gravitational instability.

The mass of the host star is usually well-estimated for transit and RV surveys, but in
microlensing we often have very little information about the lens stars. By definition, when a
microlensing event occurs, the source and lens are superposed. During the event, the source
is magnified and contributes the majority of the light. Even when the source is unmagnified,
since microlensing observations are conducted in very crowded fields, other, unrelated stars
often fall within the seeing-limited PSF, which is at best FWHM∼1′′. Figure 4 compares
seeing-limited and AO observations of MOA-2011-BLG-293, showing the high density of
stars. Thus, the light from the lens stars cannot be isolated with normal, seeing-limited
observations, so the lens masses are generally unknown.

Figure 4: CTIO H-band images of MOA-2011-BLG-293 showing the magnified (left) and
unmagnified (center) target. The red box matches the area of the baseline image from Keck
(right), which reveals many stars of similar brightness to the unmagnified target.

Measuring the Frequency of Planets Around M Dwarfs

I will solve the problem of lens star masses using AO images from a large telescope. The
increased resolution allows the combined light from the source and lens star to be isolated
from any blended stars. The source flux is measured from the microlensing fit, and then any
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Fig. 1.— Parallax effect for illustrative (left) and realistic (right) microlensing events. Bot-
tom: absolute trigonometric parallax and proper motion (ppm). Middle: relative trigonomet-
ric (lower/left labels) and microlensing (upper/right labels) ppm. Top: resulting lightcurves

from Earth (blue) and Sun (green).

Astrometric	
  
Microlensing	
  

-2 -1 0 1 2
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5



Uses	
  for	
  Lens	
  Mass	
  Measurements	
  

•  Measuring	
  true	
  planet	
  masses	
  
•  Measuring	
  masses	
  for	
  faint	
  or	
  dark	
  objects	
  
(e.g.	
  brown	
  dwarfs	
  and	
  black	
  holes)	
  

•  Measuring	
  the	
  galacHc	
  distribuHon	
  of	
  planets	
  
(measured	
  lens	
  masses	
  also	
  give	
  distances	
  to	
  
the	
  lens	
  systems)	
  


