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Talk outline

® Science goals and the design of GP
e How do we estimate performance”?
e AO-centric simulation

e Fresnel/Talbot simulations

e The CAL system

e The I[FS and the data pipeline
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GPIl is a science experiment

e Our science team recently was allocated 890 hours for a
three-year survey for 600 target stars

e How do planets form and evolve”
(core accretion vs. disk instability)

e \What are planetary atmospheres
like"?

* How do planets migrate? What is
their dynamical evolution”?

Images from Robert Hurt; NASA Spitzer
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GPI has 4 essential tasks and units

e Remove distortions e Use multi-wavelength
caused by atmospheric o to aid detection and
turbulence provide information

e Suppress diffraction about the planet
from the star that e X quasi-static errors

obscures the planet that [imit sensitivity
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GPIl is designed for high-contrast imaging

e Compared to current general
ourpose AO, GPI has:

e 10 times the actuator density per area (18
cm spacing instead of 56-60 cm)

¢ <5 nm uncalibrated non-common path
error

e a spatially filtered wavefront sensor to
produce a “dark hole”

e Compared to other “extreme”
AO systems (Sphere, PALM-3K),
GPI has:

e a MEMS deformable mirror

e Fourier-transform-based, computationally
efficient wavefront reconstruction and
self-optimizing control
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APLC improves Lyot design

e Apodization allows more efficient destructive interference,
providing better cancellation in Lyot plane

e Better throughput and angular resolution
e Built by AMNH (Pl: Oppenheimer)

________ |

Thanks to R. Soummer for the figure.
See several references, including: Aime et al (2002), Soummer et al (2003) and Soummer (2005)
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providing better cancellation in Lyot plane
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Hard-edge stop
Diameter ~5 A/D

Thanks to R. Soummer for the figure.
See several references, including: Aime et al (2002), Soummer et al (2003) and Soummer (2005)
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Cal system measures quasi-static errors

e Calibration system coupled with APLC
o | OWFS uses light from reference arm for low-order modes

e HOWES is white-light, phase-shiting interferometer using
reference and science light

e Built by JPL (PI: Wallace)
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Dedicated hyperspectral imager

e | enslet-based Integral Field Spectrograph
R =341t080fromY toK

2.8 x2.8"
¢ 0.014” per

e Built by UC
Larkin) with

''''''''
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,Z\i‘ Conceptual contrast error budget

PSF components

Initial performance

specs set with
analytic error budget
in contrast

m Photon noise O Speckle noise

Requirements
refined through
simulations as
design progressed

Normalized intensity

Req. 1: static and
atmospheric speckle
noise equal ina 1-
hour exposure

Req. 2: suppress
speckle noise to
photon noise level
through multi-
wavelength imaging
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The AO simulator is very detailed

e Uses Fourier optics, In particular Fraunhofer propagation
e Multiple layer, frozen-flow, Kolmogorov atmosphere
o | S| Woofer-Tweeter mirrors, with some non-linearities (e.g.

saturation) incorporated

° A
°S

e Quadcell S

| AO conf
natial filte

rol algorithms fully implemented and data-driven
r simulated with Fourier optics over WES light

nack-Hartmann using Fourier optics and CCD

characteristics
e Fundamental AO relay misalignments (e.g. centering)

e Individual modules were fully validated against analytic or
semi-analytic results
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Algorithms and performance predictions

e Simulation designed to give thorough testing to new AO
technologies and algorithms for GPI

e Incorporates APLC to give estimated PSFs for short
EXPOSUres H-band APLC intensity

3e-4

[for comparison] [baseline] [goal]

Uniform modal gains Optimized modal gains Predictive control \OO"‘
of 11
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PSD approach to AO performance

e |n addition to individual module

validations, we wanted an over-all

“sanity

check”

e AO simulator takes too long;
need something faster for
science team

* APDProx
PSD te

imate the PSF wit
'm of the “PSF ex

e Severa

treatments exist

N the

nansion”

(Ellerbroek; Guyon; Jolissaint)
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Fig. 2. Aliasing power spectrum (1/8 power-law scaling) within
the LF domain; see parameters in Table 1.

Figure from L. Jolissaint, J.-P. Véran, and R. Conan, “Analytical modeling of adaptive optics:
foundations of the phase spatial power spectrum approach,” J. Opt. Soc. Am. A 23, 382-394 (2006).



Validated GPIl monte carlo simulator

e Started from Guyon method
(Apd 2005)

e Made additions to model the
unigue features of GPl AO

* Found very good agreement

petween short-exposure

monte carlo PSFs and PSD

approach

e PSD code is used by
. sclence team

1e-6 1e-4

I1=6, five-layer 14.5 cm rO atmosphere, 2 kHz, Optimized-gain controller,
700-900 nm WFS, APLC at 1.625 microns, 5 second exposure
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Our AO simulator can’t do everything

* No Fresnel propagation between phase screens in
atmosphere (but scintillation negligible)

¢ |dealized pupil-plane/focal-plane model of AO relay: no out-of-
olane optics!

e Simulation is achromatic

* |[ndividual runs are limited by phase screen size to ~ 4 seconds

e How to consider these other terms?
e \Will not be done in the AO monte carlo code

Friday, February 17, 2012
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GPI-COR_SYS-001

[‘éj Talbot imaging: phase-induced ampl. errors
— CfAQ

-From Fresnel propagation

+ phase 0 phase - phase 0 phase + phase
0 amplitude + amplitude 0 amplitude - amplitude 0 amplitude

-Valid for:
-Infinite wavefronts
-Collimated beam
-Small aberrations

-Easy to implement -_
Talbot length

-A pure phase 1s oscillating

between pure phase and a ’ i

pure ampl. aberration over a

length equal to:

0102 03 O4

'l 1 *’ -
GPI sensitive! C3 C2 C1

T, = 2A%/A

%, : : : :
ere A 1s the aberration spatial period.
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GPI-COR_SYS-001

GPI raw static contrast from each plane

CAQ

I I I I I I I I
| Gray APLC at opt wavelength with Talbot
Perfect phaose correction inside dark hole
M3 at pupil

propagated static a

1 1
berrations

I I I 1 1 1
(no SSDI & 2h ADIY

Raw PSF '
ADCO1 (250Km)]
ADCOZ (110Km)]
WIN (73Km) ]
BS (40Km)
OAP1 (27Km) _|
PUP (CKm)

15
Angular Separation (A/D)
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Conclusions

Limiting magnitude (for AO): I-mag < 9-10

Gemlnl
I Planet
Imager Imogeur de
Planetes pour

Gemini

Spectral bands: Y, J, H, K
Spectral resolution: IFS with R~45 at H (~same at J and K-band)

Broadband polarimetric mode

FOV: 2.9” X 2.9” Tolerance Analysis

Inner working angle: 2.8 lambda/D radius & CAL Residual less than ~3nm RMS MSF.

Dark hole size: 21 x 21 lambda/D -» Entrance window needs to be clean.

& Spider Lyot mask os no more than ~3%.
Contrast: up to 10" from PSF peak intensity > Sp Y °

-® Reach 1077 photon limited contrast at a

First light: December 2010 few I/D in 1h integration time (goal) with SSDI
& ADI.
To be Continued... End-2-~End Fresnel Prog. 11

3. SPIE 2010 Angry Photons Strike Back
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How do we deal with AO-Cal interaction?

e GPI's calibration system will help correct static and quasi-
static errors on the time scales of minutes

* [ts measurements are used by the AO system

e Can’t just simulate the Cal system and run the AO simulator
for a 30-minute run!

¢ |nstead we

e estimate residual AO error seen by the Cal system

e use mechanical models to show growth of quasi-static errors through time (e.g.
from flexure)

e use Simulink to model the Cal system’s slow closed-loop as implemented with AO
references

19
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Simulation method: AO side

o Store AO telemetry (as for gain optimization and prediction)

e Evaluate residual error power temporal PSDs for

e specific low-order Fourier modes seen by the LOWFS
e all the other Fourier modes seen by the HOWFS

* Do this for all magnitudes of interest with OFC
e assume H-l = 0 for obtaining AO performance

Residual error, full simulation and PSD model
200 \
. —@—— Simulation

g | ——-— PSD approach
S 150
@ i
= /g
o B
o= v
§ 100 -
2 | A
7

o 7
2 50
©
o' s __——=
J= &_——Ti—— ===

O 1 1 1 1

2 4 6 8 10 0?\
| magnitude \G
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Defining the time-varying NCP errors

e [hermal flexure, gravity
loading and atmospheric

PPM: Port 1
T

Friday, February 17, 2012

dispersion analysis to 5
determine beam motion o
e Convert into wavefront error [ ~——F0——+7-—_
given OptiCS iﬂVOlved ° ° " " 2Zﬂenith aﬁgle (degsio » * * >0
Max WFE | Max rate oo
NCP source (nm) (nm/hr) 240
Flexure 1.0 0.4 i 5 TR N rﬁltoh o (2;569) R IR
Pupil centering on PPM (port 1), 15 deg/hr motion
Atm disp 5 o 16 R\
. . g
beam walk @
o
\C
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Simulation method: Calibration side

e Construct Simulink model (and Laplace model) based on flow
diagram shown earlier

e Use TT/LOWFS/HOWEFS noise variances per exposure as
determined by JPL

e Assume slower updates achieved by averaging fast measurements [temp.white]
e Assume CAL returns unbiased, gain = 1 measurement of NCP

e Make deterministic NCP signal from twice GP| expected error

e Use temporal PSDs to generate AO residual signals

e HOWFS/LOWEFS: AO residual from end-to-end simulation
e TT: Gemini South P2/OIWFS median profile

e Find Calibration update rate that meets tracking noise
requirement given AO residual and Calibration noise

e Run Simulink to verify performance
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I=5, 1-minute updates, g=0.5, no noise

Tracking slowly varying NCP errors, 1=5

convergence to 1 nm
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I=5, 1-minute updates, g=0.5

Tracking slowly varying NCP errors, 1=5

—
o

NCPE and correction (nm)

NCPE
Tracking with noise

30
Time (minutes)

Tracking noise in steady state
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[=8, 2-minute updates, g=0.32, no noise

Tracking slowly varying NCP errors, 1=8
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[=8, 2-minute updates, g=0.32

Tracking slowly varying NCP errors, 1=8
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IFS simulation step 1: detector images

e Part 1: light
through the IFS

e setup up the
observation: star
[planet] parameters
like magnitude,
spectrum, observation
length, field rotation,
etc.

e uses PSFs generated
by AO simulation for
both star and planet

e several noise sources
(detector noise,
atmospheric
transmission, sky
background)

Figure from Maire, “Data reduction pipeline for the Gemini Planet Imager”, SPIE 7735
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IFS simulation step 2: build data cube

e Part 2: data pipeline to construct

data cubes from IFS reads

* need to calibrate to get wavelength solution

e from each IFS image, integrate over small
regions; assign flux to a wavelength

e interpolate onto common wavelength vector
across all mini-spectra
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Putting it all together

e For GPI performance, we have used a wide range of
simulations and techniques to evaluate instrument
performance

e For this workshop, | have linked several of these to make the
data challenges.

e (G00d luck!

e Questions?

Friday, February 17, 2012
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