
Optimal method for exoplanet detection by spectral and
angular differential imaging

A. Corniaa,b, L. M. Mugniera, D. Mouilletc, A. Vigand, A. Eggenbergerc, G. Roussetb, A.
Boccalettib, M. Carbillete, K. Dohlend, T. Fuscoa, J. Carsonf, and G. Montagnierg.

a ONERA/DOTA, B.P. 72, 92322 Châtillon cedex, France.
b LESIA, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon, France.

c Lab. d’Astrophysique de l’Observatoire de Grenoble, France.
d Observatoire Astronomique de Marseille-Provence, France.
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ABSTRACT

In the context of the SPHERE planet finder project, we further develop and characterize a recently proposed
method for the efficient direct detection of exoplanets from the ground using spectral and angular differential
imaging. The method, called ANDROMEDA, combines images appropriately into “pseudo-data”, then uses all
of them in a Maximum-Likelihood framework to estimate the position and flux of potential planets orbiting the
observed star. The method is validated on realistic simulations of images performed by the SPHERE consortium,
and applied to experimental data taken by the VLT/NAOS-CONICA instrument.

Keywords: exoplanets, detection, inverse problems, coronagraphy, angular imaging, differential imaging, spec-
tral imaging, high contrast, maximum likelihood, adaptive optics.

1. INTRODUCTION

The direct detection of exoplanets from the ground is a very promising field of astronomy today. A goal is the
characterization of the physical composition of the exoplanets by a spectral analysis of their emitted and/or
reflected light. This observation from the ground is a technological challenge. Indeed, in order to be able to
observe a sufficient number of targets, it is required to cope with an intensity ratio (also called contrast) between
the star and its planet that may be as high as 106 in IR bands at very small angular separations. In particular,
our work is focused on the SPHERE project.1 This instrument, which will be mounted on VLT of ESO in
2011, is the combination between several optical features, all of them optimized toward the final goal, which
is exoplanet detection. First of all, the extreme adaptive optics system (XAO) concentrates the light into a
coherent Airy pattern, performing a real-time correction of atmospheric turbulence.2 Then, the coronagraphic
stage3–5 strongly attenuates the star intensity and therefore significantly reduces the photon noise.

Furthermore, in order to reach the detection performance needed to detect a large number of planets, it is
mandatory to combine the above-mentioned optical devices to an a posteriori processing of all the data. The
main issue is to disentangle the potential planet signal from the quasi-static speckles, which are due to static
aberrations and constitute a major “noise” source. These speckles present the same characteristic angular size as
the planet signal, λ/D. To enhance the capability to discriminate between the speckles and the planet, SPHERE
observes simultaneously in different spectral channels with an integral field spectrograph or with a dual band
imager (IRDIS): by subtracting the two images taken simultaneously at different wavelengths, it is possible to
eliminate most of residual aberrations.7 The two wavelengths are chosen in such a way that there is a strong
contrast between the planet fluxes at each of them. But yet, this is not sufficient: one needs to develop a
sophisticated method of images processing which allows to exploit also the temporal information. On SPHERE,
the pupil is stabilized during the night in order to keep the aberrations fixed, while the field rotates, thus making
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easier to distinguish the aberration-induced speckles from the planet(s). If the static aberrations are not known,
but vary slowly during the night, it is possible to eliminate their influence via appropriate subtractions between
images taken at different instants. This is the principle of the Angular Differential Imaging (ADI).8,9 These
double (spectral+angular) differences are the data on which our method is to be applied.

Here we present further developments of ANDROMEDA, the method proposed in Mugnier et al. (2009).10

Like other methods of planet detection,9,11 ANDROMEDA’s aim is to subtract as well as possible the star signal.
But one specific feature of our method is that it performs a characterization (detection and flux estimation)
founded on a sound statistical basis in a Maximum-Likelihood framework.

After having recalled the principle of the method in Sect. 2, in Sect. 3 we present in detail the pre-processing
of ANDROMEDA, which allows us to exploit the spectral information present in the data, and relies on an
optimization of the spectral and angular differences. In Sect. 4 we show the results of tests of ANDROMEDA
on simulated data reproducing realistic conditions of observation. Then in Sect. 5 we will present the results of
its application on experimental data taken by the VLT.

2. PRINCIPLE OF THE ANDROMEDA METHOD

The basis of the method lies on Angular Differential Imaging. The IRDIS instrument, which is a part of SPHERE,
allows to de-rotate the pupil during the observation, so that the speckle pattern stays almost constant while the
field (and the planet(s) within it) rotates around the center during the night. We can thus strongly reduce the
influence of the speckles via appropriated subtractions between images taken at two different instants: in the
difference, the star signal is suppressed as much as possible and only the planet signal and the noise are left. An
example of a differential image is shown in Fig. 1, on the right.

Figure 1. Example of an angular difference. We can remark the two peaks (one positive, one negative) corresponding to
the position of the planet at the two instants, and the residual noise.

The new data consist of a set of differential images denoted by ∆(r, k); r is the position of the pixel, and k
is an index associated with each couple of images to be subtracted (that is to say, the k-th differential image is
the difference between two images taken at instants t1(k) and t2(k): ∆(r, k) = it1(k) − it2(k)). Assuming that
the star has been suppressed, the model for ∆(r, k) can be written as:

∆(r, k) = a · p(r, k; r0) + n(r, k), (1)

where a is the planet’s flux and r0 is the initial planet’s position, p(r, k; r0) is the known “planet signature” in
this data for an assumed r0 (it is the difference of two PSF’s), and n(r, k) denotes the noise.

The maximum likelihood approach consists in searching for (r̂0, â) that maximize the likelihood. We define
a criterion J(r0, a) which is equal to the logarithm of the likelihood up to an unimportant constant. In the
following we assume that the noise has a variance σ2(r, k), which can be estimated from the cube of images.



The log-likelihood is given by:

J(r0, a) = lnL(r0, a) = −
∑
r,k

|∆(r, k)− a · p(r, k; r0)|2

2σ2(r, k)
. (2)

Incidentally, maximizing the likelihood is equivalent to minimizing the sum of the squared residuals between
data ∆ and model a · p, weighted by the noise variance.

The expression of the log-likelihood is quadratic with respect to a, so the optimal value â(r0) of a for each
given r0 is computable analytically:

â(r0) =

∑
r,k p(r, k; r0)∆(r, k)/σ2(r, k)∑

r,k p2(r, k; r0)/σ2(r, k)
(3)

It can be pointed out that â(r0) is a weighted cross-correlation between the planet signature p and the signal
∆.

If we insert this optimal value for the flux into the metric J , we obtain an expression of the latter that
depends, explicitly at least, only on the sought planet position:

J ′(r0) , J(r0, â(r0)) =

(∑
r,k p(r, k; r0)∆(r, k)/σ2(r, k)

)2

∑
r,k p2(r, k; r0)/σ2(r, k)

. (4)

This criterion J ′ can be computed for each possible initial planet position on a grid, which can be chosen as the
original pixel grid of the images, or as a finer grid if it is useful. The most likely initial planet’s position is then
r̂0 = arg max J ′(r0), and the most likely flux is â(r̂0) as computed with Eq. 3.

The typical shapes of the â(r0) and J ′(r0) maps are shown in Fig. 2. In the former we can see the central
positive peak with two negative sidelobes; in the latter there are still two sidelobes, but they are positive and
lower than the central peak, which represents the most probable position of the planet.

Figure 2. Example of estimated flux map â(r0) and likelikood map J ′(r0), for a noiseless case.

We can also define the standard deviation on estimated flux σ(â(r̂0)), which reflects the noise propagation
from data to the computed flux map. It can be shown10 that

σ(â(r0)) =

∑
r,k

p2(r, k; r0)
σ2(r, k)

− 1
2

. (5)

So we can define also the signal-to-noise ratio as the estimated flux divided by its standard deviation:

SNR(r0) =
â(r0)

σ(â(r0))
=

∑
r,k p(r, k; r0)∆(r, k)/σ2(r, k)√∑

r,k p2(r, k; r0)/σ2(r, k)
(6)



Incidentally, it can be pointed out that (SNR(r0))2 = J ′(r0), which means that the most likely position for
a planet is the one for which the SNR is the highest. Indeed, maximizing the two quantities is equivalent. The
most likely planet position is thus the value r̂0 of r0 that maximizes SNR(r0), and the estimated flux is the
value at the same position of the flux map, â(r̂0).

This estimator can be improved by constraining the estimated flux to be positive. Indeed, the value of â(r0)
of Eq. 3 is not necessarily positive, whereas the true flux is. So we can threshold the flux map to the positive
values only; this is equivalent to thresholding the SNR map, since the two quantities have the same sign. And
since (SNR(r0))2 = J ′(r0), this thresholding leads to the disappearance of some spurious peaks in the likelihood
map.10 In particular, the positivity constraint cancels the two sidelobes both in the flux map and in the likelihood
map shown in Fig. 2.

The detection criterion proposed in Mugnier et al. (2009)10 is based on the Gaussianity and the whiteness
of the noise, a hypothesis which is strictly fulfilled if we have only photon and detector noise (i.e., if the PSF of
the star does not vary through the night). This criterion consists in deciding that a planet is present in r0 iff
SNR(r0) is greater than a certain threshold τ . The Probability of False Alarm (PFA) is linked to this threshold
by the relationship PFA(τ) = 1− erf(τ), where erf(x) = 1√

2πσ2

∫ x

−∞ exp
(
− (x′−µ)2

2σ2

)
dx′.

3. PRE-PROCESSING: OPTIMAL SUPPRESSION OF THE SPECKLES

ANDROMEDA uses differential images in which the star signal is supposed to have been suppressed as well as
possible. This suppression can be made in two complementary ways:

� by spectral difference of images taken at the same instant (SDI, for Spectral Differential Imaging);

� by difference of two images taken in the same spectral channels at two different instants, with a sufficient
field rotation between the two (ADI, for Angular Differential Imaging).

In this section we explain how to perform these operations in the optimal way.

3.1 Principle of the spectral differentiation

The IRDIS instrument allows to work in dual band imaging mode, which means that images can be taken
simultaneously at two different wavelengths, λ1 and λ2. This can help us eliminate the speckles more effectively,
via an appropriate spectral subtraction. To do so, the spectral channels must be chosen in such a way that
the speckle pattern does not change too much between them (so they must be as close as possible6,7), but at
the same time there must be a significant difference in the planet flux at the two wavelengths, to avoid that
the planet signal is cancelled in the difference. This happens if, for example, we have an absorption line in the
spectrum of the planet at one of the two wavelengths. In the following we make the assumption that the planet
flux at λ2 is negligible.

Prior to performing the spectral differences, a rescaling of the images taken in one of the two channels (at
λ2, if the planet is absent at this wavelength) must be carried out, because the shape and amplitude of the PSF
varies according to the wavelength.

Assuming that we use an extreme AO system, a perfect coronagraph, that aberrations are achromatic, and
that the small phase approximation is valid, a coronagraphic star image at λi, denoted by hc

i (α), scales spatially
proportionally to λi, so that:

hc
2

(
λ2

λ1
r

)
=

(
λ1

λ2

)2

hc
1(r) (7)

So i2 must be scaled according to Eq. 7: the image to be subtracted to i1 is given by

i2,res(r) =
(

λ2

λ1

)2

i2

(
λ2

λ1
r

)
(8)



Because SPHERE images are at least Shannon-sampled, this scaling can be done accurately using the discrete
Fourier transform (DFT) – in practice the FFT. In a nutshell, our scaling method consists in zero-padding the
image both in direct space and in Fourier space in order to obtain the zoom factor of our choice. The exact steps
are detailed in appendix A.

3.2 Principle of the angular differentiation: choice of the image pairs

For each of the original images, we construct a differential image ∆k by subtracting another image from it,
chosen so that the field has sufficiently rotated in the meantime. In case spectral differences are performed (as
described in Subsect. 3.1), they can be used instead of the original images to build up angular differences.

On the one hand we want to subtract images as close as possible in time, so that the speckles have not evolved
significantly from one image to the other. On the other hand we must pay attention not to take two images too
close, because if the planet has moved too little between the two images its signal is cancelled out, leaving only
noise in the differential image.

So it is important to set the minimum acceptable separation δmin between the positions of the planet in the
two images: larger values of δmin will result in a less effective quasi-static speckle subtraction; smaller values
will cause a more important flux loss. The best compromise between these two effects depends on the speckle
evolution time, i.e., on the instrument’s stability.

δmin is expressed in units of length (λ/D, pixels or arcseconds; we generally use the first one to make the
flux loss independent of the wavelength). Once δmin is set, the minimum acceptable angle θmin by which the
field has rotated between the two images depends on the distance ρ from the rotation center, according to the
formula θmin(ρ) = 2 arcsin(δmin/2ρ). θmin is a decreasing function of ρ, which means that when we are farther
from the star we are allowed to take images closer in time.

It should be noted that the choice of δmin does not affect the flux estimation (contrarily to what happens for
example with LOCI11), because the overlapping of the planet signals in differential images is taken into account
in the shape of the planet signature p(r, k; r0).

3.3 Optimization of differences

When performing a difference (spectral or angular) between two images i1 and i2 we cannot simply take the
value i1 − i2, because the two images will have different fluxes in the two channels. Thus we have to multiply
the second image by a certain factor, which we will call γ. The optimized spectral and angular differences can
be written, respectively, as:

i′t = iλ1
t − γti

λ2
t,res, (9)

∆k = i′t1(k) − γ′ki′t2(k), (10)

where i
λj

t is the image taken at the instant t at the wavelength λj ; iλ2
t,res(r) =

(
λ2
λ1

)2

iλ2
t

(
λ2
λ1

r
)

according to
Eq. 8; t1(k) and t2(k) are the two instants at which the images used to build the k-th differential image are taken.
For the spectral difference, the flux variation is due to the fact that the star spectrum is not perfectly flat around
the two considered wavelengths and to the difference in the transmission factor between the two channels; the
flux variation in time is essentially caused by the difference in the quality of AO correction during the night.

Furthermore, we have noticed both on simulated and experimental images that this variation depends greatly
on the distance to the center. As a consequence, we shall split the zone in which we want to detect planets in
several concentric annuli and perform the optimizations of differences separately on each of these annuli. We
will refer to each annulus as the “subtraction area”.∗

To explain how to obtain the coefficients γt and γ′k, for simplicity we will now write the differences in Eqs. 9
and 10 in the generic form |i1 − γi2|2; the procedure is the same for both cases.

∗It can be noticed that the idea of an optimization that depends on the considered position in the image is common
to other methods of planet detection, such as “smart” ADI9 and LOCI.11



For each subtraction area, the coefficients γ is computed as the one that minimizes the total of the squared
difference |i1 − γi2|2, restricted to a certain area, which we will call the “optimization area”. It can be shown
that

γ =
∑

r m(r) · i1(r) · i2(r)∑
r m(r) · i22(r)

, (11)

where m is a mask that is equal to 1 on the pixels belonging to the optimization area, and 0 elsewhere. In principle
we could take the optimization areas equal to the subtraction areas. In practice, if we choose this solution, we
observe that there are evident discontinuities both in the SNR map and in the flux map corresponding to the
limits of the annuli. To overcome this problem, we choose an optimization area larger than the subtraction area.
Each optimization area is an annulus which shares the same inner radius as the subtraction area but has a larger
outer radius.11 The ratio between these two areas is constant for all the annuli and is an input of the algorithm;
we will refer to it as RA. The main advantage of having an optimization area larger than the subtraction area
is that the optimization areas for consecutive annuli overlap, causing a smoothing of the discontinuities, as we
will see later (Sect. 5).

4. TEST OF ANDROMEDA ON SIMULATED REALISTIC DATA

4.1 Simulation conditions

The method has been tested on data elaborated simulating SPHERE performances. The simulations were aimed
at reproducing observation conditions as realistically as possible. These conditions are the same listed in Vigan
et al. (2010)12 and in the article of Vigan et al. for this conference.13

We have 144 images taken during one night, for a total exposure time of 4 hours (that is to say 100 s per
image). We take into account the variation of quality of AO correction (using 100 different phase screens for each
image) due to the variation of the seeing (0.85′′±0.15′′) and of the wind speed, the quasi-static aberrations caused
by the elements of the optics and their change of positions during the night. The achromatic pre-coronagraph
RMS wavefront error varies between 29.2 and 30.1 nm. We work at wavelengths λ1 = 1.587 and λ2 = 1.667 µm
(the former is the one at which the planet flux is much higher, because at λ2 there is a deep absorption line of
methane). Noise is a mixture of photon and detector noise.

In the simulated data there are four rows of six planets each, of equal flux, placed at 90◦ from each other; the
planets are at separations of 0.2′′, 0.5′′, 1′′, 1.5′′, 2′′ and 2.5′′. In units of λ/D, these distances correspond to 4.9,
12.2, 24.3, 36.5, 48.7 and 60.9 for λ1. We are considering a G0 star at a distance of 10 pc. The flux rate on the
pupil plane is 2.67 ·107 phot/s/m2; for the chosen exposure time, and taking into account the transmission factor
and the coronagraphic attenuation, the mean number of photon in each image is 1.69 · 109. We have simulated
two different sets of data with two levels of star/planet contrast, to test ANDROMEDA both when performing
angular differences only (contrast: 7.5 · 104) and when performing spectral+angular differences (contrast: 106).
Furthermore, we neglect the field rotation within one exposure (which causes a slight smearing of the planetary
signal).

4.2 Detection parameters

4.2.1 Definition of the detection area

The computing time of ANDROMEDA is roughly proportional to the number of positions on which we want
to detect a planet (which correspond to the pixel grid of the images) and to the number of images. So it is of
interest to limit the area on which we want to use it, in order to keep the processing time reasonable.

Since ANDROMEDA’s principle consists in removing as much as possible the star speckles, we expect it to
be more useful where the speckle noise dominates, i.e. at small separations from the star. To determine the
maximum radius at which we want to use ANDROMEDA, we compare its performance to that of a simpler
method, which consists in simply de-rotating every image according to its parallactic angle and sum up the
results, then subtracting the azimuthal median for each distance.

In Fig. 3, we see that the three outer planets are clearly detectable with both methods, while only AN-
DROMEDA can detect the three inner ones. Indeed we can see that in the sum of the de-rotated images there



are still too many residuals of the speckles not only inside the AO correction halo, which is at a distance of 20λ/D
(as expected, since the deformable mirror has 40 × 40 actuators), but also in a region which extends further,
up to a distance of about 30λ/D from the center. So this has been set as the standard radius of the detection
area. It is equal to 100 pixels at 1.65 µm, which corresponds to about 30000 tested positions. The limit of the
detection area falls between the third and fourth planet of each row; this is why in the results presented we are
expected to see only three planets per row (the field of view is restricted with respect to the images shown in
Fig. 3).

Figure 3. Comparison between a simple ADI method (left, see text) and the SNR map obtained with ANDROMEDA
(right). The field of view of the area is 5′′.

4.2.2 Parameters used for the detection and computing time

The parameters used as inputs for the reconstruction with ANDROMEDA are the following:

� inner radius of the detection area: 4λ/D;

� outer radius of the detection area: 30λ/D;

� PSF used for the reconstruction: array of 32× 32 pixels;

� δmin = 1λ/D;

� thickness of the subtraction annuli: 1 pixel;

� RA = 30, i.e., each optimization annulus is 30 times larger than the related subtraction annulus;

� image noise variance estimated empirically from the cube of images (we take a variance map constant in
time, equal to the variance in time computed on each pixel).

To give an idea of the computing time, on a MacBook Pro with a 2.2 GHz Intel Core 2 Duo processor
ANDROMEDA takes about 5 minutes to yield a detection map for this area in the simulation conditions given
above (144 images). In reality we expect to have a greater number of images (∼ 1000), so this computing time
would be multiplied by less than a factor 10, staying into reasonable limits.



4.3 Effect of the speckle noise on the SNR map

At the end of Sect. 2 we defined the signal-to-noise ratio as the ratio between the estimated flux and its estimated
standard deviation. If the noise is white and gaussian, we expect the standard deviation of the values of the
SNR map to be around 1 (excluding the points where we have detections); the threshold represent the number
of σ’s of confidence for which we have a detection. Typically, when photon noise only is present we detect all
planets at a threshold of ∼3-4.10 If the standard deviation in the SNR map is not 1, which happens typically
in presence of speckle noise (as we will see in Subsect. 4.4 and 4.5), this map must be normalized in order to
get the correct values for the threshold. We think that the higher value of the SNR standard deviation in the
presence of speckle noise is due to the fact that this source of noise is not white, i.e., there is an important time
correlation of the speckle noise between the images.

4.4 Angular Differential Imaging only

Fig. 4-a shows the SNR map that we obtain when we perform angular differences only on a cube of images for
which the star/planet contrast is 7.5 · 104. Fig. 4-b shows a thresholded version of the same map at a value of
3, which means that planets are detected at 3σ.†

(a) (b) (c)

Figure 4. SNR map for ADI (a), its thresholded version at 3 (b) and the related flux map (c). The star/planet flux
contrast is 7.5 · 104.

From the thresholded map we can see that the four planets closest to the star (at 0.2′′) are more difficult to
detect than the other ones (their peaks are lower). This is easily understandable because the speckle and photon
noise towards the center is much higher, and also because the movement of the planet due to the field rotation
is smaller, making the discrimination of it against the speckles more difficult.

Incidentally, on the SNR map we can see that the peaks corresponding to the planets have an elongated shape
in the radial direction. This happens because, if we choose a small value for the angular separation between
the images chosen to build the angular differences, the two negative sidelobes in the flux map (see Fig. 2) get
closer to the central peak and overlap it to a greater extent. The central peak is thus partially cancelled in the
tangential direction. This shape is a sort of trace of the presence of a planet which can be used to recognize
more easily real detections of point sources in the presence of instrumental and/or reduction artifacts.

If we look at the estimated flux map (Fig. 4-c) we see that it has a different appearance with respect to the
SNR map. Indeed the height of the peaks related to the planets at 0.2′′ is comparable to the one of the other
planets, as expected, since the planets all have the same flux in these simulations. The error on the estimated
flux is somewhat large for the innermost planets (between 20% and 40%), once again due to the influence of the
noise. The error for all the other planets is below 4%.

†The standard deviation of the values of the SNR was 6.25 before normalization.



4.5 Spectral+Angular Differential Imaging

We show here the results of ANDROMEDA when we perform both spectral and angular differences; the contrast
is now 106. As in the previous case, we present in Fig. 5-a the SNR map and in Fig. 5-b its thresholded version
at 3.‡ In this case, too, the innermost planets are less easily detectable.

(a) (b) (c)

Figure 5. SNR map for SDI+ADI (a), its thresholded version at 3 (b) and the related flux map (c). The star/planet flux
contrast is 106.

Again, the flux map (Fig. 5-c) shows central peaks roughly of the same height as the others. The errors on
the estimated flux for the inner planets are lower than the ones of Subsect. 4.4 (between 10% and 16%). The
error for the other planets is below 6%.

5. APPLICATION OF ANDROMEDA TO EXPERIMENTAL DATA

As a further preparatory step towards the analysis of SPHERE data, we now run ANDROMEDA on VLT/NACO
images taken in pupil tracking mode (ADI) in the H band (1.65 µm). These data are collected in the context of
an ongoing large program (PI J.-L. Beuzit) aimed at probing the occurrence of exoplanets and brown dwarfs at
wide separations (5-500 AU).

We present here the results obtained for a target observed in saturated imaging for a total exposure time
of 1.8 hour (319 images of 6.8-s integration time each). The magnitude of the star is V = 9.25. The seeing is
0.81′′± 0.14′′. A quick-look analysis performed with simple ADI revealed the presence of a large number of faint
point-like sources surrounding the star. Although these companion candidates are very likely background stars,
from a detection perspective they are good proxies for true substellar companions.

The detection parameters used in the reconstruction with ANDROMEDA are the following:

� inner radius of the detection area: 28λ/D (120 pixels; we did not consider a large portion around the center
to avoid the zone of saturation);

� outer radius of the detection area: 145λ/D (480 pixels);

� PSF used for the reconstruction: array of 32× 32 pixels;

� δmin = 1λ/D;

� thickness of the subtraction annuli: 24 pixels;

� RA = 1 and 3;
‡In this case the standard deviation of the SNR map before normalization is lower (4.71), because of the most effective

elimination of the speckles through the spectral differences.



� image noise variance estimated empirically as for the simulated images.

With respect to the tests on simulated data, this time we took smaller values for RA and larger values for
the thickness of annuli. This has been done to show more clearly the influence of RA on the quality of detection,
as discussed in Subsect. 3.3. On the left of Fig. 6 we show the SNR map obtained taking RA = 1 (so that
optimization areas are equal to subtraction areas), and on the right we show the one obtained with RA = 3. We
have not imposed the positivity constraint to the maps to allow an easier qualitative comparison. The smoothing
of the discontinuities between annuli is quite evident when we take a larger optimization area, especially for the
outer zones. So we take the map obtained for RA = 3 as the best result; it is the one that we will use for the
analysis.

Figure 6. SNR map for the NACO target, obtained with RA = 1 (left) and RA = 3 (right) for the same annuli size.
Positivity constraint is not applied.

At a glance, we can distinguish many detections from the typical radially elongated shape described in
Subsect. 4.4.

The standard deviation of the SNR is higher than for the simulated images (8.67); this is probably due to
a non optimal subtraction of the background which causes inhomogeneities in the images. For this reason we
threshold the map at 2 (Fig. 7, left) instead of 3 like we did in Subsect. 4.4 and 4.5. We can recognize all the
detections that we could spot by eye in the SNR map (Fig. 6, right). The right part of Fig. 7 shows the related
flux map that we obtain. Once again, we can notice the different shape with respect to the SNR map (Fig. 6,
right): in general, the minor peaks stand out less clearly in the flux map.

6. CONCLUSION

We recalled the principle of ANDROMEDA, an algorithm for exoplanet detection based on a maximum likelihood
approach, and we presented the improvements made with respect to the previous version. In particular, we
introduced the spectral diversity and the optimization of the differences in order to suppress the speckle more
effectively. We showed the results of the validation of the algorithm both on simulated and experimental data.
The simulations show that using the spectral diversity we can detect a companion 106 times fainter than the
star at a separation of 4.9λ/D. Although it has been developed in the context of IRDIS, in order to perform
SDI and ADI, the method can also be applied to data taken by other instruments (for example in the context of
polarimetric imaging).



Figure 7. Normalized SNR map for the NACO target thresholded at 2 (left) and flux map for the NACO target (right).

Perspectives include refining the detection method to find the optimal thresholding strategy, as well as
studying the optimal size of the subtraction annuli and the best value for the ratio between optimization area
and subtraction area.

Furthermore, the method should be tested on coronagraphic experimental data (and not only on saturated
images), and the results compared with those of other ADI-based methods. We also plan to characterize AN-
DROMEDA’s performances at small separations by introducing artificial planets in NACO images.

Appendix A: Details on the wavelength rescaling algorithm

For conciseness we consider one-dimensional signals, and the results generalize readily to two dimensions. Given
N samples of a signal i sampled with a pitch pα, the quantity ĩ(kpν) given by:

ĩ(kpν) =
N−1∑
l=0

i(lpα) e2jπ lpα kpν , (12)

is the DFT of i at frequency kpν , where pν is the pitch in Fourier space. Because of the use of the FFT, the
pitch in Fourier and direct spaces are related by

pαpν = 1/N, (13)

which means that the support Npα is the inverse of the Fourier pitch.

If we modify the number of pixels in direct space by adding on each side of the table some null pixels before
performing the FFT, Eq. 13 becomes pαpν′ = 1/N ′, where N ′ is the new signal size after zero-padding in direct
space, and pν′ the new pitch in Fourier space.

If we proceed similarly in Fourier space by adding null pixels after performing the FFT, we finally obtain for
the new spatial sampling in direct space after an inverse FFT:

pα′′ =
N ′

N ′′ pα, (14)

where N ′′ is the new signal size after zero-padding in Fourier space. We have thus zoomed the image by a factor
z = (N ′′/N ′). Note that if we only zero-pad the image in Fourier space, as is often done, then N ′ = N , which
severely constrains the zooming factor: z = N ′′/N .



In order to resample the coronagraphic star image at λ2 according to Eq. 7, we need to satisfy the following
equation:

N ′

N ′′ =
λ2

λ1
. (15)

Having two degrees of freedom N ′ and N ′′ allows us, in practice, to satisfy this equality with a good precision
(10−4 or so) for reasonable values of N ′ and N ′′ for all wavelengths of the IRDIS instrument.
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