Vortex Coronagraphy

Gene Serabyn

Jet Propulsion Laboratory

California Institute of Technology

ExoPAG 5
Austin, Jan 2012

Small-Angle Observations

Goal: observe as close as possible to bright stars

Planets seen to 2 λ /D HR8799 contrast ~ 10⁻⁵ (Serabyn et al. 2010)

Stars to 1.1 λ /D ϵ Ceph contrast \approx 50:1 (Mawet et al. 2011)

<u>Desirable capabilities of a space coronagraph</u> <u>& potential solutions provided by vortex phase masks</u>

Subsystem/metric	Goal	Potential Vortex-based Solution
Telescope	Modest size	Phase masks in general
Telescope	On-axis optics	Multi-stage vortex configuration
Throughput	High throughput for exoplanet light	Optical vortex phase mask
Throughput	Broadband	Multi-layer vortex or
		Polarization-filtering
Throughput	Dual-polarization	Multi-layer vortex or
		Polarization-split vortex system
Field of view	Small inner working angle	Phase masks in general
Field of view	Large outer working angle	Phase masks in general
Field of view	All azimuths available	Vortex phase mask
Wavefront quality	Low sensitivity to pointing & low-order errors,	Higher order vortex
	or ability to correct them	
Wavefront quality	Ability to correct high-order errors	Direct speckle amplitude & phase
		sensing in a multi-stage vortex

The (Single) Vortex Coronagraph

<u>Advantages:</u>

Phase mask ⇒ Small inner working angle
High throughput
Clear 360° azimuth FOV
Simple layout (common to Lyot)

Nearly ideal performance:

Infrared Coronagraphic Testbed (IRCT)

Single Vortex IRCT Pupil Measurements

What about an On-Axis Telescope?

The Dual-Stage Vortex

Net Result

Double Vortex on the IRCT

IRCT Measurements of On-Axis Dual-Vortex

1st Lyot plane:

Residual light outside primary & secondary diameters

- the latter light lies within the primary

2nd Lyot plane:

Residual light concentrated in center

- it can be blocked.

Serabyn et al. 2011, SPIE

Modeling the Effect of Secondary Support Legs

0.5%D 2%D

Speckle Phase Sensing with a Double Vortex

(Serabyn et al. 2011, Applied Optics)

Masks and Performance

Subsystem/metric	Goal	Potential Vortex-based Solution
Telescope	Modest size	Phase masks in general
Telescope	On-axis optics	Multi-stage vortex configuration
Throughput	High throughput for exoplanet light	Optical vortex phase mask
Throughput	Broadband	Multi-layer vortex or
		Polarization-filtering
Throughput	Dual-polarization	Multi-layer vortex or
		Polarization-split vortex system
Field of view	Small inner working angle	Phase masks in general
Field of view	Large outer working angle	Phase masks in general
Field of view	All azimuths available	Vortex phase mask
Wavefront quality	Low sensitivity to pointing & low-order errors,	Higher order vortex
	or ability to correct them	
Wavefront quality	Ability to correct high-order errors	Direct speckle amplitude & phase
		sensing in a multi-stage vortex

Vortex Phase Masks

Scalar Vortex:

- Longitudinal (dielectric) phase ramp
 - e.g. EBL; Palacios et al. 2005, Masarri et al. 2011

Vector Vortex:

- Geometric (Pancharatnam-Berry) phase (polarization direction)
 - e.g. Mawet et al. 2005

The Vector Vortex: A Rotationally Symmetric HWP

Half-wave plate (HWP):

- flips field across fast axis
- reverses circular polarization state

Altering fast axis orientation changes the phase of the CP state

"Geometric" phase shift

Rotationally symmetric HWP: Phase of CP increases linearly with azimuth

 $e^{ilp\theta}$

Rot. Sym. HWP between crossed polarizers

Liquid Crystal Polymer Vector Vortex Masks

Central disorientation region:

Vortices between crossed polarizers (mask at center):

Central Disorientation Region Reduction

Broadbanding

1) Three-layer half-wave-plate vortex mask

First attempt has acceptably achromatic (flat) response, but at $\sim 182^\circ$

Polarization Components in the HCIT

Contrast & Bandwidth Tests in HCIT

Vortex Mask Test Results in the HCIT

- Optical wavelengths
- 4th order mask (8π in one circuit)
- IWA = 1.7 λ /D vs. 0.9 λ /D

Monochromatic: 785 nm laser Median contrast = 3.4×10^{-9} between $2.5-12 \lambda/d$:

TPF-C goal: 10⁻¹⁰

Potential precursors: 10⁻⁹

Broadband HCIT Results

- Setup:
 - Seven 2% filters
 - Optimized DM at central λ
 - Dark hole: 2.75-6.3 λ/D
 - limited by upstream QWP & pol.
- Red curve: results for the entire dark hole
- Blue curve: top half of dark hole (y = 0 to 6.3 λ /D), (less residual light there)
- Contrasts:
 - 1.0e-8 in best 2% passband
 - 1.6e-8 for a 10% passband.
 - 3.8e-8 for a 20% passband

Potential Mission Configuration

<u>Desirable capabilities of a space coronagraph</u> <u>& potential solutions provided by vortex phase masks</u>

Subsystem/metric	Goal	Potential Vortex-based Solution
Telescope	Modest size	Phase masks in general
Telescope	On-axis optics	Multi-stage vortex configuration
Throughput	High throughput for exoplanet light	Optical vortex phase mask
Throughput	Broadband	Multi-layer vortex or
		Polarization-filtering
Throughput	Dual-polarization	Multi-layer vortex or
		Polarization-split vortex system
Field of view	Small inner working angle	Phase masks in general
Field of view	Large outer working angle	Phase masks in general
Field of view	All azimuths available	Vortex phase mask
Wavefront quality	Low sensitivity to pointing & low-order errors, or ability to correct them	Higher order vortex
Wavefront quality	Ability to correct high-order errors	Direct speckle amplitude & phase
		sensing in a multi-stage vortex

<u>Summary</u>

Vortex devices:

- Small inner working angle
- High contrast (3.4 x 10⁻⁹ monochromatic)
- Broadband performance (few 10⁻⁸)
- System-level: tandem vortex coronagraph
 - Possibility of an on-axis telescope
 - Possibility of the direct measurement of speckle phases

• Very promising:

- Vortices beginning to be used on ground-based telescopes
- Performance already close to sufficient for small first-generation exoplanet imaging mission in space
- TPF flagships do not need to be prohibitively large