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Goal: observe as close as possible to bright stars
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Desirable capabilities of a space coronagraph

& potential solutions provided by vortex phase masks

Subsystem/metric

Goal

Potential VVortex-based Solution

Telescope Modest size Phase masks in general

Telescope On-axis optics Multi-stage vortex configuration

Throughput High throughput for exoplanet light Optical vortex phase mask

Throughput Broadband Multi-layer vortex or
Polarization-filtering

Throughput Dual-polarization Multi-layer vortex or
Polarization-split vortex system

Field of view Small inner working angle Phase masks in general

Field of view Large outer working angle Phase masks in general

Field of view All azimuths available \ortex phase mask

Wavefront quality

Low sensitivity to pointing & low-order errors,
or ability to correct them

Higher order vortex

Wavefront quality

Ability to correct high-order errors

Direct speckle amplitude & phase
sensing in a multi-stage vortex




The (Single) Vortex Coronagraph
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Advantages: ]

Phase mask = Small inner working angle
High throughput
Clear 360° azimuth FOV
Simple layout (common to Lyot)

Useful throughput

Nearly ideal performance: :




Infrared Coronagraphic Testbed
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Single Vortex IRCT Pupil Measurements
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What about an On-Axis Telescope?
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The Dual-Stage Vortex
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Telescope
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Double Vortex on the IRCT
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IRCT Measurements of On-Axis Dual-Vortex

15t Lyot plane:
Residual light outside

primary & secondary
diameters

- the latter light lies
within the primary
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Modeling the Effect of
Secondary Support Legs
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Speckle Phase Sensing with a Double Vortex

» Use of the residual central light
as a reference beam:
» Use phase-shifting interferometry

. ‘\ between inner and outer pupils

to measure speckle phases

loec = 100-4m-9 / (C(dl)z)

Foranm=5star,andd’'=1-0.1 m,
C=10"=~1-100 sec
C=10°= ~ 100 sec to 104 sec.
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(Serabyn et al. 2011, Applied Optics)



Masks and Performance

Subsystem/metric

Goal

Potential VVortex-based Solution

Telescope Modest size Phase masks in general

Telescope On-axis optics Multi-stage vortex configuration

Throughput High throughput for exoplanet light Optical vortex phase mask

Throughput Broadband Multi-layer vortex or
Polarization-filtering

Throughput Dual-polarization Multi-layer vortex or
Polarization-split vortex system

Field of view Small inner working angle Phase masks in general

Field of view Large outer working angle Phase masks in general

Field of view All azimuths available \ortex phase mask

Wavefront quality

Low sensitivity to pointing & low-order errors,
or ability to correct them

Higher order vortex

Wavefront quality

Ability to correct high-order errors

Direct speckle amplitude & phase
sensing in a multi-stage vortex




Vortex Phase Masks

Scalar Vortex:

e Longitudinal (dielectric) phase ramp
- e.g. EBL; Palacios et al. 2005, Masarri et al. 2011

Vector Vortex:
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 Geometric (Pancharatnam-Berry) phase (polarization direction)
- e.g. Mawet et al. 2005



The Vector Vortex: A Rotationally Symmetric HWP
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Liguid Crystal Polymer Vector Vortex Masks
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Central Disorientation Region Reduction
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Broadbanding

1) Three-layer half-wave-plate vortex mask

— First attempt has acceptably achromatic (flat) response, but at ~ 182°
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Polarization Components in the HCIT
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Contrast & Bandwidth Tests in HCIT

DM
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or
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Occute,

OAP4: £=773.9 mm
SORL 20 PTV
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mage size same as coronagraph focal plane
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Vortex Mask Test Results in the HCIT

 Optical wavelengths
« 4t order mask (8= in one circuit)
* I WA=1.7 A/Dvs. 0.9 A/D

Monochromatic: 785 nm laser
Median contrast = 3.4 x 107
between 2.5-12 A/d:

TPF-C goal: 10-10
Potential precursors: 10~




Broadband HCIT
Results

* Setup:
* Seven 2% filters

* Optimized DM at central A
* Dark hole: 2.75-6.3 A/D

- limited by upstream QWP & pol.

* Red curve: results for the entire dark hole

* Blue curve:

top half of dark hole (y =0 to 6.3 /D),
(less residual light there)
* Contrasts:
1.0e-8 in best 2% passband
1.6e-8 for a 10% passband.
3.8e-8 for a 20% passband
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Potential Mission Configuration
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Desirable capabilities of a space coronagraph

& potential solutions provided by vortex phase masks

Subsystem/metric

Goal

Potential VVortex-based Solution

Telescope Modest size Phase masks in general

Telescope On-axis optics Multi-stage vortex configuration

Throughput High throughput for exoplanet light Optical vortex phase mask

Throughput Broadband Multi-layer vortex or
Polarization-filtering

Throughput Dual-polarization Multi-layer vortex or
Polarization-split vortex system

Field of view Small inner working angle Phase masks in general

Field of view Large outer working angle Phase masks in general

Field of view All azimuths available \ortex phase mask

Wavefront quality

Low sensitivity to pointing & low-order errors,
or ability to correct them

Higher order vortex

Wavefront quality

Ability to correct high-order errors

Direct speckle amplitude & phase
sensing in a multi-stage vortex




Summary

* Vortex devices:
— Small inner working angle
— High contrast (3.4 x 10° monochromatic)
— Broadband performance (few 10-8)

e System-level: tandem vortex coronagraph
— Possibility of an on-axis telescope
— Possibility of the direct measurement of speckle phases
* Very promising:
— Vortices beginning to be used on ground-based telescopes

— Performance already close to sufficient for small first-generation
exoplanet imaging mission in space

— TPF flagships do not need to be prohibitively large



