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Transits Allows Studies of the
Atmospheres That Are Not Possible for
Non-Transiting Planets

Secondary Eclipse

See thermal radiation and
reflected light from planet
disappear and
reappear

Transit @—/ Only transiting planets

See radiation from star offer direct estimates of

transmitted through the the masses and radii.

planet’s atmosphere As a result, studies of the
atmospheres are more
penetrating.




Transits Allows Studies of the
Atmospheres That Are Not Possible for
Non-Transiting Planets




Perhaps the GMT and JWST can do for terrestrial exoplanets
what ground-based telescopes and Spitzer/Hubble
did for hot Jupiters and Neptunes.

The only challenge:
We do not yet know where to point these observatories.




M Dwarf Properties

--sizes to scale--

0.07 <mass<0.6 M,

M6

M=0.12 M,
R=0.18R,,
T = 2900 K

o2 M3 Earth
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T=5800K T =3500 K
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Data from RECONS, image courtesy Todd Henry



G2V
1.0 Ro
super-Earth planets >
in the habitable zone
2 R@, / Me, Earth-like insolation
transit depth = 0.03% 0.5%
Doppler wobble = 60 cm/s 5m/s
transit probability = 0.5% 1.5%
orbital period = |l year 2 weeks

Nutzman & Charbonneau (2008)



The MEarth Project

Nutzman & Charbonneau 2008; Irwin et al. 2008

Using 8 X 40cm telescopes, we are surveying the 2000 nearest low-mass stars for
planets as small as 2 R¢_, orbiting within the habitable zone.

MEarth is different: Monitor stars sequentially & detect transits in progress
We moved into an existing building on Mt Hopkins, Arizona September 2008

Expanding to southern hemisphere (Chile) in 2013
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Kepler planet candidates
O all confirmed exoplanets

symbol area
depth

photon noise

GJ1214b

observe

is easy to -4

Planet Radius (Earth radii

Berta, Charbonneau, et al. 2012



GJ1214b is <570K
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Why is GJ1214b so big?

e, = - Q.
Se x £f AN "
CO/\ Pu y CO/‘ R
N hydrogen + e thick
Adams et al. (2008), r o
Rogers &tSea(ger (Z)O/O), hellum water' r|Ch

Nettelmann et al. (201 1) envelope? envelope?



modeling GJ1214b’s WF(C3

transmission spectrum

solar composition

Maller-Ricet (Kempton)

& Fortney (2010)
Berta, Charbonneau, et al. 2012



modeling G]1214b’s WEFC3

transmission spectrum

20% H,0 composition

lllllll lllllllllllll

x?=24.6 for 23 D.o.F.

lllllllllllllllllllllll

models from

Miller-Ricct (Rempton) & Fortney (2010)

1.3

1.4 1.5 1.6 1.7
Wavelength (um)

water fractions above 20%
(70% by mass) are good fits to
the WFC3 spectrum

Berta, Charbonneau, et al. 2012



Slide Redacted



If GJ1214b

transited a Sun-
like star, its transit
depth would be

0.06%.

AW o

Berta et al. (201 2a)



MEarth can detect transits in two ways.

example: (post-discovery) light curves of GJ1214b

-0.04 - =
|) By phase-folding - -
: ~0.02fF =
old data and looking for - - i e : .. R
) 0 lss 3 ‘o 08 00 g o &% e, %o 84° 00 eSts o 8900 L 0|. LT
periodic events (as most £ 0-00 RUHSPARTR MM J’f-"'-‘“"?*:";’:*’.?ﬁf‘?ﬁ’%'?f YL
surveys do). Z 0.02F Fohs =
0.04___, . . . .
~0.2 ~0.1 0.0 0.1 0.2
Phased Time (days)
. . -0.04 -
2) By reducing data in . - low-cadence start of trigger! .
realtime and triggering o ~0-021 2 \ E
high-cadence follow-up of % 0.00F =, "t te . o Ee e T R
. . - R N
ongoing possible events. Z L P =
: : "y 0.04 & . . -
This magnifies sensitivity 5 0 12
to long-period planets. Time (hours)

Charbonneau, Berta, et al. (2009), Berta et al. (201 1), Berta et al. (2012)



Y

Basic MEarth
Photometr
(mag.)

MEarth’s discovery light
curve for GJi1214b

Linear in Time Phased
—0.03 [T T T
—-0.0 R
: —0.0% N NP R T o oo MEarth marginalizes
0.00§ ; !3! ‘t ,ﬁ!; E?.:,:"“,;,,} “opstonss 3 over corrections for
0.01p ° C o BTN Takee Bt s systematics
0.02 O D g © .
0.03 .

Charbonneau, Berta, et al. (2009), Berta et al. (201 1), Berta et al. (2012)



Y

Basic MEarth
Photometr
(mag.)

Y

Stellar
Variabilit
(mag.)

MEarth’s discovery light
curve for GJi1214b

—0.03
—0.02

> —0.01
0.00}

0.01

0.02
0.03

—0.03
—0.02

> —0.01

0.00

0.01 P8

0.02
0.03

Linear in Time

Phased

b e o oo MEarth marginalizes
= over corrections for
o B mle systematics

and
starspot
variability

o o'o"”" o °

Sy e

Charbonneau, Berta, et al. (2009), Berta et al. (201 1), Berta et al. (2012)



Y

Basic MEarth
(mag.)

Photometr

Y

Stellar
Variabilit
(mag.)

Residuals
(mag.)

MEarth’s discovery light
curve for GJi1214b

Linear in Time Phased
—0.03 [T T
Rt AT A e e MEarth marginalizes
0.00 ¥ g !;! t ;ﬁ?; PRl Nt S over corrections for
0.01p ° C o QU ke Wit s systematics
0.02 o ST ©
0.03 .
—-0.03
:88% " !l 2 o o.,° .o 00, ..0° and
000ty @ W3 Sl Bataee Sl starspot
0.01 M G T Bt e O R W variability
0.02 * @ e
0.03 . . . . LY RSN -
~0.03F | N Shased
phased
_8'8% , D/0=8.6 when searching for
e Voo 8 o0 ga it et lanetar
0.00 | T R 1 MRURARIEETN L P ary
0.01 ;. °?° ?.:.':" ik 7 R transits
0.02 7S e in light curves of
0.03 L. - e nearby M dwarfs.
Mar Apr May—-6—-4-2 0 2 4 ©
Phased Time from
2009 Mid—Transit (hours)

Charbonneau, Berta, et al. (2009), Berta et al. (201 1), Berta et al. (2012)



MEarth’s sensitivity to exoplanets:

MEarth Sensitivity

(from 2008-2012, in a phased search with 7.50 threshold,

accounting for uncertainties in stellar parameters + binarity)
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(expected planets)
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Berta et al. (in prep.)



MEarth Sensitivity

100

(expected planets)

If every star hosts
one GJ1214b

(1.6 days, 2.7Rs),

MEarth should have
found 20 transiting.
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Berta et al. (in prep.)



MEarth Sensitivity

(expected planets)

100 "~._

Period (days)

1 . . .
va 10 300 400 500 600 700 800 900

Zero—Albedo Equilibrium Temperature (K)

If every star hosted a
habitable zone Neptune
MEarth should have found 4.

Berta et al. (in prep.)



MEarth Data Release #1, | September 2012
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The need for new RV capability
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The need for new RV capability
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The need for new RV capability
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So, how can we push from GJ1214b to
smaller and cooler worlds?

e \We need to know the true radii and masses of
the target stars.

e \We need an estimate of the rate of occurrence
of the planets we seek.

e We need excellent students to figure this out.

The next few slides will highlight recent unpublished
work from Jason Dittmann, Courtney Dressing and
Zach Berta.
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MEarth Parallax Results:
5 slides redacted

Dittmann, Charbonneau et al. in prep



MEarth:
tar Spots Can
be Useful for
Determining

Rotation

Periods

Irwin et al.
(2011 ApJ)
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Period (days)

MEarth Gyrochronology (Irwin et al. 2011)
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Published study contained only the 41 stars with parallaxes. However, there are
hundreds of detected rotation periods and now we have parallaxes for all!



e \We need an estimate of the rate of occurrence
of the planets we seek.



Ten Slides Redacted

Dressing & Charbonneau (submitted to ApJ)



“less is more”’
observe half the stars,
twice the photons
(= double up telescopes)

Berta et al. (in prep)



Take Home Message

The Nearest Habitable Planet Orbits an M-dwarf within 8 pc
There is likely a transiting example within 30 pc

We may characterize the atmospheres of super-Earths with
JWST and ELTs: This is big aperture science.

— Studies are compelling as we will know the masses & radii

- We must locate these planets

- Doing so required characterizing the stars

Development of ground-based detection techniques is
essential to realize the full potential of NASA exoplanet
missions. NASA knows how to do technology development.

— Planets Discovered by NASA Missions (Kepler; future missions) must
be characterized from the ground (RV, atmospheric studies)

— Planets Discovered from the ground have been prime targets for
atmospheric studies by NASA Missions (HST; SST; JWST)



