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Abstract: Adaptive Optics corrected flood imaging of the retina has
been in use for more than a decade and is now a well-developed technique.
Nevertheless, raw AO flood images are usually of poor contrast because of
the three-dimensional nature of the imaging, meaning that the image con-
tains information coming from both the in-focus plane and the out-of-focus
planes of the object, which also leads to a loss in resolution. Interpretation
of such images is therefore difficult without an appropriate post-processing,
which typically includes image deconvolution. The deconvolution of retina
images is difficult because the point spread function (PSF) is not well
known, a problem known as blind deconvolution. We present an image
model for dealing with the problem of imaging a 3D object with a 2D
conventional imager in which the recorded 2D image is a convolution of
an invariant 2D object with a linear combination of 2D PSFs. The blind
deconvolution problem boils down to estimating the coefficients of the
PSF linear combination. We show that the conventional method of joint
estimation fails even for a small number of coefficients. We derive a
marginal estimation of the unknown parameters (PSF coefficients, object
Power Spectral Density and noise level) followed by a MAP estimation of
the object. We show that the marginal estimation has good statistical conver-
gence properties and we present results on simulated and experimental data.
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OCIS codes: (100.1455) Blind deconvolution; (170.4470) Ophthalmology; (010.1080) Adap-
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1. Introduction

Early detection of retinal pathologies such as glaucoma, age related macula degeneration
(AMD) or retinitis pigmentosa (RP) is crucial in dealing with these conditions and calls for
in vivo eye fundus imaging with a cellular level resolution, typically to be able to visualize and
count the retina photoreceptors. Adaptive optics (AO) flood illumination retinal imaging allows
for such a high resolution imaging and has now been used for more than a decade [1, 2, 3].

However, AO flood imaging suffers from an intrinsic limitation that decreases image qual-
ity and makes both automatic post-processing (photoreceptor counting, blood vessel diameter
measurements...) and visual interpretation difficult: the three-dimensional nature of the object
and of the imaging process. Indeed, information from both the in-focus plane and out-of-focus
planes in front of and behind the in-focus plane contribute to the final 2D image, which creates
an important background that reduces image contrast and leads to a loss in resolution.

A hardware solution to this problem is Adaptive Optics Scanning Laser Ophtalmoscopy [4]
(AO-SLO): by using a confocal pinhole, one selects only the photons coming from a specific
layer of the tissue under examination.

An alternative software solution for mitigating these effects without any setup modification
is image deconvolution. Retinal image deconvolution is difficult for two reasons:

• imaging is fundamentally 3D and we only record 2D images. This aspect should be taken
into account in the image model in order to enable a high-quality deconvolution ;

• the point spread function (PSF) is not well known, therefore we must estimate the PSF
together with the object, a technique known as blind deconvolution.

In this paper, we focus on the imaging of the photoreceptor layer of the retina. In order to
deal with the lack of information associated with recording only 2D images of a 3D object, we
propose an imaging model in which the photoreceptor layer is assumed to be approximately
shift invariant along the optical axis of the imaging system (i.e., the photoreceptor size does
not vary significantly over the depth of focus of the instrument and the photoreceptor are more
or less parallel to the optical axis). We show that this hypothesis, although it is a simplifying
one, is very effective on experimental AO retinal images with a visible and measurable effect
on the lateral resolution of the images. Section 2 presents the imaging model and the PSF pa-
rameterization we will use. In Section 3, we describe the joint estimation of the object and the
PSF before showing, both on simulation and theoretically, that it is not suited for our problem.
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In Section 4, we derive a marginal estimator and show its performance on simulation. In Sec-
tion 5, we show results of blind marginal deconvolution of experimental in vivo retinal images.
Section 6 summarizes the results.

2. Imaging model and PSF parameterization

The object and the imaging process are both three-dimensional (3D). If we record a stack i3D of
2D images focused at different depths in the object, a reasonable image formation model, after
background subtraction, can be written as a 3D convolution:

i3D = h3D∗3Do3D +n, (1)

where i3D is the 3D image, o3D is the 3D object, ∗3D denotes the 3D convolution operator, h3D

is the 3D PSF and n is the noise.
We assume that our object is shift invariant along the optical axis:

o3D(x,y,z) = o2D(x,y)α(z), (2)

where α(z) is the normalized flux emitted by the plane at depth z (
∫

α(z)dz = 1).
Strictly speaking, this assumption means that our object must be shift invariant in z over

an infinite range. However, in practice this invariance must only be verified over the depth of
focus of the instrument (≈ 50μm for an AO flood imager, ≈ 10−15μm for a confocal imager).
Indeed, planes farther than the depth of focus from the image plane contribute to the image with
a PSF that has a very narrow spectrum thus their contribution is almost a constant background.

In our case, we assume that the lateral size of the photoreceptors does not vary significantly
and that the photoreceptors are almost parallel to the optical axis. Additionally, the depth of
focus is about the length of a cone photoreceptor. Hence, the structures in front and behind the
photoreceptor layer (pigment epithelium or inner retina layers) are way out of focus and only
contribute as a background.

Current flood imaging systems only record data in one plane of interest. Using Eq. (1) and
Eq. (2), it is easy to show that, in plane z = 0 for instance:

i(x,y)� i3D(x,y,z)|z=0

=
∫∫∫

α(−z′)h3D(x
′,y′,z′)o2D(x− x′,y− y′)dx′ dy′ dz′+n(x,y)

= (h2Do2D∗2D)(x,y)+n(x,y) , (3)

with h2D an effective 2D PSF which depends on the longitudinal brightness distribution of the
object α(z) and on the 3D PSF:

h2D(x,y) =
∫

α(−z)h3D(x,y,z)dz.

The 2D image i(x,y) at the focal plane of the instrument is the 2D convolution of a 2D
object and a global PSF h which is the linear combination of the individual 2D PSFs (each
one conjugated with a different plane of the object) weighted by the back-scattered flux at each
plane.

After discretization and using Riemann sum to approximate the integral:

h2D(x,y)≈ ∑
j

α j h j(x,y) , (4)

with h j(x,y) � h3D(x,y,z j) the 2D lateral PSF at depth z j and α j = α(z j)Δz j where Δz j is
the effective thickness of the jth layer. We define α = {α j} j as the vector of unknowns that
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parameterize the PSF. α is normalized (∑α j = 1) and each parameter is positive (α j ≥ 0). We
search for h2D as a linear combination of a basis of PSF’s, each corresponding to a given plane.
In the following, we consider short-exposure diffractive PSF’s so that each hj can be computed
from the residual aberrations measured with a WFS and the knowledge of the defocus of plane
z j.

3. Joint estimation

There is a large body of work on blind deconvolution, originating in good part from astronomy
(see, e.g. , Blanc-Féraud [5]). The conventional blind deconvolution approach is to perform an
estimation of both the object and the PSF, jointly (see, e.g. , Ayers [6] for pioneering works and
Mugnier [7] for more recent results on astronomical data).

3.1. Method

The joint estimation can be cast in a Bayesian framework as the computation of the joint maxi-
mum a posteriori (jmap) estimator:

(ô, α̂) = argmax
o,α

p(i,o,α;θ) (5)

= argmax
o,α

p(i|o,α;θ)× p(o;θ)× p(α;θ) (6)

where, p(i,o,α;θ) is the joint probability density of the data (i), of the 2D object (o), and of
the PSF decomposition coefficients (α). It may depend on set of regularization parameters or
hyperparameters (θ ). p(i|o,α;θ) is the likelihood of the data i, p(o;θ) is the a priori probability
density function of the object o and p(α;θ) is the a priori probability density function of the
coefficients α . In the following, we will not use any regularization on the set of coefficients α
because we don not have any probability law for the PSF coefficients. However, since we only
need to estimate a small number of these coefficients, this is not a problem.
The noise on the images is mainly photon noise which has a Poisson distribution. However, AO
retinal images are dominated by a strong and quite homogeneous background. In the following,
we will therefore assume that the noise is stationary white Gaussian with a variance σ2. For the
object, we choose a stationary Gaussian prior probability distribution with a mean value om and
a covariance matrix Ro. The set of hyperarameters is therefore θ = (σ2,om,Ro). Under these
assumptions, we have:

p(i,o,α;θ) =
1

(2π) N2
2 σN2

exp

(

− 1
2σ2 (i−Ho)t(i−Ho)

)

× 1

(2π) N2
2 det(Ro)1/2

exp

(

−1
2
(o−om)

tR−1
o (o−om)

)

,

where H is the operator performing the convolution by the PSF h, det(x) is the determinant of
matrix x and N2 is the number of pixels in the image. ô and α̂ can therefore be defined as the
estimated object and coefficients that minimize a criterion J(o,α) defined as follows:

Jjmap(o,α) = Ji(o,α)+ Jo(o,α), (7)
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where Ji(o,α) =− ln p(i|o,α;θ) (data-fidelity) and Jo =− ln p(o;θ) (regularization term).
The criterion to be minimized reads:

Jjmap(o,α) = − ln p(i|o,α;θ)− ln p(o;θ) (8)

Jjmap(o,α) =
1
2

N2 lnσ2 +
1

2σ2 (i−Ho)t(i−Ho)

+
1
2

lndet(Ro)+
1
2
(o−om)

tR−1
o (o−om)+C, (9)

where C is a constant. By cancelling the derivative of J(o,α) with respect to the object, we
obtain an analytical expression of the object ô(α;θ) that minimizes the criterion for a given
(α;θ) :

ô(α,θ) = (HtH+σ2R−1
0 )−1(Ht i+σ2R−1

0 om) (10)

Since the matrices H (convolution operator) and Ro (covariance matrix of an object with a sta-
tionary probability density) are Toeplitz-block-Toeplitz, we can write the joint criterion Jjmap

and the analytical expression of the object ô(α,θ) in the Fourier domain with a circulant ap-
proximation:

Jjmap(o,α) =
1
2

N2 lnSn +
1
2 ∑

ν

|ĩ(ν)− h̃(ν)õ(ν)|2
Sn

+
1
2 ∑

ν
lnSo(ν)+

1
2 ∑

ν

|õ(ν)− õm(ν)|2
So(ν)

(11)

and ˆ̃o(α) =
h̃∗(ν)ĩ(ν)+ Sn

So(ν) õm(ν)

|h̃(ν)|2 + Sn
So(ν)

, (12)

where Sn is the noise power spectral density (PSD), So is the object PSD (the new set of hy-
perparameters in the Fourier domain is {Sn, So}), ν is the spatial frequency and x̃ denotes the
two-dimensional Fast Fourier Transform of x.
ˆ̃o(α) is the estimated object after classical Wiener filtering of the image i and is easily com-
puted.
If we substitute Eq. (12) into Eq. (11), we obtain a new expression of Jjmap that does not depend
explicitly on the object:

J′jmap(α) =
1
2

N2 lnSn +
1
2 ∑

ν
lnSo(ν)

+
1
2 ∑

ν

1
So(ν)

|ĩ(ν)− h̃(ν)õm(ν)|2
|h̃(ν)|2 + Sn

So(ν)
.

(13)

The joint MAP solution is thus the pair (ô(α),α) for the value of α that minimizes Eq. 13.

3.2. Simulation results

The following simulation was performed to evaluate the performance of the joint estimator in
our problem.

A simulated image is built in the following manner:

i = (α ∗hfoc +(1−α)hdefoc)∗o+n, (14)

where
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• the global PSF is the sum of only two weighted PSF’s, the first one hfoc being focused
and the second one hdefoc defocused. We assume that the focused PSF has no aberration
(AO correction is perfect). The defocus is equal to π radian RMS;

• The object used is a 128×128 pixel portion of an experimental AO image obtained with
the XV-XX retinal imager developed by the Observatoire de Paris [2];

• Noise n is stationary Gaussian with a standard deviation σ = 0.01∗max(o), correspond-
ing roughly to photon noise for an average of 10000 photons/pixel;

• α = 0.3.

Fig. 1. Simulated object Fig. 2. Simulated image

We assume for the sake of this simulation that the object PSD So and the noise PSD Sn are
known although it is not the case in practice. Therefore, we perform a so-called ”supervised”
estimation of α: we compute the joint criterion Jjmap(α;So,Sn) (see Eq. 13)) for values of α
ranging from 0 to 1 to find the value of α that minimizes the joint criterion. Figure 3 shows the
result of such a computation.

Fig. 3. Joint criterion for 0 ≤ α ≤ 1 Fig. 4. Jointly estimated object

We see that the joint estimator is minimum for α = 1 whereas the real value of α is 0.3.
The joint estimation fails to retrieve the actual value even in this very simple case (two point
spread functions, known hyperparameters). Figure 4 shows the restored object for the value of
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α that minimizes Jjmap(α;So,Sn). The image is poorly deconvolved since the estimated PSF is
perfectly focused whereas the actual global PSF is only 30% focused.

The joint estimator does not work well in the case of myopic deconvolution of retinal images,
even in the most simple case of only two PSF’s with known Sn and So. Actually, a close look at
Eq. (13) helps us understand why this joint estimator is actually degenerate in this case: if, for
instance, the mean object we use to compute the joint criterion is constant (om = β ), and since
the PSF and the set of parameters are both normalized, then the numerator does not depend on
the set of parameters α . Minimizing J′jmap is equivalent to maximizing this denominator, i.e., to

choosing the PSF with the highest MTF |h̃|, which is the most focused PSF.
One might wonder why the joint estimation, although known to show poor results for blind

deconvolution [8] is actually quite used in other contexts such as astronomical imaging. The
joint estimation works fairly well thanks to constraints such as PSF support or positivity (which
effectively acts as an object support constraint) that help remove ambiguities between the object
and the PSF. In our case, since we cannot use such constraints (the photoreceptor signal is
superimposed over a strong background and the object extends far beyond the recorded field of
view of the system), the joint estimator is not well suited for retinal image deconvolution.

Multi-frame joint deconvolution [9] can help since it increases the number of data for the
same object but is only effective if the PSFs are different enough [10], such as in the case of
phase diversity [11]. Therefore, another estimator with better statistical properties would be
preferable, ideally capable of restoring the PSF on a single frame.

4. Marginal estimation

The poor results of the joint estimation led us to propose another estimator for our imaging
problem. The estimator proposed is the marginal estimator, which has better properties [12]
and has never been used previously in retinal images deconvolution although it has already
been proposed in the literature in other contexts including estimation of aberrations by use of
phase diversity [13]. The principle of marginal estimation is to integrate the object o out of the
problem (i.e., marginalize the posterior likelihood [5]). We integrate the joint probability of the
object o and the PSF parameters α over all the possible values of object o.

α̂ = argmax
α

∫
p(i,o,α;θ)do. (15)

Marginalization reduces the number of unknowns to be retrieved (from the total number
of pixels of the image + the PSF parameters in the joint estimation case to just a few PSF
parameters) and gives us a true maximum likelihood or maximum a posteriori (depending on
the prior on the estimated parameters) estimator of the parameters of interest (namely, the PSF
parameters). After estimation of the PSF parameters α , the object is restored by Wiener filtering
of the image with the estimated global PSF and hyperparameters.

4.1. Marginal criterion

α̂ML = argmax
α

p(i,α;θ) = argmax
α

p(i|α;θ)p(α;θ). (16)

We keep the assumptions made for the joint estimation: a stationary white Gaussian noise with
variance σ2, stationary Gaussian prior probability distribution with a mean value om and co-
variance matrix Ro for the object. Since i is a linear combination of a Gaussian object and a
Gaussian noise, it is also Gaussian. Its associated probability density reads:

p(i|α;θ) = A(detRi)
−1/2 exp

(

−1
2
(i− im)tR−1

i (i− im)
)

, (17)
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where A is a constant, Ri is the image covariance matrix and im = Hom. Since we only need
to estimate a small number of parameters, there is no need to regularize the solution over α .
We therefore use a Maximum Likelihood (ML) estimator rather than a Maximum A Posteriori
(MAP) estimator.
Maximizing p(i|α;θ) is equivalent to minimizing the opposite of its logarithm:

JML(α) =
1
2

lndet(Ri)+
1
2
(i− im)tR−1

i (i− im)+B (18)

where B is a constant and Ri = HRoHt +σ2Id (Id is the identity matrix). The marginal criterion
can be written in the Fourier domain as follows:

JML(α) =
1
2 ∑

ν
lnSo(ν)+

1
2 ∑

ν
ln

(

|h̃(ν)|2 + Sn

So(ν)

)

+
1
2 ∑

ν

1
So(ν)

|ĩ(ν)− h̃(ν)õm(ν)|2
|h̃(ν)|2 + Sn

So(ν)
+B′.

(19)

Using Eq. 13 and Eq. 19, we obtain the following relationship between the marginal estimator
and the joint estimator:

JML(α) = J′jmap(α)+
1
2 ∑

ν
ln

(

|h̃(ν)|2 + Sn

So(ν)

)

− 1
2

N2 lnSn. (20)

The marginal estimator is therefore very similar to the joint estimator in its mathematical ex-
pression (as shown by Goussard when the hyperparameters are known [14] and Blanc [13] for
unknown hyperparameters. Its properties, as we will show in the following, are nevertheless
significantly different to those of the joint estimator.

4.2. Marginal estimation results

We now present the results of the marginal estimation on simulated data. The same simulation
as in the joint estimation was performed (i = (α ∗hfoc +(1−α)hdefoc)∗o+n, with α = 0.3).
The marginal criterion of Eq. (19) was computed for 0 ≤ α ≤ 1 with known hyperparameters.
The object is restored by Wiener filtering. Results of the computation are shown on figure 5
and the restored object on figure 6.

Fig. 5. Marginal criterion for 0 ≤ α ≤ 1 Fig. 6. Marginaly estimated object
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Figure 5 shows that marginal criterion is minimum for α = 0.3, which is the true value of
α used in the simulation. The marginal estimator accurately estimates the parameter of interest
in our simulation. As a result, the restored object, shown in Figure 6, is much sharper than the
simulated image and much closer to the actual object used in the simulation than the object
restored with the joint estimation.

The marginal estimator thus enables supervised myopic deconvolution of retinal images with
our image model. In practice, we do not have access to the true noise value and the true PSD
of the object we are observing. Fortunately, the marginal estimator allows us to estimate these
PSDs together with the PSF coefficients, as shown in the next paragraph.

4.3. Hyperparameter estimation

The marginal estimator allows us to estimate the set of hyperparameters θ (actually the object
PSD So and noise PSD Sn) together with the PSF coefficients in an automatic manner. This
method is called unsupervised estimation:

(α̂, Ŝn, Ŝo) = argmax
α ,Sn,So

f (i,α;Sn,So). (21)

In order to reduce the number of hyperparameters we must estimate, we choose to model the
object PSD So in the following way [15]:

So(ν) =
k

1+
(

ν
ν0

)p . (22)

Such PSD parametrization has been successfully used in various imaging applications such as
astronomical imaging or earth observation from satellites. Since the noise is assumed to be
Gaussian and homogeneous, Sn = constant. The criterion JML(α) becomes JML(α,Sn,k,νo, p)
and must now be minimized versus the PSF coefficients α and the hyperparameters Sn,k,νo

and p.
With the change of variable μ = Sn/k, if we cancel the derivative of the criterion with respect

to k, we obtain an analytical expression for k̂(α,μ ,νo, p) that minimizes the criterion for a given
value of the other parameters therefore only four hyperparameters remain, μ̂ , ν̂0, p̂ and Sn [13].

PSF coefficients and hyperparameters are estimated in an alternate way. We initialize the
algorithm with a perfectly focused global PSF.

There is no analytical expression for the minimum value of the criterion so the minimization
has to be done numerically. In our case, the minimization is performed with a Variable Metric
with Limited Memory, Bounded (VMLM-B) method developed by E. Thiébaut [16].

4.4. Asymptotic properties

The maximum likelihood estimator is known to be a consistent estimator, i.e., it tends toward
the actual values of the estimated parameters as the noise tends toward zero or as the size of
data tends toward infinity. It is also known to be asymptotically normal [12] so that the neg-
log-likelihood is asymptotically quadratic thus convex.

Extensive simulations were performed to validate the statistical behavior of our unsupervised
marginal estimation. The simulation conditions are the same as previously:

• i = (α ∗hfoc +(1−α)hdefoc)∗o+n, with α = 0.3;

• Noise RMS varies from 1% of the maximum value of the image to 20% of the maximum
value of the image;
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• 50 noise realizations were computed for each noise RMS value;

• The simulation was performed on 3 different subimages varying in size: a 32×32 pixel
central region of image i, a 64×64 pixel central region of image i and the whole 128×128
pixel image i.

Figure 7 shows the RMS error on estimation of the PSF coefficients for the different values
of noise and the varying data size, both in the supervised and unsupervised cases.
For a given data size and both in the supervised and unsupervised estimation, the marginal es-
timator RMS error tends towards zero (i.e., the estimated parameters α tends towards the exact
value) when noise decreases. Even more interestingly, for a given noise value, error tends to-
wards zero as the size of data increases. In particular, for a 128 × 128 pixel image and for noise
σ = 5% of the max value of the image, the RMS error on the PSF coefficient α estimation is
less than 3%. For a noise RMS value of 1% of the image maximum, the unsupervised estimator
basically shows the same performance as the supervised estimation.

This simulation shows that the unsupervised marginal estimator exhibits, in practice, its ap-
pealing theoretical properties, which opens the way to its use on experimental images.

Fig. 7. RMS error on the estimation of the PSF coefficients as a function of noise level
in percent (noise standard deviation over image maximum). The black, red and
blue lines correspond, respectively, to 32×32, 64×64 and 128×128 pixels images.
Supervised case is in dashed lines, unsupervised case in solid line.

5. Preliminary experimental results

We now show experimental results of the marginal blind deconvolution on in vivo retinal im-
ages:

• The experimental image (Figure 8) is a 256 × 256 pixel image recorded on a healthy
subject with the AO eye-fundus imager of the Center for Clinical Investigation of the
Quinze-Vingts Hospital in Paris, developed by the Observatoire de Paris-Meudon [2];
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• We model the global PSF as a linear combination of 3 PSFs, the first one being focused,
the second one being defocused with a focus φ1 = π/2 rad RMS and the third one being
defocused by φ2 = π rad RMS.

• We assume that the adaptive optics has perfectly corrected the wavefront and that the
focused PSF is a Airy disk.

We must estimate α = {α1,α2,α3}.
The unsupervised marginal estimation gives α = {0.24,0.22,0.54}, the resulting estimated

PSF is shown on Figure 9. For this image, the main contribution (more than half of the energy)
comes from the most out-of-focus plane and only a little less than 25% of the energy comes
from the in-focus-plane.

Fig. 8. Experimental image Fig. 9. Estimated PSF

Fig. 10. Restored object

Fig. 11. PSD comparison between experimental
image (dotted line), restored object (solid
line) and object prior PSD (dashed line)
with the estimated hyperparameters

The object is computed thanks to Eq. (12). Figure 10 shows the restored object after unsu-
pervised marginal estimation. It is clearly visible that the restored object is much sharper than
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Fig. 12. Radial average of the estimated instrument optical transfer function, deconvolution
transfer function and global (instrument+deconvolution) transfer function.

the original image. The photoreceptors have a much better contrast and can be seen clearly
throughout the image. The restored object also is much less noisy than the original image.

Figure 11 shows a comparison of the power spectral densities of the experimental image and
of the restored object: we can clearly see an improvement at the medium-high spatial frequency,
with an improvement of a factor of 5 around 200-250 cycles/mm, i.e., the spatial frequency
corresponding to the cone photoreceptor size and separation. This frequency enhancement is
clearly visible on Figure 12 that shows, in solid line, the estimated Optical Transfer Function
(OTF) of our instrument (AO Flood imager+eye) as well as the deconvolution transfer function
(dotted line) and the global (instrument+deconvolution) transfer function (dashed line). The
deconvolution restores the spatial frequencies damped by the instrument transfer function up to
300 cycles/mm, a frequency that is beyond the spatial frequency of the cone photoreceptors in
our image. These preliminary results show that our image model and the marginal estimator are
well adapted to the deconvolution of adaptive optics corrected photoreceptor images. Motion
artifacts due to eye movement during image acquisition and resulting in blurred images could
possibly be addressed by changing the PSF basis to include motion induced PSFs and not only
purely diffractive PSFs.

6. Conclusion

Blind deconvolution is a much needed tool for the interpretation and further processing of
AO-corrected retinal images. We have proposed a reasonable imaging model to deal with the
problem of only having 2D images of a 3D object that results in a useful PSF parameteriza-
tion. We have shown, both analytically and through simulations, that the classical blind joint
estimation of object and PSF is not suited for this problem. We have derived a marginal esti-
mator of the PSF and extended it to estimate also the hyperparameters (object and noise PSDs),
i.e., to perform an unsupervised estimation. We have showed on simulations that this estimator
is capable of restoring the PSF accurately even in the unsupervised case. The good statistical
properties of the unsupervised marginal estimation have also been demonstrated.

Finally, we have shown preliminary results on experimental data, showing the efficiency
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of the marginal estimator for myopic deconvolution of adaptive optics retinal images, with a
measurable improvement of the contrast at the spatial frequencies corresponding to the cone
photoreceptors. Although developed in the context of AO flood illumination retinal imaging,
this marginal blind deconvolution method could also be applicable to other kinds of data such
as confocal retinal imaging or more general microscopy data, or even astronomical data, mainly
by changing the PSF basis used.
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