

Evaluating Coronagraph Performance with End-to-End Numerical Modeling: WFIRST and Beyond

John Krist Jet Propulsion Lab/Calif. Inst. of Technology 5 May 2016

Copyright 2016 California Institute of Technology. U.S. Government sponsorship acknowledged.

Stages of Coronagraph Design

Coronagraph Optimization: The Past

- Contrast
- Inner working angle
- Transmission

Coronagraph Optimization: Now

- Contrast
 - aberrations, jitter, finite star diameter, bandwidth, DM stroke
- Inner working angle
 - jitter, finite star diameter, aberrations, bandwidth
- Effective Throughput
 - planet PSF morphology, mask transmission
- Wavefront control
 - ACAD, DM control spatial frequencies, stroke limits, polarization, bandwidth

End-to-End Modeling

- Propagation through all significant optical components, with realistic defects
 - PROPER* used for WFIRST & Exo-C modeling
- Wavefront control using deformable mirrors and wavefront optimization algorithms (EFC, stroke minimization)
- Jitter, finite stellar diameter
- Potential misalignments (pupil)
- Evaluation of field (planet) PSFs

WFIRST Coronagraph Downselect

- Coronagraph advocates submitted their designs in 2013
 - Hybrid Lyot (HLC)
 - Shaped Pupil (SPC)
 - PIAACMC
 - Shaped pupil + ACAD + vortex
 - Visible nuller (two types; modeling incomplete)

Evaluated via end-to-end modeling

- Dig a dark hole around the star in a realistically aberrated system with DMs and EFC wavefront control
- Determine contrast degradation due to pointing jitter
- Determine field (planet) PSF properties
- Used model-derived properties to predict planet yields for different jitter levels and post-processing factors
- Downselected to HLC, SPC, & PIAACMC (backup)
 - revised designs with improved efficiencies and jitter tolerances have been provided
- A similar process was done for the Exo-C Probe study (unobscured telescope with HLC, classical PIAA, vector vortex)
- WFIRST modeling described in Krist et al., JATIS, v.2, 011003 (2016)

Optical Surface Error Maps

Dark Hole Generation Process

PIAA Schematic

PIAA with Wavefront Control

WFIRST Coronagraph Aberration Sensitivities

100 picometers RMS of aberration

WFIRST Dark Holes with Pointing Jitter & Finite Star

WFIRST Polarization: WFE_{y} -WFE_x

See tomorrow's talk by Shaklan

HLC Post-EFC with Polarization (523-578 nm)

Y polarization

X polarization

Optimized for X polarization only

Optimized for both polarizations simultaneously

Time-Dependent Speckle Variations Wavefront changes from thermal & structural modeling

PIAACMC

b

Hybrid Lyot Coronagraph Planet PSF

 $\lambda = 509 - 591$ nm, r = 3 - 9 λ /D, 7x10⁻¹⁰ IWA contrast (10⁻⁴ without DM patterns)

Lyot stop (grey)

DM 1

Obscuration-compensating DM patterns (200 nm P-V stroke)

Planet PSFs

DMs off

Hybrid Lyot Coronagraph: Exo-C & WFIRST

WFIRST Coronagraph Field PSF EE

WFIRST RV Planet Yield Estimates

From Traub et al., JATIS, v.2, 011020 (2016)

See talks by Stark, Morgan in this workshop.

Segmented Telescope Coronagraph Considerations

Effective throughput

Planet PSF morphology

Aberration sensitivity

Segment-to-segment piston, global low-order, wavefront jitter

Jitter & finite stellar diameter

DM patterns (ACAD)

Affect on PSF morphology, increased aberration & jitter sensitivities, stroke limitations Alignment tolerances

Mask-to-pupil registration, pupil distortion

Stages of Coronagraph Design

