Exoplanet and Solar System Synergy with Future Missions

Britney Schmidt Georgia Tech OPAG Steering Committee

Steve Vance, Jet Propulsion Lab Kunio Sayanagi, Hampton University

Planetary Habitability At Tech

Solar System Targets for Exosystem Synergy

1. Giant and Ice Giant Planets

- → These span a range of exoplanet size ranges
- → In the solar system, we can ground-truth what's happening in other systems,
 - $\rightarrow \rightarrow \rightarrow$ There is not enough of this happening, let's talk!!

2. Moons around the Giants

- → Examples of "exotic" configurations
- → These are *PLANET SIZED*
- → Early atmospheres, active processes, *habitable worlds*

3. Asteroid and Kuiper Belt Objects

- → Dynamic field, actively changing right now
- → Directly relevant to system dynamics and debris/protoplanetary disks
 - → Synergy with planet formation

Solar System Target Requirements

1. Moving Target Tracking Capabilities

- → JWST can do 30mas/sec, which is good
- → WFIRST's moving target tracking capability is TBD
- \rightarrow LUVOIR????

2. Bright objects

- → JWST is too sensitive for many SS targets
- → JWST will <u>NOT</u> have the neutral density filter required for Giant planet observation (will be ok for Ice Giants)
- → WFIRST's Integrated Field Spectrometer will have HST-like sensitivity and wavelength coverage.

3. Imaging near Bright Objects

- → Space Telescopes Can't Observe Venus or Mercury
- → If not planned in advance, no moon/ring science, Giants are too bright

Giant Planets—Resolving Dynamics for Exoplanet Baselines

UV Aurora & Rings—Dynamics

Proposed JWST Sub-Array Config for Bright Objects

 Solar System Planets could be observed with JWST if the subarrays could be read out separately like below:

NIRCam SW Subarray Positions

Icy Moons— Exotic Habitable Worlds

Europa: warm salty H₂O, mantle contact, high energy

Titan: perched H_2O , high pressure ices, undifferentiated core?

Icy World and Exoplanet Oceans

Advances in computational capabilities enable **new equations of state** based on experiments

Using realistic ocean thermodynamics drastically affects how extraterrestrial oceans work:

-alters temperature structure of the ocean

-reduces **presence of ices**

-lead to layered oceans-ices

—> when does ice float or sink?

—> how might water-rock reactions create food for life

Ganymede Ice I Ice III snow Ice V-Ice VI Liquid ocean layers, more saline with depth Moon Mercury Vance, Bouffard, Choukroun, and Sotin, 2014

Super-Ganymedes Super-Earths Super-Europas?

Metallic core
Silicate mantle
Water ices and liquids

(Grasset+ 2009)

Kepler planets R<2.5 R_{Earth} contours: $T_{surface}$ (K)

FESS: Transiting Exoplanet Survey Satellite (Ricker+2014)

0 50 100 150 200 250 300 Orbital Period (d)

Europa Plume Location & Variability

Europa Plume Location & Variability

Roth et al 2014, *Science*, Schmidt et al in prep.

Kuiper and Asteroid Belts— Seeing Planets & Informing Disk Processes

Hubble in the Main Belt

Interior from Shape and Density Observations

M Küppers *et al. Nature* **505**, 525-527 (2014) doi:10.1038/nature12918

Whole New Worlds: Icy Bodies in the Main Belt

- Twenty C-type asteroids larger than 100 km
 - Densities between 2000 and 2800 kg/m³
 - Can be interpreted as 5-30 % wt. water
 - Surface Temperature is greater than 160 K
 - Water ice creep temperature is 176 K
 - Surface Compositions:
 - Hydrated silicates, organics, carbonates, clays
 - Signatures of water-rock reactions?
- Main belt comets: B-types, part of Themis family

Implications for Ice & the C-class Asteroids

Kuiper Belt—Seeing Planets & Informing Disk Processes

Dynamical Classification

Largest known trans-Neptunian objects (TNOs)

Pluto

Credit: NASA

Synergy & Moving Forward

Some Potential JWST vs 8m-class Observations

Pluto, Haumea, Themis family & smaller/more distant targets

Ground/WISE, NIRSPEC, LUVOIR
Colors→(Resolved)Spectra→Resolved Imaging→ water, CHANGE!

Sample Solar System Obs. Req.

- Spatial Resolution:
 - < 100 milli-arcsec PSF sampled at <40 milli-arcsec/pixel
- Sensitivity for photometry and imaging:

```
V ≤ 24 (w/o filter for cold small bodies)
Surface Brightness < 100 Jy/arcsec² (w/ filter for giant planets)
Imaging SNR > 100 for resolving low-contrast features on GPs.
```

Spectral Resolution:

```
R = \lambda /\Delta \lambda > ~150 in 400-800 nm R = \lambda /\Delta \lambda > ~50 in 800-1600 nm SNR > 50
```

- Moving Target Requirement:
 30 milli-arcsec / sec to observe objects at/near Mars orbit
- Coronagraph / Starshade:

We could use Coronagraph/Starshade observe rings, moons, aurorae, image binaries (issue: Jupiter appears much larger than Neptune; difficult to tune the size of the shade)

8-m Class Observatory Game-Changers

- Pluto: 0.1" 14 mag—resolved imaging, change detection, atmospheric science, imaging Charon and its dynamics
- Neptune: 2.3" 7.8-8 mag, imaging moons, rings, aurora → magnetospheres, interior
- Uranus: ~3" 8-9th mag, imaging moons, rings, aurora → magnetospheres, interior
- Haumea: 17th mag, first resolved images/spectra? Size measurement, colors, changes? Moons?
- Makemake: 16-17th mag first resolved images/spectra? Size measurement, colors, changes? Moons?
- Pallas: .2-.3" 8-10th mag, High spatial resolution, resolved spectra, UV of C-class asteroids, centaurs
- Europa: .7-1" 5.5-6 mag, spatial resolution, UV activity monitoring
- Main belt comets— sub .1", 21-24 mag, first spectroscopy, any resolved science?

Solar System and Exoplanet Scientists Need to Stick Together!