# Field Testing the Starshade

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

1/3/2016

Steve Warwick Megan Novicki Danny Smith Michael Richards

### Starshade Basics – Inner Working Angle





- Inner Working Angle is the closest separation of Planet and Star that we can expect to see with a given starshade
- For Hypergaussian starshade, this is approximately equivalent to:

$$IWA = \frac{D_{SS}/2}{Z}$$

### The smaller the IWA, the more habitable zones we can examine

#### Starshade Basics – Fresnel Number



 Starlight suppression by a starshade is determined by the Fresnel Number:

$$-F\# = \frac{D_{SS}^2}{4\lambda z}$$

 This factor completely specifies the shadow of a Hypergaussian starshade



For a fixed Suppression, a larger Starshade at a greater distance gives a smaller IWA

#### Starshade Basics – Resolution



- Resolution is the diffraction limited resolution of the telescope
- Resolution elements refers to the IWA of the starshade divided by the resolution of the telescope
- General agreement is that resolution should be equal or greater than 2λ/Dtel to allow separation of planets and exozodi
- Better resolution makes separation of sources easier.



### For a Smaller IWA, a larger telescope is required for a fixed number of Resolution Elements

### Starshade Basics – An Example





Inner Working Angle = 17.5m/40,000km = 88mas

Fresnel Number =  $50m^2/(4*600nm*40,000km) = 12$ 

Minimum Telescope Diameter = 2\*600nm/88mas = 2.8m

### A larger telescope gives better resolution and collects more photons

**IWA and Suppression are independent of the telescope diameter** 

NORTHROP GRUMMAN

### **Field Testing a Starshade**

NASA JPL / Northrop Grumman 100<sup>th</sup> Scale Starshade









#### Best Contrast Ratio – Desert Field Tests



- Planet LEDs are Standard LEDs with ND filters in front.
  - ND4 planet ~8E-9 below main source
- Light Scatter from dust is modelled and subtracted from the image
- Slight vertical variation between images due to air disturbances.
  - Images collocated using Planet LEDs

#### Combined Image (Planet Based) - IZ5 Etched April 17, 2015 - set11 (112 Images)



### 3σ Standard Deviation in box closest to the starshade = **9.09E-10**

| Starshade to<br>Telescope<br>Separation | Starshade<br>Diameter | Telescope<br>Aperture | Resolution   | Resolution<br>Elements | Inner<br>Working<br>Angle | Fresnel<br>Number |
|-----------------------------------------|-----------------------|-----------------------|--------------|------------------------|---------------------------|-------------------|
| 1km                                     | 0.5m                  | 0.04m                 | 3.8 arcsec   | 26.8                   | 51 arcsec                 | 210               |
| 80,000km                                | 50m                   | 2.4m                  | 0.063 arcsec | 2                      | 0.065 arcsec              | 13                |

### Testing Engineering Sensitivities – Flawed Starshade Performance



Petal Width Variation







- 6 families of flaw each applied to Hypergausian and Numerically Determined Starshades
  - Simulations predict patterns field test optical lengths

#### **Model Verification**





Measured & Dust Subtracted

Approved for public release; NGAS Case 15-2567 dated 12/21/15

#### Model Predictions vs. Measurements



#### IZ5 TipTrunc: Model/Experiment Ratios



#### **HG Shrunk Petals: Model/Experiment Ratios**



 Ratios of flaw peaks modeled independently by NG, JPL, and CU to the peaks measured in the field.

**HG Clocked Petals: Model/Experiment Ratios** 



1 IZ5 Sines: Model/Experiment Ratios



 Points above the line indicate the model predicted a brighter response than was measured



## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (1 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (2 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (3 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (4 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (5 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (6 of 11)







## Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (7 of 11)







# Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (8 of 11)







## Jupiter Transit of Hypergaussian Starshade (9 of 11)







# Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (10 of 11)







# Jupiter Transit of Hypergaussian Starshade McMath 140m Setup (11 of 11)







### Physics of Starshade Shape Demonstrated on Jupiter using McMath 140m Setup







Starshade Shape cancels bright diffraction ring





Physics-Defined proper shape cancels source light of object

### M3 Blocked vs Unblocked - McMath 140m Setup





- M3 globular cluster Blocked and unblocked, 2cm Aperture
- Allows measurement of the effective Inner Working Angle of the starshade
  - We know that the starshade is effectively 180arcseconds tip to tip this image lets us see how far between the tips we can see.
- May indicate ripple or beating effects beyond the edge of the starshade

### Jupiter Blocked vs Unblocked - McMath 140m Setup





- Both images use 2cm aperture without filtering
- Blocked image has 100x integration time
- Residual light from blocked Jupiter is below noise floor





### Vega with 12" HG Starshade: June 16, 2015 Image #165 (300 Seconds)



Approved for public release; NGAS Case 15-2567 dated 12/21/15.

### Vega with 8" HG Starshade: June 18, 2015 Image #173 (120 Seconds)



### Vega with 4" HG Starshade: June 18, 2015 Image #246 (120 Seconds)



### Comparison of tests



| Test  | Starshade to<br>Telescope<br>Separation | Starshade<br>Diameter | Telescope<br>Aperture | Resolution  | Resolution<br>Elements | Inner<br>Working<br>Angle | Fresnel<br>Number |
|-------|-----------------------------------------|-----------------------|-----------------------|-------------|------------------------|---------------------------|-------------------|
| 1     | 0.14km                                  | 0.10m                 | 0.04m                 | 3.8arcsec   | 31.1                   | 59arcsec                  | 32                |
| 2a    | 0.4km                                   | 0.29m                 | 0.12m                 | 1.5arcsec   | 82.7                   | 62arcsec                  | 87                |
| 2b    | 0.4km                                   | 0.20m                 | 0.08m                 | 1.9arcsec   | 43.2                   | 41arcsec                  | 42                |
| 2c    | 0.4km                                   | 0.10m                 | 0.04m                 | 3.8arcsec   | 11.1                   | 21arcsec                  | 10                |
| 3     | 2.4km                                   | 0.29m                 | 0.04m                 | 3.8arcsec   | 4.0                    | 12arcsec                  | 14                |
| Field | 1km                                     | 0.5m                  | 0.04m                 | 3.8arcsec   | 26.8                   | 51arcsec                  | 210               |
| Space | 80,000km                                | 50m                   | 2.4m                  | 0.063arcsec | 2                      | 0.065arcsec               | 13                |

- McMath Tests allow flight like Fresnel number and close to flight like Resolution elements
- McMath Inner working angle remains ~400 times larger than flight like.

#### Starshade Basics – Fresnel Number



 Starlight suppression by a starshade is determined by the Fresnel Number:

$$-F\# = \frac{D_{SS}^2}{4\lambda z}$$

 This factor completely specifies the shadow of a Hypergaussian starshade



For a fixed Suppression, a larger Starshade at a greater distance gives a smaller IWA

### Final Thoughts



- Field and McMath testing are complementary
  - Desert test results use controlled known radiance bright sources
  - McMath collects on astronomical targets and using flat wavefront light and flight like optical numbers
  - Both use systematic collection methods
- November McMath test at longer baseline may be able to image astronomical bodies with IWA of 12 arcsecond
  - Data collected, processing underway
- Next steps
  - Desert testing at Flight similar Fresnel number using smaller starshades and a 4km baseline
  - Improving the robustness of McMath testing for long baselines



#### THE VALUE OF PERFORMANCE.

### NORTHROP GRUMMAN

### Vega with 8" HG Starshade: June 18, 2015 Image #173 (120 Seconds)



### Vega with 4" HG Starshade: June 18, 2015 Image #246 (120 Seconds)

