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Detection of a Moving Source in Speckle Noise.
Application to Exoplanet Detection

Isabelle Smith, Student Member, IEEE, André Ferrari, Member, IEEE, and Marcel Carbillet

Abstract—Astronomical instruments able to detect the direct
light of extra solar planets are currently under development. This
paper focuses on instruments that will acquire a set of successive
images where the planet (the source in more general purposes)
moves in a known manner on a speckled background. Performant
signal processing tools are required to account for the very low
signal-to-noise ratio of the data. In the astrophysical context, the
background arises mainly from the light scattered by the parent
star. An accurate—but general—data model has been proposed
in previous works to statistically describe optical images taking
into account the spatial correlation of the wavefront complex am-
plitude. First, an estimator of the position and the intensity of the
potential source is proposed. Because of several kinds of numerical
constraints, it is derived from a simplified Gaussian data model.
Under reasonable constraints on the motion of the source, the
estimators are proved to be consistent, even under the accurate
data model. For the detection test, we propose to threshold a linear
statistics that arises from the intensity estimation. The threshold
needs to be precisely related to the probability of false alarm (PFA)
and the probability of detection (PD). Under the detailed model,
the distribution of the data is only reachable through its moment
generating function. We propose therefore to estimate analytically
PFA and PD using the saddlepoint approximation. To evaluate the
quality of these estimations, a Monte Carlo analysis is applied to
monodimensional simulated data. The saddlepoint approximation
proves to be very accurate, unlike the Gaussian approximation or
even a low-order Gram-Charlier series approximation.

Index Terms—Astronomy, estimation, object detection, signal
detection, speckle.

I. INTRODUCTION AND SUMMARY

T HIS paper is devoted to the detection/estimation problem
of a moving source from a set of successive optical im-

ages. It focuses on a low signal-to-noise ratio case where a
detailed modeling of the image formation is required and all
the motion parameters are known, except the initial position.
The images are degraded by spatially correlated speckle noise
[1], static aberrations, nonuniform background, photocounting
noise, camera read-out noise, etc.

Estimators of the intensity and the initial position of the
source are to be derived, as well as a detection test where the
threshold is to be accurately related to the probability of false
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alarm (PFA). However, the true data model distribution being
intractable, the derivation of classical estimators and a classical
composite test such as the generalized likelihood ratio test
(GLRT) is unreachable. In this context, the solution generally
relies on suboptimal simple estimators and detector. This lim-
itation is also imposed in general by the large amount of data
to process. Here the estimators and a linear detection test arise
from a Gaussian assumption on the data. The performances
of the test must also be derived using a detailed data model.
Unlike the direct distribution, the moment generating function
(MGF) of the speckle model is reachable. Then the receiver
operating characteristic (ROC) curve and the PFA-threshold
relation of all linear tests for the precise model can be achieved
using the saddlepoint approximation.

These results are applied to ground-based direct imaging of
exoplanets, which is a current driving motivation in astronomy.
This motivation is materialized by future planet finders such
as the very large telescope (VLT) instrument Spectro-Polari-
metric High-Contrast Exoplanet REsearch (SPHERE) [2] and
the Gemini instrument Gemini planet imager (GPI) [3]. Both in-
struments will include extreme adaptive optics (AO) and high-
contrast coronagraphy. AO’s purpose is to compensate in real-
time thanks to deformable mirrors the deformation of the wave-
fronts due to the terrestrial atmosphere and optical aberrations
of the telescope. Then coronagraphy aims at suppressing the
star light diffracted by the primary mirror at the planet loca-
tion. These setups are highly necessary for the direct detection
of exoplanets: a very high intensity contrast between the star and
the exoplanet can be expected in the infrared band (i.e., contrast
ratios of to depending on the type of the exoplanet).
Without extreme AO and a performant coronagraph (that would
reduce the diffracted light by a factor of typically , as inte-
grated in the field of interest), the exoplanet would be too deeply
embedded in the light coming from the star and scattered by the
terrestrial atmosphere, the diffraction of the primary mirror and
the optical aberrations. As a consequence, no algorithm could
be reasonably applied for exoplanet detection [4]. We will focus
here on the instrument SPHERE [2]. The main difficulty arises
from the combination of residual speckles from the turbulent
atmosphere (uncorrected by the AO system) and static speckles
from the optical system aberrations. These diffraction patterns
being similar to the unresolved exoplanet profile, detection al-
gorithms proposed in the literature try to discriminate the planet
from the background by the detection of its motion. The mo-
tion arises with alt-azimuthal telescopes mounts as the telescope
moves to counterbalance the Earth one-day period rotation [5].
It produces an apparent field-of-view global rotation. In partic-
ular, the source rotates around the center of the camera in a de-
termistic and known manner. Note that on a period of one night,
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the orbital motion of the exoplanet around the star is negligible
for most star-exoplanet systems. This effect is therefore not ac-
counted for in this paper. Previous works try to suppress and
stabilize the background using differential processing of succes-
sive images [6], [7]. The detection will involve typically 1000
images of 300 300 pixels for a 3-h run. It is important to note
that the simulation of realistic datasets using for example the
software package [8] or the software package SPHERE
[9] is extremely time demanding and does not allow one to ob-
tain probability of detection (PD) and PFA using Monte Carlo
simulations.

The conventions used in the paper are the following: bold-
script is used for column vectors ( e.g., ), denotes the trans-
pose of , denotes the complex conjugate of , denotes
the th component of and means . Then,
identical notations are used for random variables and their re-
alizations and uppercases are only used for matrices ( e.g., ).

is the th component of , is its trace, its
determinant, is the identity matrix of the relevant dimension,
and refers to the diagonal matrix whose diagonal terms are
the components of .

This paper is organized as follows. Section II presents the
detailed statistical model used to describe the observed data.
Section III deals with the estimation algorithm: first the esti-
mators are derived using a simplified data model, then their sta-
tistical properties under the simplified model and the detailed
model are discussed, and they are finally applied to step-by-step
astrophysical simulations. Section IV is devoted to the choice
of the detection test and the evaluation of the relations PFA-
threshold and PD-threshold using the true data model. Analyt-
ical expressions derived in Section IV are validated in Section V
using monodimensional simulations.

II. DATA MODEL

The point of this section is to develop a precise statistical
model for the data. This detailed model is derived in the spe-
cific context of exoplanet direct imaging but is fully relevant
in the general framework of speckle imaging [1]. The dataset
consists of successive images , . The sum
of such images are illustrated by the left image of Fig. 1, as
it may appear within the astrophysical context described in the
introduction. The individual images have been simulated for
the IRDIS (Infra-Red Dual-beam Imaging and Spectroscopy)
facility of SPHERE [2], using the software package SPHERE
[9] developed within the problem-solving environment
[10] and assuming the standard simulation parameters [11]. This
package, developed in the framework of the SPHERE consor-
tium, simulates the propagation of the light emitted by the phys-
ical scene (star exoplanet) and reaching the CCD camera. It
relies on a detailed physical step-by-step modeling and accounts
for the analyses and observations made on the prototype instru-
ments currently developed for SPHERE. For the astrophysical
problematic handled here, no real data are available yet. The
simulated images are realistic enough for the purpose of this
paper.

In the right image of Fig. 1, the integrated motion of the
source is shown for different initial positions . Field rotation

Fig. 1. The left image is the time integration of simulated data im-
ages: . The right image represents the time integration of
images as if there were just exoplanets and no star. It shows for
eight different initial positions , all initial positions being located on the first
diagonal of the image. Field-of-view motion is a rotation that applies identically
on the whole image and with a time-varying angular speed. Both figures are rep-
resented at the power of 0.2.

is a global circular rotation, not uniform in time (rotation rate is
not constant). The dataset presented in Fig. 1 is simulated from
a quite complex physical step-by-step modeling, and needs now
to be described in a probabilistic language.

A. Distribution of the Incoming Light Intensity

The light intensity in the focal plane of the telescope that leads
to image is represented by an vector , where is
the number of pixels of the detector. is the sum of the star
light and a potential exoplanet light. The star illuminates
all pixels because of numerous diffusion and diffraction effects,
unlike the exoplanet whose total intensity is negligible with re-
spect to the star total intensity. The star contribution is called the
background and the exoplanet contribution, which is the signal
of interest, concentrated in a region of a few pixels, is called the
source.

The background intensity vector is associated to the
complex amplitude vector through ,

. arises from the propagation of the star light
wavefront through the atmosphere, the AO system and the coro-
nagraph. A straightforward extension of the high flux model de-
rived in [12] to the multivariate case leads to a decomposition
of the complex amplitude in two terms: ,
where

• the first term, , models the static impulse re-
sponse of the coronagraph and the unknown static aberra-
tions (e.g., lens defaults) of the optical system. This deter-
ministic term plays a central role in the detection perfor-
mance degradation [13];

• the second term models the residuals of atmospheric tur-
bulence that are not corrected by the AO system and that
propagate through the coronagraph. This term is assumed
to be a complex zero-mean circular Gaussian vector, so that

and , see [1] and
[14].

The complex amplitude of the companion planet can be mod-
eled like the star response, but reduces to a simple expression:
for extreme AO and precise optical devices, the peak of this re-
sponse can be considered as deterministic, and the fluctuating
outer part can be neglected with respect to the local background.
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This instantaneous response can be obtained by simulation, cal-
ibration or analytical expression as in [15]. Note that when a
coronagraph is used the response is not shift-invariant.

The exoplanet moves with respect to the static optical aberra-
tions because alt-azimuthal mounts make the field-of-view ro-
tating en bloc (see Fig. 1) with respect to the coronagraph and
the camera. Its position on the image at any time is a known
function of its unknown position on the first image: field ro-
tation only depends on the position of the star in the sky in the
local frame of observation [5]. Recall that during a night, the or-
bital motion of the explanet around its parent star is neglected.

Consequently the presence of a source results in the deter-
ministic response where is the unknown intensity
of the possible source, and , with , is
the known instrumental response of the source at time , where

is the unknown position of the source on the first image.
Finally, we will consider that

(1)

and with if there is a source ( hypothesis) or
if there is no source ( null hypothesis). We make the general
assumption that the successive vectors , are
independent.

Gaussian circularity for a scalar random variable implies that
its real and imaginary parts are independent with identical vari-
ance. Consequently (1) shows that is proportional to a
random variable distributed according to a noncentral distri-
bution with two degrees of freedom [16]. The multivariate dis-
tribution of is much more complicated to derive. It can be
obtained by noting that is the diagonal of the ma-
trix , so that the distribution of is the ad-hoc
marginal of the distribution of . But the rank of

is 1 so its probability density function (pdf) does
not exist. More specifically, has a noncentral com-
plex Wishart distribution [17]–[19]. However, its MGF is for-
tunately tractable, and the MGF of its marginal distribution is
simply computed by evaluating the MGF of in a
suitable way.

More specifically, since has a noncen-
tral complex Wishart distribution, [20] gives

(2)

The distribution of is related to the distribution of
through

(3)

so applying this marginalization to the MGF (2) gives:

(4)

According to (1) the MGF of is finally

(5)

B. Distribution of the Photo-Electrons

Using a usual semiclassical approach, the photocounting ef-
fect has then to be considered when light is converted to an elec-
tronic signal by the detector [21].

Let us denote as the vector of photocounts associated
to the intensity . Conditioned upon the vector of intensi-
ties, the random variables are independent and distributed
according to Poisson distributions with means ,

:

(6)

Tractable expressions of are obviously difficult
to obtain. However, many interesting properties regarding the
distribution of can be derived in the multivariate case. We
will focus hereafter on the MGF of which is related to the
MGF of by [22]:

(7)

C. Distribution of the Preprocessed Digital Images

In addition to the electrons due to the photon process, elec-
trons appear from the read-out noise and the dark current pro-
cesses. A classical CCD processing consists of calibrating these
addititive noises and subtracting them to the final digital images.
The preprocessed images are finally modeled by:

(8)

and the set is independent. Then

(9)

It is worthy to note that adding a continuous random noise to
the number of photo-electrons results in a real valued dataset.

III. ESTIMATION ALGORITHM

A. Simplified Data Model

The distribution of being intractable, the derivation of a
test statistics will rely on the simplified data model

(10)

where , denotes a stationary deterministic
unknown instrumental response and is the same de-
terministic signature of the source as in the more realistic model.

The Gaussian distribution can be justified for the star light
contribution under a high flux assumption. It is proven in
Appendix I that when the deterministic part of the star light
( , ) is “large,” the distribution (7) of properly
standardized will converge in distribution to a Gaussian inde-
pendent distributed vector. The Gaussian approximation for the
planet contribution, which is Poisson distributed according to
(1) and (6), is classically related to the assumption that is
“large,” and again with a proper standardization.
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Note that the model (10) can be written as:

(11)

where and denote respectively the vertical concatenations of
the vectors and of the vectors ,
and is the vertical concatenation of the matrices

. Equation (11) shows that as soon as is known
the simplified data model reduces to a Gaussian linear one.

B. Maximum Likelihood Estimator

For the simplified model (10), for a given initial position ,
the likelihood maximization reduces to a classical chi-square
minimization and gives . Using
the block matrix inversion lemma, and after some computations,
we get

(12)

(13)

with

(14)

(15)

(16)

The MLE estimation of is then achieved by maximizing
the concentrated log-likelihood

(17)
Substituting (12) and (13) in (17), we obtain after a develop-
ment . The Maximum
Likelihood of is . Since is positive ac-
cording to (16), if we assume that for a given dataset

, it is shown in Appendix I that:

(18)

still with

(19)

It is very important to note that

(20)

with given by (15). The proof looks like the one given in
Appendix I. The equality occurs for example
if the set is the set but where all pixels
of the field are translated by the common displacement

vector for any . More generally it can be any rotation,
reflection or any combination of these isometries.

In the field-rotation case for example, if an initial position
is relabeled by polar coordinates , for and such
that ,
so that does not depend on . Concerning the depen-
dence on , for example in the simulation illustrated in Fig. 1

varies of the order of 30% between the inner and the outer
part of the image. But a neighborhood in which belongs
with a quite concentrated probability has a typical size of a few
pixels,1 and in such a narrow window . This numer-
ical assessment is supported by the estimation results shown in
Section III-D where the estimation (20) is used.

Additional remarks are appropriate for the ML estimates
• The identifiability condition for the parameters is

, which is the case as soon as at least two profiles do not
totally overlap, as seen in (16).

• After some algebra, like the one that leads to (16) from
(15), it can be shown that (12) equals

(21)

Consequently can be viewed as the output of a prop-
erly normalized matched filter applied on all the available
differential images .
But is not equal in general to such a combina-
tion of differential images on any subset . For
example, if we define a set of successive indices by

, then
does

not converges to with probability 1.

C. Consistency of the Estimator

Sufficient conditions can be derived for the consistency of
the estimators (19) of and under the simplified model
(10), and of when is known under the accurate model of
Section II.

1) Unknown, Simple Model: The model (10) is not linear
with respect to the unknown parameters when is unknown.
Furthermore, due to the motion of the source , it does not
correspond to a standard independent and identically distributed
model. Asymptotic properties of MLE’s for the independent but
not identically distributed case have been intensively studied in
the literature, see for example [23] and [24]. However, due to the
simplicity of the model (10), sufficient conditions for the con-
sistency and asymptotic normality of
can be obtained from the general result derived in [25].

Following [25], the main assumption is the existence of
a nonrandom matrix such as, if denotes the
opposite of the Hessian matrix of the log-likelihood function,

converges to a definite positive matrix .
Computation of the matrix for

the model (10) is straightforward. Expression of this matrix is
given in (22), shown at the bottom of the next page, assuming

1This occurs because of the strong decay of the axi-symmetric profile of the
source and because speckles have the same typical profile.
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the ordering and the notation shown in (22), where
and where de-

notes the th derivative of with respect to .
Choosing and using standard results on the con-

vergence of empirical moments of i.i.d. Gaussian samples, it can
be easily proved that the matrix converges to a
matrix if and only if the sums and converge to some
limits and . This constitutes the first set of conditions
for consistency. The second set of conditions is less straight-
forward and arises from the constraint that must be positive
definite. For example, application of Sylvester criterion to the
limit of (22) shows that consistency requires:
(note that is always verified). This second set
of conditions prevents simple cases to lead to consistence. For
example, if , application of Cesaro rule implies

.
Note that in the specific case where is known, these

conditions can be checked from an exact calculation since
the model (11) would be Gaussian and linear with respect
to . The MLE of would be an efficient estimator: the
unbiasedness is straightforward and the covariance of is
shown to be equal to the Cramer-Rao lower bound with

. In particular, denoting in (12)
,

(23)

so that, dropping the dependence in ,
if . The more general conditions de-
rived above lead to this necessary condition because

.
2) Known, Accurate Model: Actually, the estimator

given in (19) is applied to data that cannot be modeled by a
Gaussian distribution: its expectation and variance should be de-
rived from the more precise data model presented in Section II.

However, the Taylor expansion of the log-MGF
from which these moments can be derived is only tractable
if is known. In that case, the estimate is simply linear:

(12).
If denotes the MGF of the statistics under

(see (28)),

(24)

Substituting (4), (5) and (7) in (24) gives:

(25)
with:

(26)

Thanks to the stationarity of the background and thanks to
the fact that for any , the computation of the
two first terms of the Taylor expansion of proves
that is still unbiased, and that

(27)

The first term in (27) is the same as in the simplified model,
with . The other terms quantify the performance degra-
dations related to the speckle noise and photo-counting noise. If

, the second, third and fourth term in (27)
contribute to as as , which is
slightly more restrictive than required in the simple
model.

Finally, under conditions barely more restrictive than the ones
given in Section III-C-I, derived in Section III-B is still
consistent under the true model with known.

D. Results

Fig. 2 shows the estimation computed for a large fraction
of pixels from (12), and using the images that lead to Fig. 1. As
discussed in Section III-B, locally is quite relevant,
so then and are estimated by (20).

As stated at the beginning of Section II, the simulated data
shown on Fig. 1 were obtained from a detailed physical simu-

(22)
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Fig. 2. Map of given by (12) obtained from the data of Fig. 1 at the power
of 0.2. The four simulated exoplanets located at , , and from
the center of the image, and 1.6 times less bright than the central star, give
rise to the four local maxima of .

lation devoted to the SPHERE instrument, not from any of the
two mathematical models presented in this paper. But although
the good properties derived above shouldn’t stricty apply, the
estimators still give good results on these simulated data.

The estimation of falls within one pixel of the true position.
The quality of the estimation of is more difficult to estimate
because the input in the simulation is not simply . As a first
sight, the number of photo-electrons due to the source on
a single exposure is estimated by
(it is the same value for any and any in general), and this
estimate is compared to the physical flux of the exoplanet used
in the simulation, decreased by the different gain factors of the
instrument. Then, is within a few percents of .

IV. DETECTION ALGORITHM AND DETECTION LEVEL

A. Detection Algorithm

According to the model developed in Section II, the source
detection problem consists in deciding among one of the two
hypotheses

(28)

A decision test needs to be derived, and some PFA and PD
have to be computable to give some sense to the test. In the
adopted frequentist approach, a natural test rejects hypothesis

if where is some well chosen statistics.
PFA and PD are defined by and

.
In general, a very low PFA is required and the PFA is very

sensitive to the shape of the right far tail of the distribution of
. Its distribution has therefore to be precisely known using

the model derived in Section II.
A natural choice for is the GLRT statistics. Obviously

its computation will be intractable for the accurate model of
Section II since the likelihood itself is not tractable. In addi-
tion, note that even if an approximate GLRT statistics could be
derived, the computation of its PFA would be difficult. A possi-
bility to compute the PFA could be to use the Wilks’s theorem

Fig. 3. Thresholded map (two levels and , to compare
to ) of where was presented in Fig. 2. The map
is superimposed on the log of the data presented in Fig. 1. The four
simulated exoplanets (located at , , and from the star (center of
the image), and 1.6 times less bright than the central star) are correctly
detected. The second threshold gives all these four good detections and no false
alarm.

[26, Sec. 6.3.1] that states that “under quite general conditions”
the asymptotic (as ) distribution of the GLRT statistics
is chi-squared with degree of freedom equal to the difference
between the number of free parameters under both hypotheses.
However, this result is not applicable because

1) the measurements are independent but not identically dis-
tributed under . This assumption is central in the proof
of the asymptotic GLRT distribution, [26];

2) under the parameter is not identifiable. The diffi-
culty related to the unindentifiablity of parameters under

when the GLRT is used has been raised in [27] for a
data model similar to (10).

An other possibility would be to use the GLRT of the simple
model given in (10). However, its performance property does
not apply under the more accurate model and furthermore it is a
too complex function of the data to compute its PFA under the
accurate model of Section II.

In order to be able to compute accurately the PFA, we, hence,
decide to use the natural suboptimal linear statistics

as given in (12). The test has then to
be applied to each pixel :

(29)

and PFA and PD become functions of the pixel on which the
test is applied: , .

Fig. 3 shows a thresholded map of , where is pre-
sented in Fig. 2.

B. Saddlepoint Approximation

The purpose of this section is the evaluation of PFA and PD
to set the practical value of the threshold as a function of a
required PFA and to quantify the performances of the detection
scheme (29). Despite the simplicity of the detector , the
computation of these cumulative probabilities is not straightfor-
ward because, as mentioned in Section II, the multivariate pdf
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of the data is not available. As explained in Section IV-A, the
data have to be precisely modeled: in particular, the distribu-
tion cannot be approximated by a simple Gaussian distribution
a priori . The data MGF is tractable and lead under to the
test statistics MGF given by (25), and by (26) under .

Taking benefit of the existence of an analytic expression of
the MGF of the statistics , we propose to use the saddlepoint
approximation to compute PFA and PD. In particular, the ap-
plication of this standard approximation to the computation of
cumulative probabilities is synthetically presented in [28] where
the Laplace transform of the pdf is used instead
of the MGF. Using only the first term of the developments, the
following expressions derived from the saddlepoint approxima-
tion are used

(30)

(31)

(32)

(33)

where the saddlepoints and satisfy

(34)

Remark the following.
• As mentioned in [28], and is a natural

but unnecessary consequence of our interest in cases where
under and under .

• The computation of the first and second order deriva-
tives of and are obtained from (26)
and (25) using and

. These lengthy
equations are not given herein.

• The computation of PFA and PD from (30) and (31) does
not necessarily involve the resolution of the equation

. For example, to plot PFA or PD as a
function of , a large set of thresholds has to be covered.
But a reexpression of the (32)–(34) parametrizes by

(35)

Therefore, ranging reduces to ranging by hand if the
functions , , etc. are smooth enough.

• If , the test statistics is a linear combination
of discrete random variables. Although the forms (30) and
(31) are relevant when approximating the cumulative prob-
abilities of continuous random variables, the validity in the
discrete case has been recently discussed in [29].

As presented in [28], note that another classical technique to
approximate PFA and PD relies on the Gram-Charlier or on the
Edgeworth expansion of the pdf of about a Gaussian distri-
bution. The kth coefficient of this series requires the kth-order
cumulant of : it can be computed from the Taylor expansion of

Fig. 4. Left: source profiles for (note
). Right: realization of under (top) and (bottom).

the log-MGF (25) and (26). A comparison between the saddle-
point approximation and the Gram-Charlier approximation will
be discussed in Section V.

V. SIMULATION RESULTS

A. Simulation Cases

The saddlepoint approximation used to derive PFA and PD
for (25) and (26) is validated using data simulated under the
model described in Section II. To estimate the true cumulative
probability from classical Monte Carlo integrations, the number
of statistics needs to be at least 1 over this probabilty. Since
each statistics results from the process of a dataset made of

pixels, and since the PFA of interest are typically as low as
, such Monte Carlo simulations are very time consuming.

Consequently, the simulations are 1D, unlike the astronomical
images presented on Fig. 1, and with low and .

Four simulation cases are used. The parameters used for the
reference case (called ”Data 1”) are as follows.

• and .
• The are simulated according to a first order circular

Gaussian autoregressive process with covariance matrix
and with parameters ,

and . A typical correlation pattern size
induced by can be defined as the width of
seen as a function of . It is equal to 4 pixels for

.
• The source is uniformly accelerated from an initial position

and its profile is chosen static with a characteristic
size similar to the correlation pattern size induced by

• The variance of the additive Gaussian noise is .
• The datasets are simulated under and with

.
• independent datasets are simulated for both and

.
The left plot of Fig. 4 shows the source profile for all

and the right plot of Fig. 4 shows a realization of
under both hypothesis. Under , the source profile can be

seen between pixels 20 and 25.
The detection statistics is then computed at , assumed

to be known, from (12). Fig. 5 shows the histograms of
obtained under and for all simulated datasets.

Three other simulation cases are used. Each differs from the
reference case Data 1 by two parameters maximum.

• Data 2: new number of exposures ; to keep the
same small number of pixels , the source is given a slow
uniform speed.
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Fig. 5. Histograms of under (top) and under (bottom).

Fig. 6. ROC curves of the detection test given in (29) for the four simulation
cases. They are computed from the empirical cumulative probabilities, consid-
ered as the “true” PFA and PD in the comparison analysis that follows.

Fig. 7. PFA computed under the Saddlepoint approximation and the Gaussian
approximation with empirical estimations of its mean and variance, and com-
pared to the empirical distribution.

• Data 3: new correlation parameter that gives a
correlation pattern size of 14 pixels.

• Data 4: new background mean , so that typically
100 photoelectrons can be expected per pixel instead of a
few; new source flux .

Fig. 6 shows the receiver operating characteristic (ROC)
curve associated to the detection scheme (29) for these four
different simulation cases. Each curve is simply estimated from
the samples of under both hypotheses.

Fig. 8. computed under the Saddlepoint approximation and the
Gaussian approximation, and compared to the empirical distribution.

B. Evaluation of PFA and PD Estimations

Fig. 7 shows as a function of the threshold, for
the detection process described in Section IV-A. It is computed
from different estimations:

• the saddlepoint approximation as described in
Section IV-B;

• the empirical distribution of under ;
• a normal distribution, with moments that are estimated by

the sample moments, which are equal, up to a relative pre-
cision of , to the true moments and
given by (27).

In all cases, from about to , the saddlepoint plot
perfectly matches the empirical plot, unlike the normal approx-
imation. Actually, the correct behavior of the saddlepoint ap-
proximation and the misbehavior of the normal approximation
extends for PFA even lower than . The relative error of
the normal approximation for a given PFA is quite stable for all
studied cases. This shows that the saddlepoint plot may be con-
sidered as being almost a perfect estimate of the PFA if the PFA
of interest is lower than and that the normal approxima-
tion should be avoided by all mean.

Fig. 8 shows as a function of the threshold, com-
puted as in Fig. 7, but using the second expression (31) to com-
pute the saddlepoint approximation. The saddlepoint approxi-
mation diverges from the true PD as the threshold leaves the
tail of the distribution of , but remains a better approximation
than the normal approximation for . This qualita-
tive behavior and the quantitative values are quite stable for the
two cases shown, despite the fact that they represent quite dif-
ferent detectability cases, as seen on Fig. 6. The saddlepoint ap-
proximation can be considered as a almost perfect estimate for

and should still be preferred to the normal approxi-
mation for .

Fig. 9 still shows PD as a function of the threshold, but using
also a development around the normal approximation, as done
with the Gram-Charlier or the Edgeworth series. However the
use of two additional terms in the Gram-Charlier series (the first
being the previous Gaussian approximation) does not make an
effective difference. Since the calculation of the Gram-Charlier
terms involves the computation of high order cumulants, it is too
computationally demanding to look further in the development.
Also note that when truncated after the third term, the Gram-
Charlier series and the Edgeworth series are identical.

Finally, Fig. 10 shows that for cases where one may expect
a high detection probability for a reasonable PFA (see 6 Data
4), the saddlepoint approximation remains a very satisfactory



912 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 3, MARCH 2009

Fig. 9. computed under the Saddlepoint approximation and the Gram-
Charlier series truncated after the first term (Gaussian approximation), second
term, and third term, and compared to the empirical distribution. Focus on a
linear range for PD.

Fig. 10. computed under the Saddlepoint approximation and the
Gram-Charlier series truncated after the first term (Gaussian approximation),
second term and third term, and compared to the empirical distribution. Focus
on the extreme range .

way to estimate PD. The normal approximation is also a bad ap-
proximation. This was expected since the range analysed here
is equivalent to the one analysed for PFA. Also note that a fur-
ther development of the Gram-Charlier series gives even worse
estimations than the simple gaussian approximation.

The poor performances of the normal approximation for
that is observed in the previous Figs. 7–10 can be directly seen
from the random samples of shown on Fig. 5. Application of
the Kolmogorov-Smirnov and Chi-Squared tests to and

rejects the normal hypothesis with a probability higher
than

Tools commonly used to compare an empirical distribution
to the normal distribution are the skewness and the (excess)
kurtosis : both parameters are 0 for a normal distribution.
Here, the empirical distributions of are slightly right skewed,
with under , under ,

and . Some sense can be given
to these values by relating them to corresponding values for the
Poisson distribution. It is quite relevant since has a skew-
ness and a kurtosis that have the
same sign as and , and it tends to a Gaussian distribution
as . We observe that

• and .
So under the empirical distribution is in the skewness
and kurtosis sense “less Gaussian” than .

• , and the sample kurtosis was
even greater than . So under , the
empirical distribution is in that same sense “much less
Gaussian” than .

VI. CONCLUSION AND OUTLOOK

The goal of this paper was the detection-estimation of a
moving source from a set of images. The quite realistic model
mainly relied on the modeling of the incoming complex ampli-
tude by a circular (correlated) Gaussian distribution, and also
took into account the Poisson process and common electronic
noises.

The derivation of an intensity and a position estimator for the
potential source, and the derivation of a statistics for the detec-
tion task were intractable from the realistic model. However,
under a high flux assumption and after renormalization, such a
model was shown to reduce to a simple Gaussian model. Ap-
plying a simple likelihood approach on this model, practical es-
timators were derived, and shown to have some consistent prop-
erties even under the quite realistic model.

As a detection test, the intensity estimator was chosen as the
test statistics to threshold, for a given initial position. Thanks
to the linearity of this detector, and thanks to the tractability of
the MGF of the accurate model, it was possible to estimate the
Probability of False Alarms and the Probability of Detection by
using the saddlepoint approximation.

An application of this estimation on a 1-D data model proved
that the saddlepoint approximation was very accurate, and con-
firmed the fact that when the high flux approximation is not
reached, a Gaussian approximation or even a Gram-Charlier se-
ries approximation does not lead to a satisfactory estimation of
PFA and PD.

However, implicit assumptions made in this work should be
relaxed to test the robustness of the statistical properties of the
estimators, the performance of the detector and the accuracy of
the estimations of PFA and PD. In particular, the effect of time
variation and/or randomness should be studied for the mean of
the background . Furthermore, the computation of PFA and
PD depends on and the covariance matrix , and they were
assumed to be known here. Actually, they have to be estimated
either from the data themselves (with some additional priors) or
from some calibration measures. These issues will be adressed
in some future work.

APPENDIX

Gaussian Approximation of the Detailed Data Model: This
appendix aims at showing that under a high flux approximation
, the distribution of the vector that verifies (7) with (4) and
(5), converges after a proper normalization to a standard normal
distribution. Like the parameters of the distribution of , the
convergence does not depend on , so the dependence on will
be dropped from now.

The proof is related to the following notations and lemma.
Definition 1: Consider a random vector and a set

of integers in that can be repeated. Denote the cardinal
of by and the set of coordinates indexed by all by
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. Finally, define as the set of the different indices
contained in , its cardinal and the number of occurrences

of the index in , so that . Denoting by a
vector, let’s define the cumulant as

(36)

(37)

with the list of orders of the cumulant, and the
Laplace transform of the joint pdf of the random scalars ,

.
Lemma 1: Consider a set of integers in that can be

repeated, a matrix and a random vector that
satisfies and and are independent for

. The joint cumulant of conditioned on
the vector equals

(38)

where the only depend on and .
Proof: The multilinearity of cumulants implies that

is a linear combination of the cumulants
where is any set of integers in

such that its cardinal is the same as . See, for example, [30]
for the expression using tensors.

There are two types of set as follows.
• If contains at least two different indexes,

.
• If all the subscripts in equal , being Poisson dis-

tributed with parameter we have

(39)

Theorem 1: Let’s assume a vector satisfies (7) with (4)
and (5), with , . The properly standardized vector

converges in distribution to when .
Proof: First needs to be standardized. From (1) and (6),

the mean and the covariance matrix of are related to those of
through and . But those
ones are computed in [22]. Replacing by shows finally
that all the cumulants of are linear functions of

(40)

where the vectors , and the matrices and are not func-
tions of

(41)

(42)

(43)

The matrices and are symmetric positive defined (e.g.,
is the covariance of when ). Consequently, there exist a
non singular matrix and a diagonal matrix such that, [31]

Then, can be standardized in a vector ( and
) in such a way that appears unmixed in the

normalization matrices

(44)

To prove the asymptotic Gaussianity of as , we
need to show that all cumulants of total order higher than 2 tend
to 0 and that the lower order cumulant converge.

The second property directly arises from the standardization:
for any , any and any , , and

.
Then, let’s define a set of integers in such that

, and show that . This can be
done using the “law of total cumulance,” [32]

(45)

where the sum is over all partitions of and runs through
the whole list of “blocks” of the partition . Substituting (44) in
(45), since , since
for deterministic variables with , and by
multilinearity of the cumulant, we have

(46)

(47)

(48)

From multilinearity and lemma 1

(49)

where the last equality arises from multilinearity and denoting
by the number of blocks in .

But the cumulants of are related to the coefficients of the
Taylor expansion of the log-MGF, [30]. Replacing in the log-
arithm of (4) by shows that all the cumulants of are
linear functions of . So is a linear
function of and finally we have

This equation proves that if
when .

According to this result, when is large, the distribution of
can be approximated by a Gaussian distribution with mean

and covariance where is
given by (41) and is given by (43).
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It is worthy to note that

(50)
Hence if , the first term in (43) can be ne-
glected with respect to the second one, which is diagonal. There-
fore, when the residual speckles are very low will be approx-
imately independent, in addition to being Gaussian.

Positivity Assumption on the Intensity Estimator :
This appendix is part of the ML derivation of the intensity and
position estimator derived in Section III-B.

Lemma 2: Denote and the ML intensity and po-
sition estimators for the Gaussian data model (10). If we assume
that , then reduces to

(51)

Proof: Recall is given by (12) and is given
by (16). Define

(52)

and and their respective maxima

(53)

With these notations, and . From the
assumption and (53) applied to for ,

(54)

Finally, (53) applied to for and (54) lead to if
is bijective. is bijective with probability 1 since takes a

finite number of values and is a real random variable not fully
correlated from a pixel to another.
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