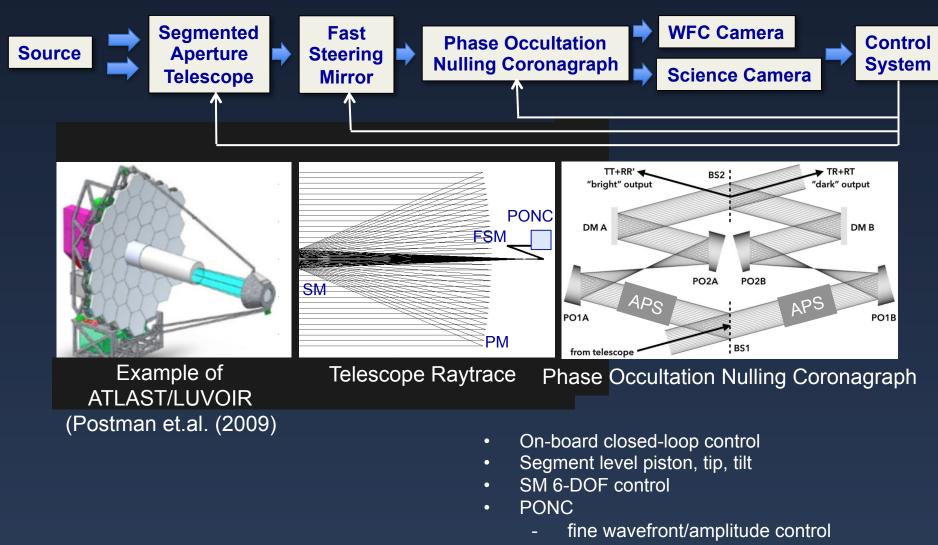

Exoplanet Nulling Coronagraphy with Arbitrary Apertures

R. Lyon, M. Clampin, B. Hicks, P. Petrone, U. Mallik, M. Bolcar NASA/GSFC Richard G Lyon@nasa.gov

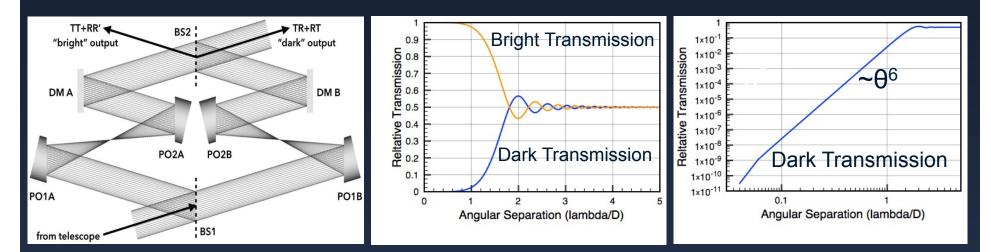
ExoPAG, Chicago IL, June 13-14, 2015

Synopsis


- **GOAL**: Spectroscopy & imaging of earth size exoplanets & biomarkers
- Past Approaches: STABLE off-axis unobscured filled aperture telescope employing a high contrast coronographic instrument, e.g. TPF-C
 - Large lightweight monolithic primary mirror
 - Telescope stability ~30 picometer (contrast stability of 2x10⁻¹¹) per observation
 - ~1000x more stable than JWST
- Alternative Approach: Leverage JWST segmented telescope technology
 - Low order wavefront control, closed loop ~1/minute, but w/ on-board processing throughout flight
 - Deployable segmented mirrors for large >8m, as large as 20m ?
 - Use Phase Occultation Nulling Coronagraph (PONC):
 - Pupil plane nulling \Leftrightarrow Allows segmented, and arbitrary, apertures
 - Telescope stability to 2 nm / minute (differential control)
 - PONC differential stability to 15 pm / minute
 - Facilitates its own differential fine wavefront control

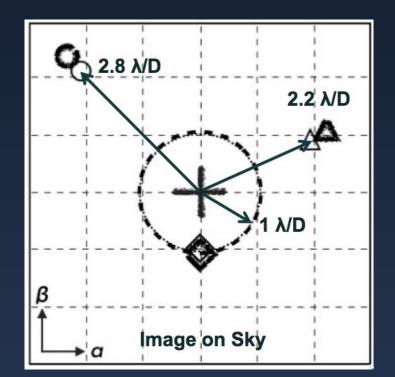
PONC => New approach to exoplanet imaging

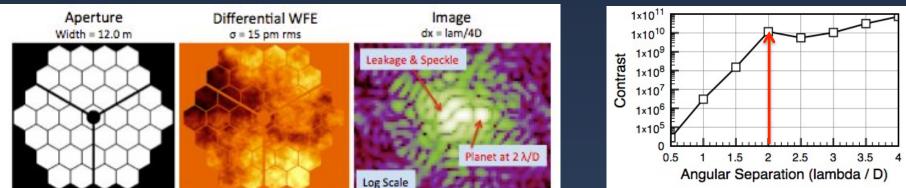
- Achieved lab results achieved with GSFC VNC testbed (not a PONC):
 - 5.5 x 10⁻⁹ at IWA = 2 λ /D (28 milli-arcseconds for assumed 8m telescope)
 - For sensing / control at 2 λ /D narrowband w/o phase occultation
- Broaderband (40 nm) nearly complete at 10⁻⁹ (SAT/TDEM milestone)
- Next milestone (2016) validates with macroscopic segmented aperture
- Proposed milestone (>2016) PONC w/ segmented aperture
- PONC component technologies at or are pushing towards TRL-6
- PONC instrument to TRL-5/6 by 2018/19 possible to prepare for 2020 Decadal
 - Requires influx of funds.


Lyon, Hicks, Clampin, Petrone *Phase-Occultation Nulling Coronagraphy* <u>http://arxiv.org/abs/1504.05747</u> (2015)

Architecture Overview with PONC

- polarization (passive)
- broadband
- ~1/minute


Principle of PONC Pupil Plane Transmission



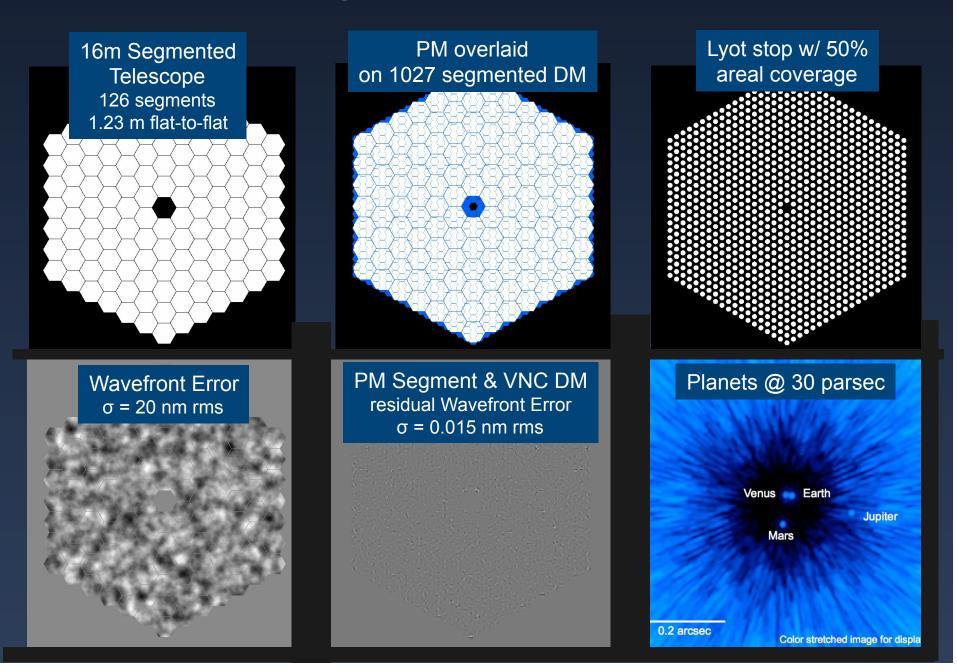
- Single modified *Mach-Zehnder* interferometer (aka nuller)
- Telescope light split into two paths ("arms" @ BS-1)
- PO optics cancel SA3, coma, astigmatism, leaves 3rd order distortion
- Field distortion is $\sim \theta^3$ with field angle => Contrast is $\sim \theta^6$
 - **Star**: on-axis ($\theta = 0$) <l> = zero (star),
 - **Planet**: off-axis ($\theta > 0$) <l> $\sim \theta^6$
- Recombined @ BS-2 => 2 output channels:
 - *Bright* => on-axis star light for control => pupil, or infocus, image
 - Dark => off-axis planet light for science => in-focus image

Principle of PONC Focal Plane Transmission

- PONC on-axis (Star) acts like conventional nuller
- Off-axis (Planet) PONC induces differential distortion plus path length phase shift between two arms
- Causes PSFs from each arm to shift apart with increasing field angle
- Net effect is destructive interference of Star (aka nulling) and unbalanced destructive (aka transmission) interference of planet

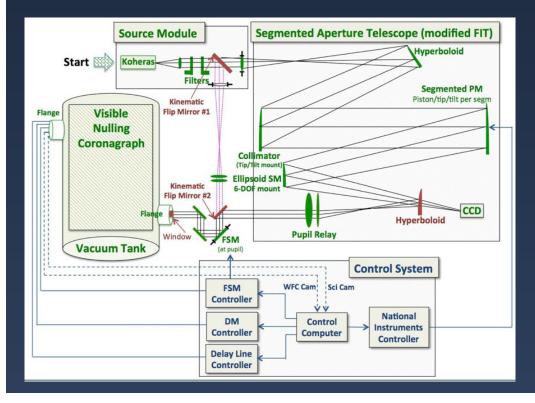
Example with Wavefront Error

Key Points and Issues


Key Points:

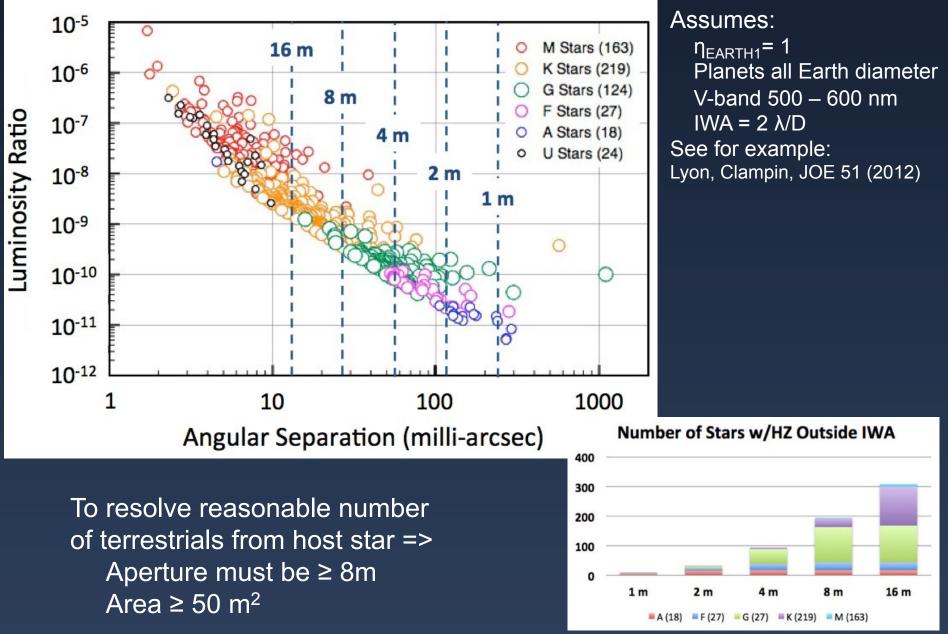
- Viable for Segmented Apertures
- Differential wavefront/amplitude control:
 - Lowers sensitivity to telescope WFE & drift (common mode)
 - Single hex-pack DM + spatial filter array
 - or 2 DMs, 1 @ pupil, 1 @ Fresnel plane
- Inner working angle = $2 \lambda/D$ (28 mas for 8 m)
- Contrast to <10⁻¹⁰
- Broadband with achromatic phase shifters
- "Flattening" of central conic region may desensitize wrt pointing
- Resolved stellar source sensitivity $\sim \theta^6$

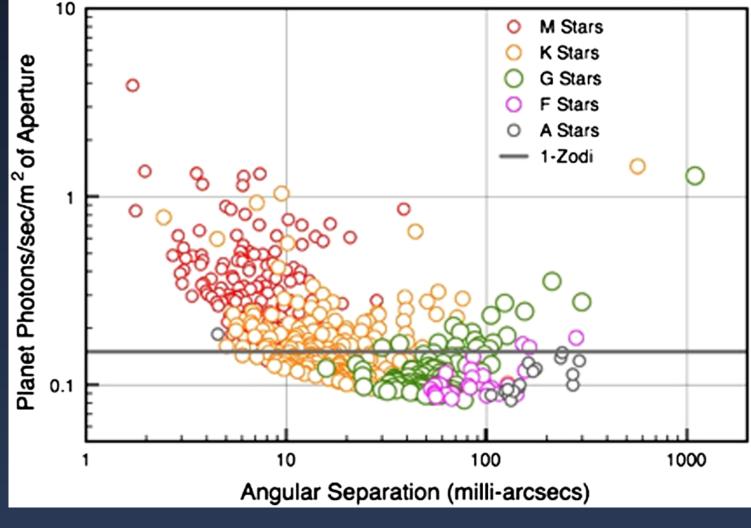
Issues:


- Sensitive to re-imaged telescope pupil shift, roll & magnification
- PSF has 2-lobes (post-processing to minimize ?)
- Peak theorectical throughput limited to 50% (less w/Lyot)
- Manufacture / alignment tolerances of PO optics still in-progress
- Best optical surface design still in-progress

PONC with Segmented Aperture Telescope

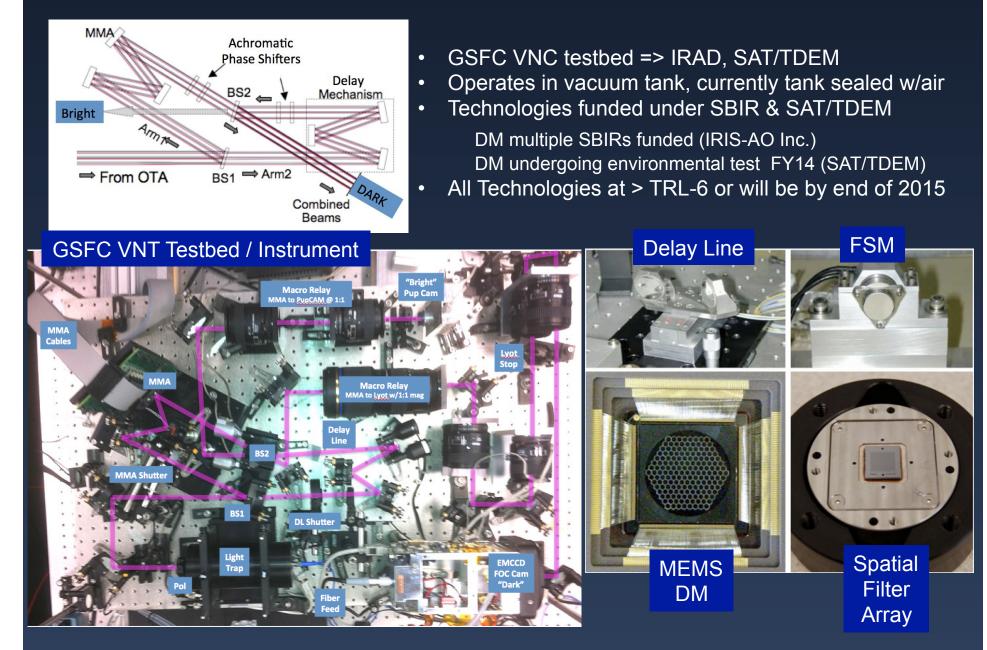
Summary and the Future

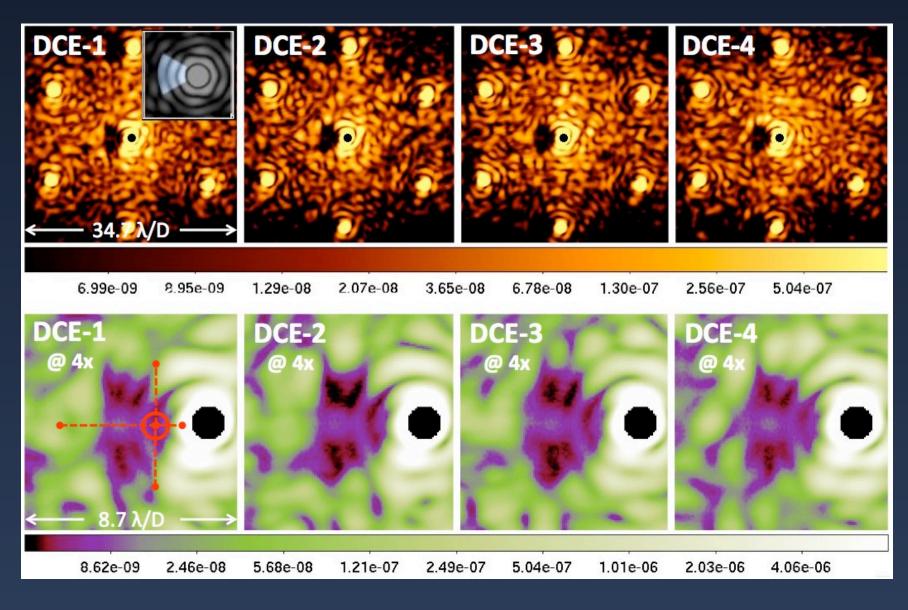

- Exoplanet direct imaging / spectroscopy require large apertures (>8 meters)
- Large Apertures should leverage existing segmented aperture technology
- Coronagraph(s) need to adapt to segmented apertures
- Approaches that levy less stressing telescope requirements are desired
- Phase Occulting Nulling Coronagraph may be such an approach, however:
 - Needs more detailed modeling / analysis, with detailed instrument design
 - IRAD and SIF (FY15/16) and DR&T efforts (FY16)
 - Lab demo of PONC approach:
 - SAINT: Segmented Aperture Interferometric Nulling Testbed


SAINT: Benchtop segmented (actuated) telescope coupled to PONC to demonstrate coupled control & hi-contrast imaging

Also...

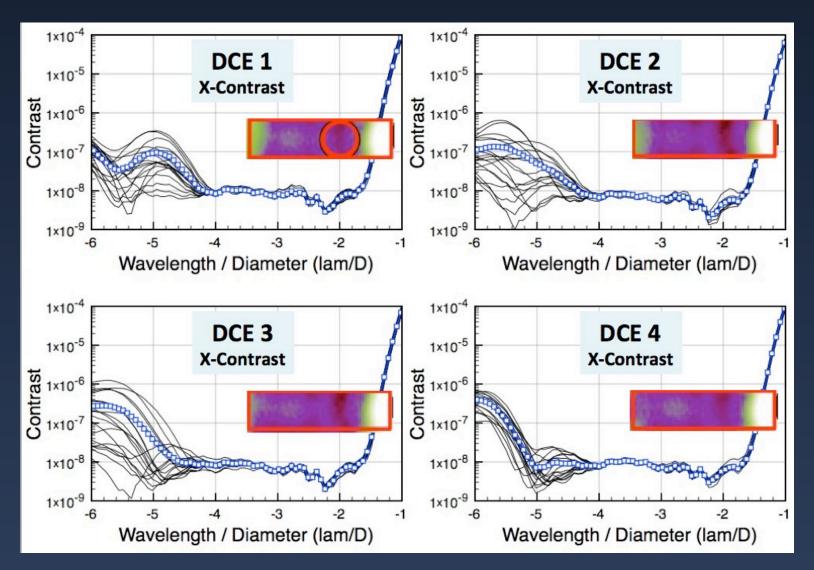
Terrestrial Exoplanets and Telescope Size


At least 8 meter Apertures are Required


Most G-stars > 30 mas

D = 8 mA = 50 m² => Yields ~10 photons/sec Spectra R=100 => ~0.1 photon/sec

VNC Technologies



GSFC VNC Lab Results

4 DCEs, 50,000 control steps, last 3,800 averaged per DCE ¹³

GSFC VNC Lab Results

GSFC Contrast Results

- Worst case <C> is for DCE1 5.51±0.13 x 10⁻⁹
 - to >99.99% confidence
 - at 2 λ/D
 - Narrowband (λ =633 nm, $\Delta\lambda$ =1.2 nm)
 - Result is consistent with models & error budgets
- Met first milestone per TAC review Feb 2013
- Highest recorded contrast for any nulling coronagraph

Realization	DCE-1 Contrast x 10 ⁻⁹	DCE-2 Contrast x 10 ⁻⁹	DCE-3 Contrast x 10 ⁻⁹	DCE-4 Contrast x 10 ⁻⁹
1	5.86	5.25	3.95	5.36
2	5.40	4.09	4.71	4.64
3	5.15	3.98	4.72	4.79
4	4.88	3.80	4.29	4.61
5	4.93	3.87	4.35	4.66
6	5.06	3.95	3.95	4.80
7	5.54	3.96	5.03	4.98
8	5.54	3.61	5.01	5.02
9	5.31	3.65	4.96	5.45
10	6.30	3.93	4.88	5.12
11	5.23	3.75	4.90	6.11
12	4.89	3.67	4.63	5.21
13	5.05	3.99	4.94	4.94
14	4.98	4.24	4.41	5.26
15	5.77	3.73	4.84	5.09
16	5.52	3.41	4.13	5.30
17	6.68	3.42	4.27	6.31
18	6.64	3.50	4.28	5.07
19	5.98	3.91	4.25	5.08
Ave: <c> =</c>	5.51 x 10 ⁻⁹	B.88 x 10 -9	4.55 x 10 ⁻⁹	5.15 x 10 ⁻⁹
Sigma: σ =	5.65 x 10 ⁻¹⁰	3.99 x 10 ⁻¹⁰	3.64 x 10 ⁻¹⁰	4.46 x 10 ⁻¹⁰
Std Error =	±1.30 x 10 ⁻¹⁰	±9.16 x 10 ⁻¹¹	±8.35 x 10 ⁻¹¹	±1.02 x 10 ⁻¹⁰
Students-t =	34.61	66.82	65.21	47.40
Confidence =	> 99.99 %	> 99.99 %	> 99.99 %	> 99.99 %
Average over all 76 realizations			4.77 x 10 ⁻⁹	
Standard Dev (o) over all 76 realizations			7.63 x 10 ⁻¹⁰	
Standard Error over all 76 realizations			8.76 x 10 ⁻¹¹	
Contrast for 90% Confidence			5.68 x 10 ⁻⁹	

15