UVOIR Technology Needs

(Cosmic Origins Program Analysis Group)

Ken Sembach
(Space Telescope Science Institute)
April 26, 2011

On behalf of the COPAG Executive Committee,
Chair: Chris Martin

COPAG Charge

- Identify a focused set of mission-enabling technologies relevant to Cosmic Origins future missions
- Provide a nucleus for the community to speak with a coherent voice in technology prioritization
- Provide input to Strategic Astrophysics Technology (intermediate TRL) NRA and selection process by end of 2011, for 2012+ proposal opportunities
- Provide input to APRA (low TRL) technology selection process
- Provide input to NASA and NRC Technology Roadmapping
- Make tough choices for highest-value efforts given limited resources

COPAG Tasks

- Determine technology focus areas for a large UVOIR mission in the next decade
 - Possible areas of investment
 - Detectors
 - Optical coatings
 - Gratings
 - Multiplexing elements / IFUs
 - Wavefront sensing and control
 - Lightweight mirrors
 - This activity was divided into two tasks one to identify the needs for a standalone UVOIR Cosmic Origins mission, and one to identify the needs for a joint UVOIR Cosmic Origins / Exoplanet mission
- Determine technology focus areas for future Far-IR instruments
 - Not part of today's discussion

Task 1 Activity (Independent of ExoPAG)

- Develop strawman reference mission concept as "target"
- Assess the TRL/maturity level of various technologies
- Determine time/\$\$/investment to reach necessary TRL level to support mission concept development
- Prioritize and develop a portfolio based on one or more
 Figures of Merit and supporting rationale
 - Ex. FOM: Expected increase in "Effective Telescope Aperture" by 2018

Task 2 Activity (In Conjunction with ExoPAG)

- Develop strawman joint reference mission concept as "target", coordinating with ExoPAG
- Consider internal and external starlight suppression concepts
- Determine requirements for compatibility
 - E.g., Coatings: R > R_{min}, Variations < XX%
- Assess the TRL/maturity level of relevant technologies
- Determine time/\$\$/investment to reach necessary TRL level to support mission concept development
- Prioritize and develop a portfolio based on one or more
 Figures of Merit and supporting rationale

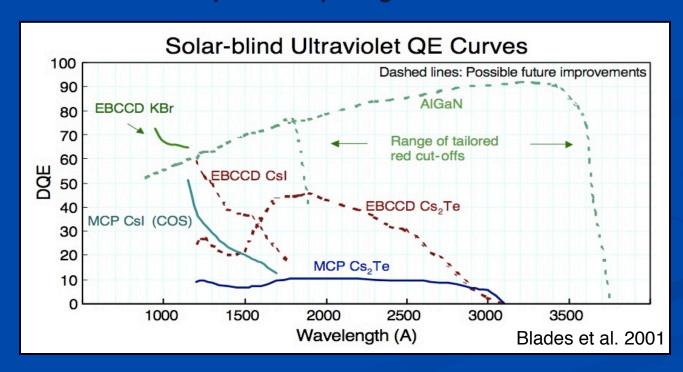
Selected Astro2010 White Papers

- Several key Astro2010 white paper references:
 - Technology Investments to Meet the Needs of Astronomy at Ultraviolet Wavelengths in the 21st Century (technology white paper #54 – Sembach et al.)
 - THEIA: Telescope for Habitable Exoplanets and Interstellar/ Intergalactic Astronomy (RFI #132 – Kasdin et al.)
 - Advanced Technology Large Aperture Space Telescope ATLAST (RFI #13 – Postman et al.)

Key advances could be made with a telescope with a 4-meter-diameter aperture with large field of view and fitted with high-efficiency UV and optical cameras/spectrographs operating at shorter wavelengths than HST. This is a compelling vision that requires further technology development. The committee highly recommends a modest program of technology development to begin mission trade-off studies, in particular those contrasting coronagraph and star-shade approaches, and to invest in essential technologies such as detectors, coatings, and optics, to prepare for a mission to be considered by the 2020 decadal survey. A notional budget of \$40 million for the decade is recommended.

Increasing Throughput

- The throughput of optical systems at ultraviolet wavelengths has considerable headroom for growth.
- Even Optical/IR designs can be improved via multiplexing.
- Technology investments can be traded against aperture size.

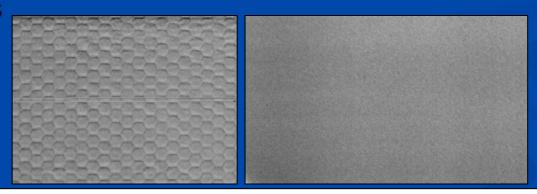

Table 1: Exposure Times for Telescopes With and Without New Technology Investments							
Flux (erg cm ⁻² s ⁻¹ Å ⁻¹)	GALEX FUV (mag)	Exposure Time to Reach S/N = 10 at R = $20,000$					
		HST / COS	4m HST	8m HST	16m HST		
			or	or	or		
			Optimized 2m	Optimized 4m	Optimized 8m		
1x10 ⁻¹⁵	19.2	9.8 ksec	3.6 ksec	900 sec	220 sec		
1x10 ⁻¹⁶	21.7	115 ksec	39 ksec	9.1 ksec	2.2 ksec		
1x10 ⁻¹⁷	24.2	2.9 Msec	700 ksec	110 ksec	24 ksec		

Calculations assume a 2-mirror OTA with 12% secondary linear obscuration, feeding a single reflection spectrograph with a detector dark count rate of 2.7×10^{-4} cnt s⁻¹ per resolution element.

Optimized telescope configurations assume a factor of 4 improvement in system throughput compared to existing (Hubble) technology.

Detectors (1/3)

- Improving quantum efficiency is a key issue
 - Particularly, band-averaged values
 - Matching to optical λs is important for data quality uniformity when exposing for similar times



COS FUV MCP				
1216 Å	~34%			
1300 Å	~30%			
1400 Å	~23%			
1500 Å	~20%			
1600 Å	~13%			
1750 Å	~ 10%			
COS NUV MAMA				
2000 Å	~10%			
2500 Å	~9%			
3000 Å	~4%			

Detectors (2/3)

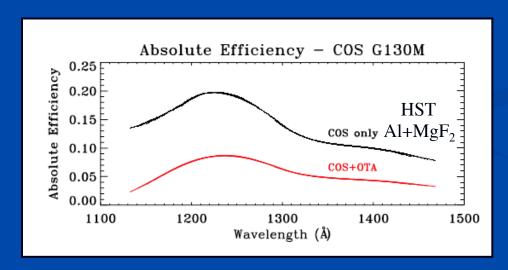
- Other key detector issues
 - Better photocathode materials are needed
 - Example: AlGaN, GaN show great promise (QEs > 70% at 122 nm) but have high dark noise and are not yet suitable for large formats
 - Considerable work is needed to extend results to semi-transparent mode or to use in opaque mode on microchannel plates

■ Flatfields

(Left) HST-COS flat field image of a 10 x 13 mm area of the far-ultraviolet MCP detector. The fiber bundles imprint an obvious fixed-pattern noise features in the image. (Right) A new glass process MCP flat field for a similar image area, demonstrating the absence of fixed-pattern noise (Siegmund et al. 2007).

Detectors (3/3)

- Other key detector issues
 - Format
 - Long MCP detectors (1st order apps)
 - Large-format CCDs (echelle apps)
 - Backgrounds (photon counting)

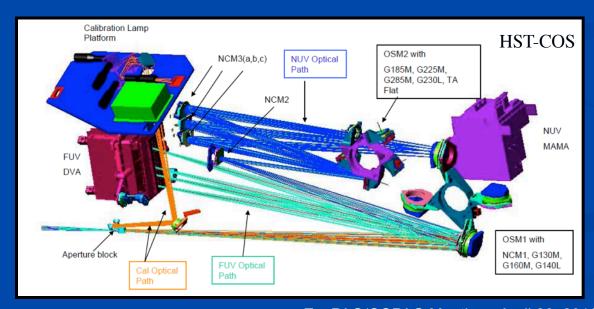


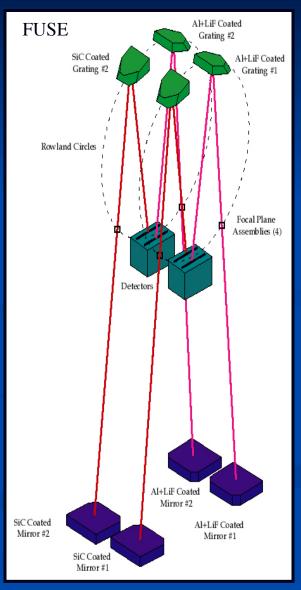
HST-COS far-ultraviolet detector showing the two abutting microchannel plate detector segments (each 85 x 10 mm) curved to the focal plane of the spectrograph.

- Radiation hardness
 - Charge transfer efficiency primarily an issue for large CCDs in space
 - p-channel vs. n-channel can help
 - CMOS (or APS) devices hold great promise but have higher read noise and lower QE than conventional CCDs; need development
- Operation at "room" temperature
 - Contamination of UV optics and detectors is a major concern at cryogenic temperatures

Optical Coatings

- Technological "tall poles"
 - Smoothness, surface quality/uniformity, polarization
 - High reflectivity (>90%) coatings over large bandpasses (100 nm 1μm)
 - Compatibility with use at UV wavelengths is highly desirable
 - Coatings like Al+LiF may be difficult to handle on large optics

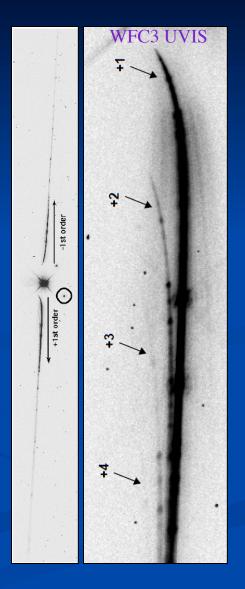



HST OTA				
1150 Å	26%			
1200 Å	41%			
1500 Å	41%			
2000 Å	49%			
2500 Å	60%			
3000 Å	61%			

Light loss from Three 70% reflections = Ten 90% reflections = Twenty-One 95% reflections

Optics

- Design complexity can improve as optics and coatings improve
- Needs
 - Large lightweight optics with areal densities of <20 kg/m² (and supporting pointing accuracy/stability)
 - Large aberration-correcting diffraction gratings
 - Fast optics for some applications (off-axis telescope designs – e.g., FUSE)



Optical Designs

Multiplexing can improve efficiency by orders of magnitude

- Slitless spectroscopy
- Multi-object aperture arrays
- Integral field units (even all-reflecting IFUs in UV)
- STIS
- JWST is taking advantage of spectroscopic multiplexing
- Grism spectroscopy with HST-WFC3 is being applied to fields ranging from ExoPlanets to Cosmology

Key Points

- Improvements in throughput present new science opportunities
 - Bringing UV throughput on par with optical/NIR wavelengths will require better detectors and optical coatings
- Improvements in UV throughput can be cost effective
 - Factor of 4 should be achievable (equivalent to doubling primary)
- Detectors need dedicated investment strategy
 - QE improvements, photon-counting, large formats, environmental tolerance
- Optics and coatings need to be improved as well
 - Reflections (currently) cost dearly in the ultraviolet
 - Instrument design possibilities abound with higher reflectivity