A → Ω
Probes

Christopher Martin
Caltech
α → Ω

Following the flow of Baryons from the Cosmic Web to Planets

IGM (δ~1-100)

- α: High Resolution UV Absorption Spectroscopy (Multi-object? Tomography?)
- α: Mod Resolution UV Emission Integral Field Spectroscopy (IFS)
- α: Mod Resolution Multi-Object-Spectroscopy (MOS)
Following the flow of Baryons from the Cosmic Web to Planets

CGM ($\delta \sim 10^2$-10^4)

- α: High Resolution UV Absorption Spectroscopy (Multi-object? Tomography)
- α: Mod Resolution UV Emission Integral Field Spectroscopy (IFS)
- α: Mod Resolution Multi-Spectroscopy
Following the flow of Baryons from the Cosmic Web to Planets

Galaxies ($\delta \sim 10^4$-10^8)

α: Mod-High Resolution UV Emission IFS
α: Mod Resolution Multi-Object Spectroscopy
α: Wide field UV/Optical Imaging
Φ: Far IR/Sub mm imaging/spectroscopy
Ω: High contrast imaging (Galaxy/AGN co-evol)
Following the flow of Baryons from the Cosmic Web to Planets

Clusters/GMCs ($\delta \sim 10^8$-10^{10})
- \langle : Wide field UV/Optical Imaging
- \langle : Mod-High Resolution UV Emission IFS
- \langle : Mod Resolution UV Multi-Object Spectroscopy
- Φ: Far IR/Sub-mm imaging/spectroscopy
Following the flow of Baryons from the Cosmic Web to Planets

Protostars/PPDs/Young Stars ($\delta \sim 10^{16}-10^{19}$)
- Φ: Far IR/Sub mm imaging/spectroscopy
- Ω: High Contrast optical Imaging/Sp
- α: Wide field UV/Optical Imaging
- α: High Resolution UV spectroscopy
- α: Mod-High Angular Resolution UV Emission IFS
Following the flow of Baryons from the Cosmic Web to Planets

Giant Planets ($\delta \sim 10^{24}$)
- Ω: High Contrast Imaging
- Ω: High Angular Resolution, Low Spectral Resolution IFS
Probe 1 – Alpha α

- **Wide-field**
 - ~1.5 m
 - Wide-field UVO imaging
 - Massively multi-object UV Spectroscopy
 - low, medium, high R?
 - Wide-field UV Integral Field Spectrograph

- **Science**
 - IGM/CGM emission/absorption, tomograph?
 - Galaxy gas, star formation history, feedback
 - Star Formation Region gas physics, PDRs
 - Protoplanetary Disk gas physics
 - General astrophysics

- **Technology Demonstration**
 - High efficiency UV coatings, detectors
Probe 2 – Phi Φ

- Far IR/Sub-mm
 - Single aperture imaging and spectroscopy (SPICA?)

- Science
 - Obscured Star Formation region gas physics, PDRs, dust
 - Protoplanetary Disk gas physics
 - Conditions for Habitability of Exoplanetary Systems
 - General astrophysics

- Technology Demonstration
 - Balloon interferometer?
Probe 3 – Omega Ω

• Narrow-field
 – ~1.5 m
 – Dedicated O/UV (0.1-1 [2?] μm)
 – High resolution imaging
 – High contrast imaging
 – High resolution/contrast imaging spectroscopy

• Science
 – Physics of star formation
 – Proto-planetary disk structure
 – Giant planets imaging & characterization
 – AGN formation, evolution, & feedback

• Technology demonstration
 – High-contrast imaging
 – UV compatibility
 – Starshade?