

American Astronomical Society Meeting Kissimmee, FL, January 2016

Technology Needs for the Direct Imaging of Exo-Earths

Nick Siegler (nsiegler@jpl.nasa.gov) Program Chief Technologist NASA Exoplanet Exploration Program Jet Propulsion Laboratory/Caltech

Starlight Suppression Approaches

External Occulters (Starshades)

Internal Occulters (Coronagraphs)

Driving Requirements for Imaging Exo-Earths

Coronagraph Technology Needs

<u>Contrast</u>

Deformable mirrors

Image post-processing

Large monolith

Segmented

Contrast Stability

Low-order wavefront sensing and control

Segment phasing and rigid body sensing and control

Telescope vibration sensing and control

Detection Sensitivity

Angular Resolution

Ultra-low noise visible and infrared detectors

Starshade Technology Needs

Diffraction and Scattered Light Control

Lateral Formation Flying Sensing

Lateral formation sensing

Precision Deployable Structures

Optical demonstration and model validation

Solar glint

Inner disk deployment

NASA Exoplanet Exploration Program Technology Gap Lists

Are there any missing technologies?

Starshade Technology Gap List

Table A.3 Coronagraph Technology Gap List

ID	Title	Description	Current	Required
6-1	Specialized Coronagraph Optics	Masks, apodizers, or beam-shaping optics to provide starlight suppression and planet detection capability.	A linear mask design has yielded 3.2×10 ⁻¹⁰ mean raw contrast from 3-16 A/D with 10% bandwidth using an unobscured pupil in a static lab demonstration.	Circularly symmetric masks achieving $\leq 1 \times 10^{-10}$ contrast with IWA $\leq 3\lambda/D$ and $\geq 10\%$ bandwidth on obscured or segmented pupils.
C-2*	Low-Order Wavefront Sensing & Control	Beam jitter and slowly varying large-scale (low- order) optical aberrations may obscure the detection of an exoplanet.	Tip/tilt errors have been sensed and corrected in a stable vacuum environment with a stability of 10 ⁻³ λ rms at sub-Hz frequencies.	Tip/tilt, focus, astigmatism, and coma sensed and corrected simultaneously to $10^{-4} \lambda (-10^{\circ} \text{ of pm}) \text{ rms to}$ maintain raw contrasts of $\leq 1 \times 10^{-10}$ in a simulated dynamic testing environment.
C-3*	Large-Format Ultra-Low Noise Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph.	Read noise of < 1 e-/pixel has been demonstrated with EMCCDs in a 1k × 1k format with standard read- out electronics	Read noise < 0.1e ⁻ /pixel in a ≥ 4k × 4k format validated for a space radiation environment and flight-accepted electronics.
C-4*	Large-Format Deformable Mirrors	Maturation of deformable mirror technology toward flight readiness.	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10-9 contrasts in a vacuum environment and 10% bandwidth.	≥ 64x64 DMs with flight-like electronics capable of wavefront correction to ≤ 10 ⁻¹⁰ contrasts. Full environmental testing validation.
C-5	Efficient Contrast Convergence	Rate at which wavefront control methods achieve 10 ⁻¹⁰ contrast.	Model and measurement uncertainties limit wavefront control convergence and require many tens to hundreds of iterations to get to 10 ⁻¹⁰ contrast from an arbitrary initial wavefront.	Wavefront control methods that enable convergence to 10 ⁻¹⁰ contrast ratios in fewer iterations (10-20).
C-6*	Post-Data Processing	Techniques are needed to characterize exoplanet spectra from residual speckle noise for typical targets.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10-5 to 10-5, dominated by phase errors	A 10-fold improvement over the raw contrast of ~10% in the visible where amplitude errors are expected to no longer be negligible with respect to phase errors.

*Topic being addressed by directed-technology development for the WFIRST/AFTA coronagraph. Consequently, coronagraph technologies that will be substantially advanced under the WFIRST/AFTA technology development are not eligible for TDEMs.

Please let us know!

Coronagraph Technology Gap List

Table A.4 Starshade Technology Gap List

ID	Title	Description	Current	Required
S-1	Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength material with edge radius $\leq 1 \ \mu m$ and reflectivity $\lesssim 10\%$.
S-2	Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally validate models of starlight suppression to ≤ 3×10 ⁻¹¹ at Fresnel numbers ≤ 50 over 510- 825 nm bandpass.
5-3	Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors ≤ 0.20m at scaled flight separations and estimated centroid positions ≤ 0.3% of optical resolution. Control algorithms demonstrated with lateral control errors ≤ 1m.
S-4	Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces. Demonstrate a flight-like unfurling mechanism.
S-5	Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed to within the budgeted tolerances.	Demonstrated deployment tolerances with 12m heritage Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint.	Demonstrate deployment tolerances with flight-like, minimum half-scale inner disk, with simulated petals, blankets, and interfaces to launch restraint.

http://exep.jpl.nasa.gov/technology/

Next update on Jan 19, 2016

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

© Copyright California Institute of Technology Government sponsorship acknowledged