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Abstract: High contrast imaging for the detection and characterization
of exoplanets rests upon the instrument’s capability to cancel the light of
the host star. Some current post-processing methods for calibrating out
the residual speckles use information redundancy offered by multispectral
imaging but do not use any prior information on the origin of these speckles.
We develop, in a Bayesian framework, an inversion method that is based
on an analytical imaging model in order to estimate both the speckles
and the object map. The model links the instrumental aberrations to the
speckle pattern in the image focal plane, distinguishing between aberrations
upstream and downstream of the coronagraph. We propose and validate
several numerical techniques to handle the difficult minimization issues of
phase retrieval and achieve a contrast of 106 at 0.2 arcsec from simulated
images, in presence of photon noise. This opens up the tests on real data
where the ultimate performance may override the current techniques if the
instrument has good and stable coronagraphic imaging quality. This pave
the way for new astrophysical exploitations or even to new designs for the
future instruments.
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1. Introduction

Ground-based instruments have now demonstrated the capability to detect planetary mass com-
panions [1, 2, 3, 4] around bright host stars. By combining an adaptive optics (AO) system
and coronagraphs, some first direct detections from the ground have been possible in favorable
cases, at large separations and in young systems when low mass companions are still warm
(≥ 1000K) and therefore not too faint. There is a very strong astrophysical case to improve the
high contrast detection capability (105 for a young giant planet to 1010 for an earth-like planet
in the near infrared) very close to stars (< 0.1” to 1”).
Several instruments will be capable of performing multispectral imaging and will allow char-

acterizing the planets by measuring their spectra. It is the case of GPI (Gemini) [5], Palm 3000
(Palomar) [6], SCExAO (Subaru) [7], SPHERE (VLT) [8] and several others that will follow
such as EPICS (E-ELT) [9]. By combining an extreme adaptive optics (Ex-AO) and more ac-
curate coronagraphs than before, the level of star light cancellation is highly improved, leading
to a better signal to noise ratio. Yet, the residual host star light is affected by the instrument
aberrations to form a pattern of intensity variations or “speckle noise” on the final image. Part
of the speckles cannot be calibrated as they evolve on various time scales (neither fast enough
to smooth down a halo nor stable enough) and for this reason, these “quasi-static speckles” are
one of the main limitations for high contrast imaging.
A number of authors have discussed the challenge posed by the elimination of speckle noise

in high contrast multispectral images. It can be done by post-processing, after the best possible
observations. As images are highly spectrally correlated, one can use the wavelength depen-
dance of the speckles to subtract them. In the particular case of coronagraphic multispectral
imaging, only some empirical methods have been developed to subtract the speckle field from
the image in the focal plane.
We propose an alternative approach based on a parametrized imaging model for the post-

processing of multispectral coronagraphic imaging corrected by an extreme adaptive optic sys-
tem in the near-infrared domain. The aberrations and bright companions at small separations are
estimated jointly in a bayesian framework. Particularly, it is possible to take advantage of prior
information such as an accurate knowledge on the aberration levels. This kind of approach will
be increasingly efficient for the instruments getting closer to the ideal case of low aberrations
and high efficiency coronagraphs.
In section 2, we explain how previous methods use the information redundancy for the

speckle suppression in high contrast imaging. Then, we describe the advantages of a joint
bayesian estimation of the aberrations in the pupil plane and the planet map, based on a
parametrized model of coronagraphic imaging. Section 3 presents the long exposure coron-
agraphic imaging model which is used to simulate the images and restore them. The case of
an approximate model is also studied. Section 4 describes respectively theoretical and nu-
merical issues of an alternating restoration algorithm. Particularly, the aberration estimation
presents minimization difficulties to which we bring some solutions. In section 5, our image
post-processing is validated by restoring images simulated with a perfect coronagraph.



Fig. 1. Evolution of the speckle field with the wavelength. Simulated images at 950, 1306 and 1647 nm
for a 103 star flux over planet flux contrast. The dynamic is adapted to the visualization. The speckle field
moves with the wavelength but not the planet position.

2. Post-processing speckles subtraction and multispectral imaging

Several empirical post-processing methods have already been proposed in order to overcome
the problem of detection limitation caused by the “quasi-static speckles”. Some of these meth-
ods use the wavelength dependence of the speckle pattern (Fig. 1) to estimate it and subtract it
from the image, while preserving both the flux and spectrum of the planet.
Racine et al. (1999) suggested to subtract two images at different wavelengths to eliminate

both the point-spread function (PSF) and the speckle field in non-coronagraphic images [10].
The main limitation of this simultaneous differential imaging (SDI) method comes from the
residuals caused by the evolution of the general PSF profile and of the speckle pattern with
wavelength. These residuals can be reduced by increasing the number of images used for the
speckle field subtraction. Marois et al. (2000) showed with their double difference method that
adding another image to the SDI improves the signal to noise ratio in the final image of the re-
stored companion [11]. The case of multispectral images has been tackled by Sparks and Ford
(2002) who described the so-called spectral deconvolution method in the framework of space-
based observations for an instrument combining a coronagraph and an integral-field spectrom-
eter (IFS) [12]. The method, later improved by Thatte et al. [13], is entirely based on a speckle
intensity fit by low-order polynomials as a function of wavelength, in the focal plane. More
recently, Crepp et al. (2011) combined this method with the LOCI algorithm which is based on
linear combination of images [14] and restored on-sky images from the Projet 1640 IFS on the
Palomar telescope [15]. These methods are applicable to any optical system and in particular
to those with coronagraphs. But preserving the planet signals from being eliminated with the
speckles is challenging because the planet presence is not explicitly modeled.
Besides, some information on the measurement system can be very useful to disentangle a

planet from the speckle field. Burke et al. (2010) combined classical empirical techniques of
differential imaging with a multi-wavelength phase retrieval method to estimate the aberration
pattern in the pupil plane with a simple imaging model without a coronagraph [16]. This multi-
wavelength phase retrieval is nicknamed “wavelength diversity” [17] because it uses different
images at different wavelengths to bring information diversity as one would do with, e.g., defo-
cus in phase diversity [17, 18]. But contrary to the phase diversity, the “wavelength diversity”
does not remove the phase sign ambiguity. The inversion algorithm is based on a maximum-
likelihood estimator, which measures the discrepancy between the data and an imaging model.
The minimization of this estimator is all the more difficult as the number of unknowns to esti-



mate is high. This issue is overcome by the parcimonial parametrization of the unknown phases
φλ through the optical-path-errors (or aberrations) δ , assuming that the former are achromatic:
φ (λ ) = 2πδ/λ . This allows one to exploit jointly the images at all wavelengths to estimate
efficiently the aberrations: the map of the unknown optical-path-errors δ is in common to all
wavelengths. The number of unknowns is thus limited and the problem constrained. In the
present case, Burke’s wavelength diversity method does not apply readily, as it assumes non
coronagraphic imaging, whereas we consider the highly non-linear case of a coronagraphic
imaging model.
That is why we propose to take advantage of a combined use of wavelength diversity and

a Bayesian inversion to jointly estimate the aberrations in the pupil plane and the planet map.
The joint estimation aims at taking up the challenge of preserving the planets signal. An ad-
vantage of the Bayesian inversion is that it can potentially include an important regularization
diversity to constrain the problem, using for example prior information on the noise, the planet
map (position, spectrum, ...) or the aberrations. In the Bayesian framework, the criterion to be
minimized is the sum of two terms: the data fidelity term, which measures the distance between
the data and the imaging model, and one or some penalty terms. An important difficulty is to
define a realistic coronagraphic imaging model which depends on parameters (aberrations...)
that can be either calibrated beforehand or estimated from the data.

3. Parametric model of multi-spectral coronagraphic imaging

In order to carry out the Bayesian inversion, we need a parametric direct model of corona-
graphic imaging. This direct model will also be useful to simulate our test images.
We consider a non linear existing expression [19] and try to simplify it to be used in an

inversion algorithm. We assume that the coronagraph is “perfect” in the sense defined in [19] ;
essentially, we mean that the coherent energy is perfectly canceled out. The aberrations, or
optical-path-errors, δ are assumed to be achromatic which is a reasonable assumption in the
envisaged wavelength band: 950 to 1650 nm. The variable α ≡ (αx,αy) represents the angular
positions in the focal plane in radians and the variable ρ ≡ (ρx,ρy) is the angular position in
the pupil plane in radians−1. Finally, λρ ≡ (λρx,λρy) corresponds to the spatial position in the
pupil plane in meters.

3.1. Global imaging model
We assume that, for an AO-corrected coronagraphic image at the wavelength λ , the direct
model is the following sum of three terms, separating the residual coronagraphic stellar halo,
the circumstellar source (for which the impact of coronagraph is neglected) and noise nλ :

iλ (α) = f ∗λ ·hcλ (α)+
[
oλ !hncλ

]
(α)+nλ (α) , (1)

where the data are: iλ (α), the image we have access to, f ∗λ is the star flux and h
nc
λ (α), the

non-coronagraphic point spread function (PSF) which can be estimated separately. Solving the
inverse problem is finding the unknowns: the object oλ (α) and the speckle field hcλ (α) which
we also call the “coronagraphic PSF”.

3.2. Long exposure “coronagraphic PSF” model
A model description of hcλ (α) directly depends on the turbulence residuals and optical wave
front errors. After previous works to model non coronagraphic PSFs [20] and coronagraphic
PSFs [21, 22], Sauvage et al. (2010) proposed an analytical expression for coronagraphic im-
age with a distinction between upstream and downstream aberrations [19] (cf. Appendix B).
The considered optical system is composed of a telescope, a perfect coronagraph and a detector
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Fig. 2. Optical scheme of a coronagraphic imager. The upstream and downstream static aberrations,
as well as the adopted notations are denoted δu and δd respectively. Ai(α) denote focal plane complex
amplitudes, whereas Ψi(ρ) denote pupil plane amplitudes.

plane (cf. Figure (2)). Some residual turbulent aberrations δr(ρ , t) are introduced in the tele-
scope pupil plane. δr(ρ , t) is assumed to be temporally zero-mean, stationary, ergodic. Because
we consider only long exposure time with respect to turbulence timescales, these turbulent
aberrations contribute only through their spatial statistical properties: power spectral density
Sδr(α) or structure function Dφr . The static aberrations are separated into two contributions:
the aberrations upstream of the coronagraph δu(ρ), in the telescope pupil plane Pu(ρ) and
the aberrations downstream of the coronagraph δd(ρ) in the Lyot Stop pupil plane Pd(ρ).
The perfect coronagraph is defined as an optical device that subtracts a centered Airy pattern
of maximal energy to the electromagnetic field. Finally, the “coronagraphic PSF” depends on
three parameters which define our system : the aberrations maps δu, δd and Dφr .

3.2.1. Derivation of an approximate long exposure “coronagraphic PSF” model

As the analytical expression of hcλ is a highly non-linear function of the aberrations (see [19]
for more details), we derived and studied the relevance of an approximate expression of this
model [23]. Several works have been done to derive some approximate coronagraphic imaging
models. Cavarroc et al. [21] have developed a short-exposure expression and showed by simula-
tions that the main limitation comes from the static aberrations and particularly the aberrations
upstream of the coronagraph. Here, we consider a long exposure imaging model and confirm
analytically the dominance of the upstream aberrations. Soummer et al. [22] have developed a
two-term expression with one static term and one turbulent term. Nevertheless, these terms are
not explicitly linked to the aberrations which we are interested in.
Assuming that all the phases are small and that the spatial mean of φu(ρ) and φd(ρ) are equal

to zero on the aperture, we derive a second-order Taylor expansion of expression 24 of [19]:

[
hcλ

]app
(α) =

(
2π
λ

)2{∣∣∣P̃d (λρ)! δ̃u (λρ)
∣∣∣
2
}

+

(
2π
λ

)2{∣∣∣P̃d (λρ)
∣∣∣
2
!Sδr (α)−

〈
|P [δr (λρ , t)]|2

〉

t
·
∣∣∣P̃d (λρ)

∣∣∣
2
}

+ o
(
δ 2

)
, (2)

where P̃d (λρ) and δ̃u (λρ) are the Fourier transforms of the downstream pupil and upstream
aberrations respectively and P [δr (λρ , t)] denotes the piston of the aberration map δr (λρ , t).



{〈
|P [δr (λρ , t)]|2

〉

t
·
∣∣∣P̃d (λρ)

∣∣∣
2
}
is a corrective term that compensates for the fact that

δr (λρ , t) is stationary and thus non-piston-free on the aperture at every instant. Note that∣∣∣P̃d (λρ)
∣∣∣
2
is the Airy pattern formed by the pupilPd (λρ).

This approximate expression brings physical insight to the Sauvage et al. expression:

• The speckle patterns scales radially in λ and evolves in 1/λ 2 in intensity in the data cube.
It is consistent with the analysis of Sparks and Ford [12], who perform fits of low-order
polynomials as a function of the wavelength after rescaling radially.

• The approximate expression can be separated into one static term and one turbulent term.
This is consistent with the analysis of Soummer et al. [22] with the advantage that these
terms depend on the parameters of interest. The turbulent term is simply the turbulent
aberration power spectral density, as seen at the resolution of the instrument, i.e., con-
volved by the output pupil Airy pattern. The static term is directly function of the up-
stream aberrations.

• The downstream aberrations do not appear in the static term. This confirms that the role
of the aberrations upstream and downstream of the coronagraph is very different and that
upstream aberrations are dominant in the final image.

• Four equivalent upstream aberration sets: δu(ρ), δu(−ρ), −δu(ρ) and −δu(−ρ), that
we call “quasi-equivalent” aberration maps in the following, lead to the same image (cf.
Appendix A). This item is further discussed in section 4.3.3.

• By using this approximate expression for hcλ in the imaging model (1), we can see that
there is a degeneracy between the value of the star flux and the rms value of the aberration
map, if there is no turbulence. Indeed, without turbulent aberrations, the approximate
model multiplied by the star flux can be written as:

f ∗λ ·hcλ (δu) = f ∗λ · (2π)2

λ 2 ·
∣∣∣P̃d ! δ̃u

∣∣∣
2

(3)

This item is further discussed in section 4.3.2.

Discussion The differences on the final image between the two models are not negligible as
we can see the circularly averaged profiles of the Figure 3. Because of the Sauvage et al. expres-
sion complexity, we first thought about using the approximate model in our inversion algorithm
to decrease the number of unknowns to estimate and to simplify the criterion to minimize. But
a study of this approximate model [23] showed that the image simulated with the approximate
model is too different from the one simulated with the Sauvage et al. expression: the com-
putation of the root mean square of the difference between the two images leads to an error
of 29%. Consequently, even if using the approximate model would considerably decrease the
non-convexity of the criterion, it would probably not lead to sufficiently good results. Never-
theless, and we will discuss this in Section 4, this approximate model will be useful to improve
the convergence of our criterion minimization, which is a highly critical point.

3.2.2. Assumptions on the long exposure “coronagraphic PSF” model

The information we get from the approximate model study helps us define some key assump-
tions for the success of the speckle field estimation with the Sauvage et al.’s long exposure
“coronagraphic PSF” model.
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Fig. 3. Circularly averaged profiles of simulated images. Sauvage et al.’s analytical model versus Taylor
expansion and error between the two models.

As they have a quite different impact on the final image, it is important to distinguish the
aberrations upstream and downstream of the coronagraph. The downstream aberrations effect
is lower than that of the upstream aberrations and furthermore, in foreseen systems, they are
expected to be much more stable and easier to calibrate than upstream aberrations. Besides,
as we consider long exposure images, the residual turbulent aberrations will be averaged to
form a smooth halo easily distinguishable from a planet. Furthermore, the statistical quantity
Dφr which characterizes this halo, will be measured through the adaptive optics system wave-
front sensor [24]. Thus, in this paper, we assume that both the static downstream aberrations
and the residual turbulent aberrations are calibrated and known. This decreases the number of
unknowns as the only aberration map to estimate in order to get access to the “coronagraphic
PSF” is the quasi-static upstream aberrations. We shall thus denote the long exposure “coron-
agraphic PSF” by hcλ

(
δu;δd ,Dφr

)
instead of hcλ

(
δu,δd ,Dφr

)
to underline the fact that δd and

Dφr are assumed to be known.
An advantage of our approach is that these assumptions can evolve. The formalism will

allow to refine our method if we finally decide to estimate either the downstream aberrations
or the residual turbulent aberrations. Thus, we can increase little-by-little the complexity of the
problem in anticipation of using real data from SPHERE or from another instrument.

4. Joint estimation of wavefront and object algorithm and minimization strategy

This section introduces the criterion to be minimized (4.1) and describes the minimization
algorithm, stressing the two stages which constitute its core (4.2 and 4.3). One of these stages
presents some convergence difficulties (4.3). The minimization strategy is described as well as
some first regularization elements which have been used to constrain the problem for the present
validations. One part of the choice is based on physical fundaments, another is based on some
minimization criterion constraints. These choices may evolve according to the astrophysical or
instrumental cases we consider.



4.1. Definition of the criterion to be minimized and joint estimation
Following the Bayesian inverse problem approach, solving the inverse problem consists in find-
ing the unknowns, firstly the object characteristics o(α,λ ) = {oλ (α)}λ , secondly the param-
eters of the speckle field hcλ (δu;δd ,Dφr) and f ∗ (λ ) =

{
f ∗λ
}

λ , which are the most likely given
the data and our prior information about the unknowns. This boils down to minimizing the
following criterion:

J(o, f ∗,δu)

= ∑
λ

∑
α

1
2σ2n,λ (α)

|iλ − f ∗λ ·hcλ (δu;δd ,Dφr)−oλ !hncλ (δu;δd ,Dφr)|2 (α)

+Ro+Rf ∗ +Rδ + · · ·. (4)

This criterion is the sum of two terms: the data fidelity term, which measures the distance
between the data and the imaging model, and a non-exhaustive list of regularization terms on
our unknowns Ro, Rf ∗ , Rδ . The noise variance is assumed to be known beforehand and could be
estimated as σ̂2n,λ = σ̂2ph,λ + σ̂2det,λ [25] where σ̂2ph,λ = max(iλ ,0) is the photon noise variance
and σ̂2det,λ is the detector noise variance previously calibrated.
The star flux at each wavelength can be analytically estimated from the criterion provided the

regularization on flux is quadratic or absent. In the latter case, the likelihood maximum solution
being given by ∂J

∂ f ∗λ
= 0, we get:

f̂ ∗λ (oλ ,δu) =
∑α

[
hcλ

(
oλ !hncλ − iλ

)
/σ2n,λ

]
(α)

∑α

[(
hcλ

)2
/σ2n,λ

]
(α)

(5)

Thanks to this analytical expression, the criterion to be minimized is the one of Eq. (4) with f ∗λ
replaced by f̂ ∗λ , which will be denoted by J

′ (o,δu) and depends explicitly on oλ and δu only.
The structure of the criterion of Eq. (4) prompted us to adopt a joint estimation of wavefront

and object with an iterative algorithm, which alternates between estimation of the aberrations,
assuming that the object is known (multispectral phase retrieval) and estimation of the object
assuming that the aberrations are known (non-myopic multispectral deconvolution). As in these
two estimations the same criterion (cf. Eq. (4)) is minimized, the algorithm converges.

4.2. Non-myopic multispectral deconvolution
The non-myopic multispectral deconvolution is relatively well-known. The chosen regulariza-
tion leads to a convex criterion [25] and thus to a unique solution for a given set of aberrations.
The regularization term Ro includes prior spatial and spectral information we have on the

object. We chose here a L1-L2 white spatial regularization which assumes the independence
between the pixels [26] because we are mainly looking for point sources. The spectral prior is
based on the object spectrum smoothness. We currently assume that the object is white (constant
spectrum) but as the final aim is to extract some spectra, for future validations we will use a L2
correlated spectral regularization [27] which will involve at each pixel the differences between
the spectrum at neighboring wavelengths and will enforce smoothness on the object spectrum.
Even if the non-myopic multispectral deconvolution presents a convex criterion which as-

sures a relatively simple minimization, a classical difficulty lies in the two hyperparameters ad-
justment of the chosen L1-L2 regularization. A first hyperparameter, sets the link between the
L1 regularization and the L2 regularization. A second hyperparameter drives the penalization
strength. The noise level in the estimated object map depends on the chosen hyperparameters.



A direct consequence is that the performance of the algorithm about the planet flux estima-
tion will be affected by the hyperparameters choice. As the first aim of this work is to detect
a planet, we chose the set of hyperparameters which favours the faintest planet we can detect:
with a contrast of 106. But we have to keep in mind that the estimation flux error will be more
important for planets with another contrast and that it would be in the prospects to improve
the hyperparameters adjustment. In this paper, we compare the rms values of the differences
between the simulated and estimated object images in the focal plane. Thus, the instrument
response acts as a low-pass filter and allows to avoid the regularization difficulties.

4.3. Phase retrieval: dealing with local minima
In the phase retrieval stage, the number of parameters to estimate in order to rebuild the aber-
rations is very large, typically 103 (see Section 4.3.1). This, combined with the fact that the
criterion is highly non-convex, complicates the problem. To get around local minima, several
clever numerical solutions resulting from imaging understanding are necessary and described
hereafter.

4.3.1. Phase parametrization and regularization

Concerning the phase, we choose the basis of the pixel indicator functions rather than, e.g., a
truncated basis of Zernike polynomials, in order to model and reconstruct phases with a high
spatial frequency content. Because of the potentially large number of phase unknowns (about
103 in our case) we could regularize the phase estimation. To this aim, we could use a functional
Rδ proposed specifically for such a phase basis in Refs. [28] and [29].

4.3.2. Choice of an appropriate starting point: very small random phase

In order to keep the computation time reasonable, we use a local descent algorithm to minimize
the criterion. Because the latter is highly non-convex, the chosen starting point can lead or not
to the global minimum of the criterion. The solution is brought by assuming that the upstream
aberrations are small enough at the starting point so that we are fully in the conditions where
the Taylor expansion developed in 3.2.1 is valid and where the criterion is less non-convex.
It allows the algorithm to avoid many wrong directions, and thus many local minima. As the
algorithm converges, the upstream aberration rms value increase towards their true value and a
gradual non-linearity of the model is little by little introduced.
For aberrations with very small rms values, the “coronagraphic PSF” hcλ is close to zero

according to Eq. (12) and thus the analytical flux estimate given by Eq. (4) can diverge. It is
then essential to regularize the flux estimation to constrain it to some more physical values and
avoid any division by zero. The idea is to use prior information on the star flux. In order to
get an analytical solution to our problem, we want a criterion that is quadratic in flux. We thus
choose a Gaussian prior law for the flux, leading to the following regularization term:

Rf ∗ =

(
f ∗λ − f0

)2

2σ2f ,λ
(6)

with f0 being the prior mean flux and σ f ,λ being the prior standard deviation of the flux. It
measures the prior knowledge we have on the star flux. This leads to the following expression
for the analytic star flux:

f̂ ∗λ =
f0/σ2f ,λ +∑α hcλ

(
iλ −oλ !hncλ

)
/σ2n,λ

∑α
(
hcλ

)2
/σ2n,λ +1/σ2f ,λ

. (7)



In practice, we choose a very large standard deviation σ f ,λ = 100×∑α iλ , in order not to bias
the flux. With such standard deviation, we can choose any mean flux, for example, f0 = 0. This
is sufficient to avoid the division by zero in the flux computation and thus the flux divergence.
We test the phase retrieval capability of our algorithm with respect to the chosen starting

point, assuming that there is no object to estimate. The minimization results use an additional
trick that will be explained in 4.3.3. Three different starting points are studied. For each of
them, we give the rms value of the estimated upstream aberration map and the rms value of the
difference between the simulated and the estimated maps estimated as follows:

rmsdiff =

[
∑ρ

(
δ simulatedu −δ estimatedu

)2]1/2

[
∑ρ (δ simulatedu )2

]1/2 ×100. (8)

The inversion is performed with one spectral channel and with a regularization on the star
flux estimation. Figure 4 compares some estimated upstream aberration maps (a, b, c) to the
simulated one (“true”):

(a) One could think that using a random aberration map with the same rms value as the true
aberrations (30 nm at 950 nm) as a starting point would help one find the global mini-
mum. In fact, it does not help because the algorithm converges very fast towards a local
minimum and the estimated aberration map (rmsa = 307 nm at 950 nm) is completely
different from the simulated one (rmsdiff,a = 103%).

(b) Using a zero aberration map as a starting point does not work either. It is probably due
to the fact that the approximate model is an even function. For this particularly starting
point, the gradient is null which leads to some convergence difficulties. The rms of the
difference between the two maps is about 1.4× 104%. The estimated aberration pattern
(rmsb = 4069 nm at 950 nm) seems to show that the algorithm does not explore the high
frequencies.

(c) The solution we propose is to use as a starting point for the minimization a non-null random
aberration map with a small rms value compared to those of the “true” simulated aber-
ration map. In practice, we choose a rms value about 108 times smaller than the ‘true”
value. This leads to a correct estimation of the aberration map (rmsc = 30.2 nm at 95 nm)
with a rms of the difference between the two maps of about 0.6%.

If we plot the same results for images simulated with turbulence, the convergence is easier as the
presence of turbulence aberrations constrains the problem. The rms of the difference between
the estimated aberrations and the simulated aberrations are about 1.8×102% (rmsa’ = 30.7 nm
at 95 nm) , 17% (rmsb’ = 30.1 nm at 95 nm) and 17% (rmsc’ = 30.1 nm at 95 nm) for the cases
(a’), (b’) and (c’) respectively.
Choosing an aberration map with a small rms value as a starting point of the phase retrieval

allows us to avoid some local minima by linearizing the highly non-convex model used in the
inversion.

4.3.3. Avoiding some local minima by testing quasi-equivalent starting points

In the approximate model, four different aberration maps can give the same image (cf.
Equation(14) in Appendix). This means that, from a given starting point, the minimization
algorithm can take four different but equivalent directions from the approximate model point
of view. But from the point of view of the model used in the inversion (3.2.2), it is not the case
because it depends on downstream aberrations, which break the symmetry.



“true” (a) (b) (c)

rms“true” = 30 nm rmsa = 307.8 nm rmsb = 4069.7 nm rmsc = 30.2 nm
rmsdiff,a = 103% rmsdiff,b = 1.4×104% rmsdiff,c = 0.6%

i

“true” (a’) (b’) (c’)

rms“true” = 30 nm rmsa’ = 30.7 nm rmsb’ = 30.1 nm rmsc’ = 30.1 nm
rmsdiff,a’ = 1.8×102% rmsdiff,b’ = 17% rmsdiff,c’ = 17%

ii

Fig. 4. Choice of an appropriate starting point. Estimated upstream aberration maps with one spectral
channel for three different starting points. [Top] Without turbulent aberrations in the simulated images.
[Bottom] With turbulent aberrations in the simulated images. From left to right, with a dynamic adapted
to the visualization: “true” simulated aberration map, (a) and (a’) estimated aberrations with a random
aberration map (rms value of the simulated aberrations) as starting point, (b) and (b’) estimated aberrations
with a zero aberration map as starting point and (c) and (c’) estimated aberrations with a random aberration
map (rms value 108 times smaller than the “true” one) as starting point. The estimation is performed with
a regularization on the star flux.

Consequently, a good solution from the point of view of the approximate model may be
a not-so-good one from the model used in the inversion point of view. The idea is then to
perform an initialization step where the very small random phase is taken as a starting point.
A first phase retrieval stage is performed with this starting point, leading to a first estimated
aberration map denoted by δuinit,1(ρ). Then, the three other quasi-equivalent aberration maps
δuinit,1(−ρ), −δuinit,1(ρ) and −δuinit,1(−ρ) are taken as starting points for three other phase
retrieval stages. This leads to three more estimated aberration maps denoted by δuinit,2, δuinit,3
and δuinit,4.
Figure (5) shows the four estimated aberration maps at the end of the initialization step. These

estimated aberration maps are compared to the simulated one (Fig. (4.d)). The final aberration
map chosen as a starting point for the alternating algorithm is the one that gives the minimum
value for criterion J of Equation 4:

(δu)init = arg min
{
J
[
δ init,1u

]
,J
[
δ init,2u

]
,J
[
δ init,3u

]
,J
[
δ init,4u

]}
(9)

It turns out that the chosen set of aberrations is also the one with the closest rms value (rmsb’ =
30.1 nm at 950 nm) with respect to the ‘true” phase (Fig. (4i. “true”) and Fig. (4ii. “true”)).



δ init,1
u δ init,2

u δ init,3
u δ init,4

u

rms1 = 31.2 nm rms2 = 30.1 nm rms3 = 31.7 nm rms4 = 31.6 nm
rmsdiff,1 = 1.6×102% rmsdiff,2 = 17% rmsdiff,3 = 1.4×102% rmsdiff,4 = 1.6×102%

Fig. 5. Estimated upstream aberrations for the four quasi-equivalent aberration maps as starting
points. From left to right, with the same dynamic: δ init,1u , δ init,2u , δ init,3u , δ init,4u . The image simulation is
performed with one spectral channel in the presence of turbulent aberrations.

4.3.4. Avoiding some local minima in the multispectral inversions by taking the previously estimated
aberration map as starting point

In spite of setting up solutions in order to avoid the local minima while the minimization crite-
rion, we sometimes observe some minimization difficulties in the case of inversions with more
than two spectral channels. The reason of this problem has not been identified. That is why we
begin to do an inversion with one spectral channel. Then, we add one spectral channel for a
two-spectral channel inversion and we take the previous estimated aberration map as a start-
ing point. Doing this when adding some more spectral channels is a way of constraining the
problem, waiting for understanding the reason of these minimization difficulties.

4.4. Summary of the developed algorithm
Figure (5) summarizes the different steps of the developed algorithm. The choice of a very
small random phase as a starting point is essential because it avoids falling into some local
minima (section 4.3.2). An initialization phase is performed, testing the algorithm convergence
for the four quasi-equivalent solutions (section 4.3.3). The solution which leads to the smallest
criterion value is selected. Then, the minimization core is performed, alternating between the
aberration estimation, assuming that the object is known (multispectral phase retrieval, section
4.3), and the object estimation, assuming that the aberrations are known (non-myopic multi-
spectral deconvolution, section 4.2). Several iterations are performed until the stopping rule of
the algorithm is verified. The chosen optimizer is the Variable Metric with Limited Memory
and Bounds (VMLM-B) [30].

5. Validation of the inversion method by simulations

In this section, we validate the exoplanet detection capabilities of our inversion method. After
giving the numerical simulation conditions, we investigate the estimation quality of the aberra-
tions and the object as a function of the number of images at different wavelengths used. Then,
we study the algorithm robustness with respect to the bandwidth and with respect to an error
in the calibration of the downstream aberrations, which is assumed to be performed before the
data acquisition.
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Fig. 6. Block diagram of the algorithm used for the jointly estimation of the object map and static
upstream aberrations.

5.1. Test case
5.1.1. Simulation hypothesis

From a data cube of six images simulated with the image formation model of equation (1) and
the Sauvage et al. [19] analytical expression of coronagraphic imaging, we jointly estimate the
speckle field and the object map. The hypothesis are typical of a SPHERE-like instrument:
upstream δu and downstream δd aberrations respectively simulated with standard deviation of
30 nm and 97 nm, star-planet angular separations of 0.2 and 0.4 arcsec, contrasts, i.e. ratio of
star flux over planet flux of 105, 106 and 107, a [950 nm ; 1647 nm] spectral bandwidth and a
maximum flux per pixel of 108 on the data cube in presence of photon noise corresponding to
the observation of a 6-magnitude star for 30 minutes with the VLT. We use 128×128 pixels to
simulate our images, shannon-sampled at 950 nm. Thus, the number of unknowns to estimate
for the aberration map is about 3× 103. If we add the unknowns to estimate for the object
map, which is about 1.96× 104, the total number of unknowns is about 2× 104. Figure (7)
shows the simulated objet map (7a) and the associated image in the focal plane (7b). For an
easier visualization, we represent the images in the focal plane and not the object map in the
following. Figure 7 shows the simulated aberration map (7d) and the associated image of the
speckle field in the focal plane (7d).
In the following, we focus on the middle region defined in Figure (7a). Materialized by the



a Object map and middle region b Image of the object map in the
focal plane

c Aberration map d Image of the speckle field in the
focal plane

Fig. 7. Simulated images at λ = 950 nm. (a) Simulated object map and (b) associated image in the focal
plane. The image is obtained by convolving the object map oλ by the non-coronagraphic psf hncλ . (c)
Simulated aberrations and (d) associated image of the speckle field in the image focal plane. The image is
given by the “coronagraphic PSF” hcλ .

two white circles, this is a ring from 2 to 20 λ/D which corresponds to angular distances
between ' 0,05” and ' 0,5” at 950 nm. In this region, the adaptive optics compensates for the
turbulent aberrations. Quasi-static aberrations are dominant, thus they limit the detection. For
this reason, this is the region which interests us the most to study the convergence capabilities
of our algorithm. We do not expect to detect some planets in the central region inside a disk of 2
λ/D-radius principally because of the high residual starlight. The cut frequency of the adaptive
optics being for 20 λ/D, the turbulent aberrations limit the detection in the outer region.

5.1.2. Data processing with “SDI”

We process the simulated images with an optimized “SDI” in order to have a comparison point
to estimate the performance of our method. We compare quantitatively the stellar residuals
which will limit the detection capability, after post-processing. To do this, we consider the
two following bandwidths: [950 nm ; 1650 nm] and [950 nm ; 1150 nm]. The first bandwidth
is typical of an IFS-SPHERE-like instrument but this spectral separation is not favorable to
the SDI. The second bandwidth is closer to separations we have when using differential filters.
For each bandwidth, we take the images at the minimum and maximum wavelengths and we
rescale the image at 950 nm with respect to the images at 1150 nm and 1650 nm. Finally, we
perform the following spectral differences between the two images (cf. respectively Fig. (8b)



a On the same dynamic: (left) rescaled image at 950 nm multiplied by the γ coefficient, image at
1150 nm (center) before and (right) after speckle subtraction.

b On the same dynamic: (left) rescaled image at 950 nm multiplied by the γ coefficient, image at
1650 nm (center) before and (right) after speckle subtraction.

Fig. 8. Test case. Speckle field subtractions with the optimized SDI method for two different bandwitdhs.

and Fig. (8a)):

idiff1650 = i1650nm− γi950nm and idiff1150 = i1150nm− γi950nm, (10)

where γ is a coefficient which minimize the squared difference |imax− γimin|2 on the middle
region m(ρ) defined in Section 5.1.1. γ is the coefficient that minimized the squared difference
on this region and is given by [31, 32]:

γ =
∑ρ m(ρ)i950nm(ρ)i1650nm(ρ)

∑ρ m(ρ)i21650nm(ρ)
, (11)

where m is a mask that is equal to 1 on the pixels belonging to the middle region and 0 else-
where. This two-channel subtraction reduces the level of stellar halo by a factor 10 (resp 4) in
the middle region for the bandwidth [950 nm ; 1150 nm] (respectively [950 nm ; 1650 nm]).

5.2. Inversion with only one spectral channel
We jointly estimate the upstream quasi-static aberration map and the object map with only one
spectral channel at 950 nm. Figure (9a) compares the residual speckles in the focal plane after
post-processing with the “optimized” SDI method and our method, with respect to the image
before post-processing. The inversion with only one spectral channel allows a 81-fold gain
to the speckle subtraction, in the middle region defined in Figure (7a). Figure (9b) compares
the estimated object image in the focal plane (right) to the simulated one (left). Even if many
residuals from the turbulent halo and residual speckles subsist on the object image, one of the
planets, that with a contrast of 105, is detected at the right position.



a Speckle fields.With the same dynamic, at 1650 nm: (left) image before post-processing and speckle residuals after
post-processing with (middle) SDI and with (left) a one-spectral channel inversion. For visualization reasons, the last
image was rescaled from 950 nm to 1650 nm.

b Images of object.With the same dynamic, at 950 nm: (left) simulated and
(right) estimated planet image

[
oλ !hncλ

]
(x,y) with a one-spectral channel in-

version.

Fig. 9. Inversion with one spectral channel.

This result shows our algorithm convergence capability in spite of the degeneracy difficul-
ties and the presence of local minima. Actually, it can be surprising to succeed in detecting
one planet with a one-spectral channel inversion. Indeed, there is no wavelength diversity to
help disentangle the planet from the speckle field. Nevertheless, this can be explained by the
symmetry of the speckle field in the coronagraphic imaging for small phases. Boccaletti et al.
show that it is a centrosymmetric function [33]. Thus, because the object map we use in our
simulation is not centrosymmetric, it is impossible for a planet to be mistaken for a speckle. For
the coronagraphic imaging model used, it is only true at first order but it is sufficient to detect
the planet with a contrast of 105.

5.3. Inversion with multispectral data cubes
We jointly estimate the upstream quasi-static aberration map and the object map with mul-
tispectral data. The inversion is realized with two, three, four, five and six spectral channels
taken in the simulated data cube of six images. Figure (10a) shows the difference between the
simulated and estimated aberration maps for two different inversions. With only one image,
some low frequency residuals are visible whereas they have disappeared with a data cube of
two images. The aberration map estimation is better with two spectral channels than with only
one spectral channel. This demonstrates the multispectral inversion efficiency for the phase



retrieval difficult problem.
The speckle field estimation in the focal plane is then improved with the multispectral inver-

sion as shown in Figure (10b). The right image is the subtraction between the simulated speckle
field and the estimated one, the former being the result of the inversion with two spectral chan-
nels. The inversion with two spectral channels allows a gain of a factor 2000 in the speckle
subtraction in the middle region defined in Figure (7a).
Less residuals of upstream aberrations in the object image lead to a better estimation of the

object map. Figure (10c) compares the estimated object image for inversions with one (left)
and two (right) spectral channels. With two spectral channels, the two planets with a contrast of
106 are detected at the right position, in addition to the planet with a contrast of 105. The planet
with a contrast of 107 is not detected because it is flooded by the photon noise. The turbulent
halo residuals in the final image, very strong with the one-image inversion, are attenuated by
using more images for the inversion. The results with more spectral channels than two are
not represented here because they lead to the same visual aspects as those with two spectral
channels.
The evolution of the rms value of the difference between the simulated and the estimated

speckle fields is represented in Figure (12a), for all the images, in the middle region defined
in Figure (7a). In the same way, the evolution of the rms value of the difference between the
simulated and the estimated object images is represented in Figure (12b). The rms value of
the difference between the simulated and the estimated images decreases with the number of
wavelengths used for the inversion. This confirms that adding some more wavelengths, thus
more information, improves the joint estimation performance.

5.4. Algorithm robustness study
5.4.1. Bandwidth effect

We study here the bandwidth effect on the image object estimation quality. We take three dif-
ferent bandwidths: from 950 nm to 1650 nm, from 950 nm to 1350 nm and from 950 nm to
1150 nm. The two first bandwidths correspond to operational modes of the SPHERE-IFS in-
strument whereas the last bandwidth is produced for compromise purposes, more representative
of dual spectral separations as used in Dual-Band Imaging.
Figure (12) shows the evolution of the rms value of the difference between the simulated and

the estimated speckle fields and object images as a function of the number of wavelengths used
in the inversion for the three different bandwidths, in the middle region defined in Figure (7a).
The quality of estimation increases with the bandwidth because we add some information for
the reconstruction. One can note that the plots decrease and then increase for the two smaller
bandwidths. We do not know for sure at the moment if it is a photon noise effect or some other
minimization difficulty.

5.4.2. Effect of a calibration error on the downstream aberrations

The previous results were obtained by assuming that the static downstream aberrations are cal-
ibrated and perfectly known (cf. section 3.2.1). We study here the effect of calibration errors on
this parameter. The downstream aberrations effect is lower and furthermore, in foreseen sys-
tem, they are expected to be much more stable and easier to calibrate than upstream aberrations.
They will be theoretically stable one-day long that means that they will be calibrated by day.
Thus, two errors can intervene: the mis-calibration errors and the fact that nevertheless, they
can evolve since the calibration. This two kind of errors are simulated by a gaussian noise of
1%, 3%, 5% and 10% of the simulated downstream aberrations which corresponds to adding a
random map of 1, 3, 5 and 10 nm-standard deviation to the downstream aberrations one. The
inversion is done for data cubes of one, two, three, four, five and six images.



a Aberration maps. Difference between the simulated and esti-
mated aberration maps in an inversion with (left) one spectral chan-
nel and (right) two spectral channels with the same dynamic.

b Speckle fields. Speckle residuals after post-processing, with the
same dynamic: (left) inversion with one spectral channel and (right)
two spectral channels.

c Images of object. Simulated (left) and estimated planets images[
oλ !hncλ

]
(x,y), at 950 nm with the same dynamic: (middle) inver-

sion with one spectral channel and (right) two spectral channels.

Fig. 10. Inversion with multispectral data cubes.



1 2 3 4 5 6
Number of wavelengths used in the inversion

0.0001

0.0010

0.0100

0.1000
R

M
S 

va
lu

e 
of

 th
e 

di
ffe

re
nc

e 
be

tw
ee

n 
th

e 
si

m
ul

at
ed

 a
nd

 th
e 

es
tim

at
ed

 s
pe

ck
le

 fi
el

ds

a Speckle fields. Difference between the simulated and es-
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Fig. 11. Inversion with multispectral data cubes. Evolution of the rms value of the difference between
the simulated and the estimated images as a function of the number of spectral channels used in the
inversion, in the middle region defined in Figure (7a).
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Fig. 12. Bandwidth effect. Evolution of the rms value of the difference between the simulated and the
estimated images as a function of the number of spectral channels used in the inversion, in the middle re-
gion defined in Figure (7a), for three different bandwidths: from 950 to 1150 nm, from 950 nm to 1350 nm
and from 950 nm to 1650 nm.
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Fig. 13. Effect of a calibration error on the downstream aberrations. Evolution of the rms value of
the difference between simulated and estimated images as a function of the number of spectral channels
used in the inversion, , in the middle region defined in Figure (7a), for different errors on the downstream
aberration map.

Figure (13b) shows the evolution of the rms value of the difference between the simulated
and the estimated image objects for the different errors on the downstream aberration map, in
the middle region defined in Figure (7a). They are compared to the black line which is the plot
without error (same as plot for middle region of the Figure (11)). All the inversions benefits
from an increase of the spectral channel number. But the most interesting thing is that an in-
crease of the spectral channel number used for the inversion can compensate for a downstream
aberration calibration error. For example, with a calibration error of 3%, the inversion with six
wavelengths leads to the same rms value between the simulated and the estimated object images
of those of the two-wavelength-inversion in the case without error. Moreover, with a calibration
error of 1% and a six-wavelength-inversion, it is possible to retrieve the same quality of image
reconstruction of the case without error.

6. Conclusion

We have proposed an original method of image restoration for the new generation of planet
finders. For the first time, a fine parametric model of coronagraphic imaging, describing the
instrument response, is used for the inversion of simulated multispectral images, in a solid
statistical framework. The choice of a Bayesian approach allows to use a wide variety of prior
information either about the system (aberrations, flux, noise) and about the object of interest.
An interest of the method is the possibility of adjusting the weight of the prior information
according to the instrumental aberrations and object knowledge and the instrument stability.
In order to set up this method, we have developed an iterative algorithm which estimates

jointly the object (non-myopic multispectral deconvolution) and the aberrations (multispectral
phase retrieval). Estimating the aberrations is a difficult issue because of the high non-linearity
of the coronagraphic imaging analytical model and the number of unknowns to estimate (about
103 in our case). Nevertheless, we have demonstrated the convergence capabilities of the algo-
rithm, by bringing original solutions to the minimization difficulties of the phase retrieval.
The restoration of images simulated with a perfect coronagraph is very encouraging for the

extraction of planetary signals at levels beginning to be astrophysically interesting. We have
demonstrated the efficiency of the method even with only one spectral channel, by achieving a



contrast of 105 at 0.2 arcsec. Multispectral redundancy improves the detection as soon as we
add one more spectral channel, allowing to achieve a contrast of 106 at 0.2 arcsec.
The number of wavelengths used for the inversion seems to be all the more important as

the prior information we have on the system is imperfect. We thus believe that multispectral
approach will be determining when we confront it with experimental data. This deserves to be
studied, as well as how the performance will evolve in the different cases of images simulated
with a non-perfect coronagraph, real images from the SPHERE instrument on lab or real images
from an instrument on-sky.
Eventually, this method could be used to improve the performance of the existing multi-

spectral imaging instruments, providing some better astrophysical exploitations. We have now
demonstrated that we could manage the difficulties linked to the criterion minimization achiev-
ing a better contrast than in other approaches. Thus, the method is limited by the analytical
imaging model relevancy and the quality of the used prior information. Nevertheless, the cur-
rent and future instrument specifications have begun to be so severe that we need more and
more knowledge of the instrument, particularly for the calibration procedures. That is why the
potential of the method is huge. The lessons drawn by applying the method could also facilitate
the approach for the design of future instruments as EPICS for the European Extremely Large
Telescope [9], and the definition of their calibration procedures.
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Appendix A: Indetermination on the estimated aberrations from an image simulated with
our approximate model

We show here that four sets of upstream aberrations give the same image in the case of our
approximate model. We re-write the expression hereunder, as a function of φu = (2π/λ )× δu
and without the variables for more readability:

[
hcλ

]app
=

∣∣∣P̃d ! φ̃u
∣∣∣
2
+
∣∣∣P̃d

∣∣∣
2
!Sφr (α)−

〈
|P [φr]|2

〉

t
·
∣∣∣P̃d

∣∣∣
2
+o

(
φ 2

)
(12)

We consider here the static term
∣∣∣P̃d ! φ̃u

∣∣∣
2
and re-write it under the form of an autocorrela-

tion. For this, let’s consider two functions f = Pd and g = δu of the two variables ρx and ρy
and let’s denote f̌ (ρ) = f (−ρ) = f (−ρx,−ρy).
By using the definition of the intercorrelation Γ f g(ρ) and the correlation C f g(ρ) of the two

functions f (ρ) and g(ρ):

Γ f g(ρ) = f (ρ)⊗ f (ρ) =
∫
f ∗(ρ ′) f (ρ ′+ρ)dρ ,

C f g(ρ) = f (ρ)!g(ρ) =
∫
f (ρ ′)g(ρ −ρ ′)dρ ,

and the following properties:
(
f̃
)∗

= ˜̌f ∗ and f !g= f ⊗ ǧ∗,

we get:
∣∣∣ f̃ ! g̃

∣∣∣
2
= f̃ g · ( f̃ g)∗ = f̃ g · ˜̌( f g)∗ = ˜f g! ˇ( f g)∗ = ˜f g⊗ f g= Γ̃ f g.

Thus:
∣∣∣P̃d ! φ̃u

∣∣∣
2
= Γ̃(Pd ·φu) (13)

The following properties of the autocorrelation:

Γ f (ρ) = Γ f ∗(−ρ)

and
Γ− f = Γ f ,

leads respectively to
∣∣∣∣

Γ(Pd ·δu)(ρ) = Γ(Pd ·δu)(−ρ)
Γ(Pd ·(−δu))(ρ) = Γ(Pd ·(−δu))(−ρ)

and
Γ(Pd ·(−δu))(ρ) = Γ(Pd ·δu)(ρ).

Thus:

Γ(Pd ·δu)(ρ) = Γ(Pd ·δu)(−ρ) = Γ(Pd ·(−δu))(ρ) = Γ(Pd ·(−δu))(−ρ), (14)

which means that the upstream aberration sets δu(ρ), δu(−ρ),−δu(ρ) and−δu(−ρ) are equiv-
alent with respect to the approximate model, because they give the same image. This is true even
in the presence of the turbulent term

∣∣∣P̃d

∣∣∣
2
!Sφr (α)−

〈
|P [φr]|2

〉

t
·
∣∣∣P̃d

∣∣∣
2
.



Appendix B: Indetermination on the estimated aberrations from an image simulated with
the Sauvage et al.’s model

In classical imaging, i.e. “non-coronagraphic imaging”, the even part sign of the phase can not
be deduced from only one image in the focal plane [28]. In other words, if we denote φp and φi,
the odd and the even parts of the phase, the two phases: φ = φp+φi and φ ′ =−φp+φi give the
same image. In this appendix, we show that it is also the case for the Sauvage et al. expression
[19] in coronagraphic imaging, if we assume that the even part sign change for all the phases in
presence.
The expression of Sauvage et al. is the following:

hcλ = 〈AnA∗n〉+
〈
|(η0)|2

〉
AdA∗d−2ℜ{〈η0A∗n〉Ad} (15)

with An (α) = TF−1
[
Pd (ρ)e jφtot (ρ)

]
, Ad (α) = TF−1

[
Pd (ρ)e jφd(ρ)

]
, φi (ρ) = 2π δi(ρ)

λ and

φtot (ρ) = φr (ρ)+φu (ρ)+φd (ρ). TF [.] denotes the Fourier Transform.
〈
|(η0)|2

〉
represents

the mean Strehl ratio during observation, such as:

η0(t) = 〈Ψ0(ρ)|Pu(ρ)〉=
1
S

∫∫

ρ
Ψ∗
0(ρ)Pu(ρ)d2ρ =

1
S2

∫∫

ρ
P2

u (ρ)e− jφ(ρ ,t)d2ρ ,

with φ(ρ , t) = φr(ρ , t)+φu(ρ).
The first term of Sauvage et al.’s expression 〈AnA∗n〉 is the classical case of non-coronagraphic

PSF, which is well-known [28]. The term AnA∗n stays identical whatever the sign of the phase
even part.
The second term of Sauvage et al.’s expression is the product of two terms:

〈
|(η0)|2

〉
and

AdA∗d . The latter stays identical whatever the sign of the phase even part. We take the following
phase: φ ′ =−φp+φi and we calculate the corresponding η ′

0(t), assuming that ρ ′′ = ρ ′:

η ′
0(t) =

1
S2

∫∫

ρ
P2

u (ρ)e− jφ ′(ρ ,t)d2ρ

=
1
S2

∫∫

ρ
P2

u (ρ)e− j[−φp(ρ ,t)+φi(ρ ,t)]d2ρ

=
1
S2

∫∫

ρ
P2

u (ρ)e j[φp(−ρ ,t)+φi(−ρ ,t)]d2ρ

=
1
S2

∫∫

ρ ′′
P2

u (ρ ′′)e j[φp(ρ ′′,t)+φi(ρ ′′,t)]d2ρ ′′

=
1
S2

∫∫

ρ ′′
P2

u (ρ ′′)e j[φ(ρ ′′,t)]d2ρ ′′

= [η0(t)]∗

〈
|(η0)|2

〉
=
〈
|(η0 ·η0(t)∗)|2

〉
is then independent of the even part sign of the phase. Thus, the

product
〈
|(η0)|2

〉
AdA∗d is also independent of the even part sign of the phase.

We study now the third term 2ℜ{〈η0A∗n〉Ad}. Assuming that φd = (φd)p+(φd)i and φ ′
d =



−(φd)p+(φd)i:

A′d (α) = TF−1
[
Pd (ρ)e jφ

′
d(ρ)

]

=
∫∫

ρ ′

[
Pd (ρ)e j[−(φd)p(ρ)+(φd)i(ρ)]

]
e−2iπ(ρα)d2ρ

=
∫∫

ρ ′

[
Pd

(
ρ ′′)e− j[(φd)p(ρ ′′)+(φd)i(ρ ′′)]

]
e2iπ(ρ ′′α)d2ρ ′′

= [Ad ]∗

As well as the previous demonstration we can show that A∗n = An. Under the effect of the
following transformation: φ → φ ′, the different terms become:






η0 → η∗
0

A∗n → An
Ad → A∗d

In other words, 〈η0A∗n〉Ad → [〈η0A∗n〉Ad ]
∗. When we take the conjugate of a complex number,

only the sign of the imaginary part change. As we take the real part of this expression, changing
the even part of the phase does not change the term.
To conclude, like in classical imaging, changing the even part of the phase sign does not

change the image in the focal plane. This means that two sets of aberrations give the same
image. But if we assume like in this communication, that the downstream aberrations are fixed
and known, this raises the degeneracy.


