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Calculating Yield with a DRM Code 
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DRM 



HZ 

ExoEarth Yield Estimated via Completeness 

IWA 
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Too 
faint 

τ 

•  Completeness, C = the chance of observing a given planet around a 
given star if that planet exists (Brown 2004) 

•  Yield = ηEarth Σ C 

•  Calculated via a Monte Carlo simulation with synthetic planets 
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Maximizing Yield by Optimizing 
Observations 

C
 

Optimizing exposure times can potentially double yield 

Optimized Exposure Times 



HZ 

ExoEarth Yield Estimated via Completeness 

IWA 
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Too 
faint 

τ 

•  Revisiting same star multiple times can increase total completeness 

•  Can optimize number of visits and delay time between visits 



6	Optimized revisits increase yield by additional 35-75% 

Maximizing Yield by Optimizing Revisits 

Optimized Revisits 



Result: A Static Optimized Observation Plan 
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Alpha Cen 

Beta Pic 

Eps Eri 

Starry 
McStarface 

Visit 1 Visit 2 Visit 3 Visit 4 

t2=100 s t1=100 s t3=100 s t4=100 s 
Δt21=0.3 yr Δt32=0.2 yr Δt43=0.1 yr 

t2=300 s t1=300 s t3=200 s Δt21=0.5 yr Δt32=0.2 yr 

t2=400 s t1=500 s Δt21=0.4 yr 



Occurrence rate of Earth-sized planets in the habitable zone 
of Sun-like stars 

ηEarth = 0.1 
(Published estimates of ηEarth range from ~0.03 – 1.0) 

Habitable Zone 
 0.75 – 1.77 AU for Sun-like star 
 (Somewhat wide/optimistic) 
  

Planet characteristics 
 Earth twins on circular orbits 

 
Amount of “exozodiacal” dust obscuring the planet 

	nexozodis = 3 × our own zodiacal dust 
(Best-case future upper limit from LBTI observations) 
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Astrophysical Assumptions in Yield Models 



•  End-to-end throughput = 0.2 
•  Noise floor, Δmagfloor = 27.5 
•  OWA = 15 λ/D 
•  Diffraction-limited Airy pattern PSF 
•  No detector noise 
•  1 year of total exposure time 
•  1 additional year of total overheads 
•  Up to 10 visits allowed to each star 9 

Baseline Coronagraph Mission Parameters 

Detection Coronagraph 

Designed for fast searches 

λ  = 0.55 µm 
Δλ = 20% 
SNR = 7 

IWA = 3.6 λ/D 
Contrast, ζ = 10-10 

2 Coronagraphs:
Characterization Coronagraph 

Designed to detect water	

λ  = 1.0 µm 
Spectral Res. = 50 

SNR = 5 
IWA = 2.0 λ/D 

Contrast, ζ = 5×10-10 
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What Telescope/Instrument Parameters Matter? 

Yield most strongly depends on aperture.  
Moderately weak exposure time dependence. 

Yield ∝ Dφ	

Yield ∝ tφ	
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What Telescope/Instrument Parameters Matter? 

D2 dependence: roughly equal contributions from 
collecting area, IWA, and PSF solid angle. 

Yield ∝ Dφ	

Yield ∝ tφ	
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IWA matters more than contrast when treating both linearly. OWA doesn’t 
matter much. Noise floors with Δmag > 26.5 are unnecessary. 

Coronagraph Scaling Relationships 
What Telescope/Instrument Parameters Matter? 
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Coronagraphs yield linearly proportional to ηEarth. 
Moderately strong dependence on exoEarth albedo. 

Weak dependence on exozodi level. 

Impact of Astrophysical Assumptions 
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Details of an Optimized Observation Plan: 
Number of Stars & Number of Observations 

Optimization results in hundreds of stars and thousands of 
observations—code is skimming off gibbous phase planets. 
Don’t worry! The # of observations can be greatly reduced 
with only small impact on yield. Overheads will ultimately 

limit # of observations. 
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Details of an Optimized Observation Plan: 
Stellar and Planet Vmag distribution 

D = 12 m 

D = 4 m 

D = 12 m 

D = 4 m 
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Details of an Optimized Observation Plan: 
Stellar Angular Diameter Distribution 

Peak of distribution not linearly proportional to D. 
Larger apertures access smaller stars. 

Distributions weighted by 
completeness 

D = 12 m 

D = 4 m 
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D = 8 m 

Details of an Optimized Observation Plan: 
Stellar Type and Distance Distribution 
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Details of an Optimized Observation Plan: 
Detection & Characterization Time Distribution 

D = 12 m 

D = 4 m 

D = 12 m 

D = 4 m 

V band spectra 
R = 70 
SNR = 10 
No detector noise  

V band Detection Time (days) Characterization Time (days) 



0 yr	 5 yr	

Starshade Optimization: Exposure Time & Fuel Are Connected 
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Optimizing Starshades: Balancing Time with Fuel 

0 yr	 5 yr	2 yr	1 yr	

Coronagraph Optimization: Simple Time Budgeting 
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Optimizing Starshades: Balancing Time with Fuel 

We search the 5-dimensional parameter space controlling 
starshade yield to maximize yield 



•  End-to-end throughput = 0.65 
•  Noise floor, Δmagfloor = 27.5 
•  OWA = Infinite 
•  Diffraction-limited Airy pattern PSF 
•  No detector noise 
•  5 yr mission: Optimized exposure/slew time balance, no overheads 
•  <5 visits per star, no optimization of revisit time 
•  Islew = 3000 s, Isk = 300 s, Thrust = 10 N (!) 
•  Delta IV Heavy payload limit of 9800 kg to S-E L2 
•  Optimized starshade design from Eric Cady 21 

Baseline Starshade Mission Parameters 

Detection Bandpass 

λ  = 0.55 µm 
Δλ = 40% 
SNR = 7 

IWA = 60 mas 
Contrast, ζ = 10-10 

1 starshade
Characterization Bandpass 

λ  = 1.0 µm 
Spectral Res. = 50 

SNR = 5 
IWA = 60 mas 

Contrast, ζ = 10-10 
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Maximized Yields for Starshades 
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Yield is moderately sensitive to aperture size and turns over 

at large D; an optimum aperture size exists. 

SLS 
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Yield vs Instrument Optical Parameters 

Small IWA = fuel hungry; Large IWA = planets unobservable. 
An optimum IWA exists. 
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Yield vs Launch Mass 

D = 4 m 

D = 2 m 

D = 6 m 

D = 4 m 

D = 2 m 

Starshade performance highly dependent on 
launch mass budget, i.e. fuel mass.  
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IWA = 40 mas IWA = 60 mas 
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Compared to coronagraph, starshade yield more robust to 
astrophysical sources of photometric noise! This is because 

yield is partially limited by fuel. 

Impact of Astrophysical Assumptions 
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Details of an Optimized Observation Plan: 
Spectral Type & Visit Distribution 

Starshade optimization chooses similar targets to 
coronagraphs, but observes them more deeply and only a 

couple of times. 
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Direct Comparison of Baseline Coronagraph & 
Baseline Starshade Yields 

Assumes identical astrophysical assumptions, 
science goals, and observational “rules.”   

Need to examine the impact of the rules.

n = 3 zodis n = 60 zodis 

SLS 

Falcon 9 

Delta IV H SLS 

Falcon 9 

Delta IV H 

Coronagraph 

Coronagraph 
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Future Work 

•  Run yield calculations for actual coronagraph 
designs: 

www.starkspace.com/yield_standards.pdf


•  Compare coronagraph & starshade yields for a 
variety of astrophysical scenarios, science goals, 
and observational approaches 

•  Produce a code capable of dynamic observation 
plans (learns as the mission progresses) 

•  Support Exoplanets Standards Team analysis of 
decadal studies
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Backup Slides 



30 

Falcon 9 Delta IV Heavy SLS Block 1 



ηEarth	

?	
?	
?	

Choosing a Powerful Null Result in the 
Search for Life 

Number of 
habitable 

zones (HZs) 
surveyed 

Frequency 
of Earth-

sized rocks 
in the HZ 

Yield of 
“exoEarth 

candidates” 

Fraction of 
Earth-sized 
HZ rocks 
with life 

Yield of 
living 

planets 

×	 =	 flife	×	 =	



To guarantee at least 1 Earth-like planet at confidence level C  
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How Does One Choose a Yield Goal? 

Must rely on blind selection counting.  The probability P of x 
successes out of n tries, each with probability p of success, is given 

by the binomial distribution function… 
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Choosing a Powerful Null Result in the 
Search for Life 

ExoEarth candidate yield required to constrain flife 
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Lower Limits on Aperture Size 

If ηEarth = 0.1, detecting >30 exoEarth candidates 
requires D ≳ 11 m. 

Amount	of	
exozodiacal	dust	
(×	solar	zodiacal	

amount)	
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Larger Apertures Can Improve Characterization 

Reconstruction of Earth’s land:sea 
ratio from disk-averaged time-
resolved EPOXI observations. 

12-m  8-m          4-meter 

Exposure Time for Earth at 10 pc 
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Measuring rotational period and mapping planet 

Ford et al. 2003 

Require S/N~20 (5% photometry) to detect ~20% variations in reflectivity.  


